Instrucciones:

Resuelve, razonadamente, lo que se indica para el día de la semana que te toca y con la misma paridad que la suma de los dígitos de tu DNI.

Deberás entregar lo hecho al finalizar la hora de clase, indicando tu nombre y DNI.

1. A continuación se da una aplicación lineal $f: \mathcal{P}_3 \to \mathcal{P}_2$. Calcula la matriz de f respecto de $\{1, x, x^2, x^3\}$ en salida y $\{1, x, x^2\}$ en llegada (recuerda que cambiar el orden de los vectores es usar una base diferente). Usando esa matriz, halla una base de $\operatorname{Im}(f)$ y una base de $\operatorname{ker}(f)$. (Las respuestas deben ser en términos de polinomios, no vectores numéricos).

$$p(x) \mapsto (1+x+3x^2)p(0) + p'(x) + (1-x)p''(x) - \frac{7}{6}xp'''(x)$$

2. Sea el espacio vectorial $\mathbb{V}=\{A\in \mathrm{M}_{2\times 2}(\mathbb{K})\mid \mathrm{traza}(A)=0\}$. Consideramos la base $\mathcal{B}=\{\left[\begin{smallmatrix}1&&0\\0&&-1\end{smallmatrix}\right],\left[\begin{smallmatrix}0&&1\\0&&0\end{smallmatrix}\right],\left[\begin{smallmatrix}0&&0\\1&&0\end{smallmatrix}\right]\}$ de \mathbb{V} .

A continuación damos un endomorfismo $f_a: \mathbb{V} \to \mathbb{V}$. Halla la matriz de f_a respecto de \mathcal{B} tanto en salida como en llegada (recuerda que cambiar el orden de los vectores es usar una base diferente). Halla el valor o valores del parámetro a para los que f_a no es biyectivo.

$$f_a(A) = \begin{pmatrix} a & 3 \\ 1 & 0 \end{pmatrix} A - A \begin{pmatrix} a & 3 \\ 1 & 0 \end{pmatrix} + 4A$$

Lunes impar. Resuelve los ejercicios del modelo con los siguientes datos:

1.
$$p(x) \mapsto (-2+x+3x^2)p(0) + 3p(x) - (1+x)p'(x) + (1-\frac{x}{2})p''(x) - 2xp'''(x)$$

2.
$$f_a(A) = \begin{pmatrix} a & 1/2 \\ 1/2 & 0 \end{pmatrix} A - A \begin{pmatrix} a & 1/2 \\ 1/2 & 0 \end{pmatrix} + 2A$$

Lunes par. Resuelve los ejercicios del modelo con los siguientes datos:

1.
$$p(x) \mapsto (-2 + x + 2x^2)p(0) + 3p(x) - (2+x)p'(x) + (2+\frac{x}{2})p''(x) - \frac{5}{2}xp'''(x)$$

2.
$$f_a(A) = \begin{pmatrix} 3 & a \\ -a & 0 \end{pmatrix} A - A \begin{pmatrix} 3 & a \\ -a & 0 \end{pmatrix} + A$$

Jueves impar. Resuelve los ejercicios del modelo con los siguientes datos:

1.
$$p(x) \mapsto (-2-2x)p(0) + 3p(x) - (1+x)p'(x) + (1-x)p''(x) - xp'''(x)$$

2.
$$f_a(A) = \begin{pmatrix} a & 1 \\ -2 & 0 \end{pmatrix} A - A \begin{pmatrix} a & 1 \\ -2 & 0 \end{pmatrix} - A$$

Jueves par. Resuelve los ejercicios del modelo con los siguientes datos:

1.
$$p(x) \mapsto (-2 + 2x + x^2)p(0) + 3p(x) + (2 - x)p'(x) - (1 + \frac{5}{2}x)p''(x) - \frac{1}{2}xp'''(x)$$

2.
$$f_a(A) = \begin{pmatrix} 4 & -a \\ 3a & 0 \end{pmatrix} A - A \begin{pmatrix} 4 & -a \\ 3a & 0 \end{pmatrix} - 2A$$