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1 Introduction

Newman polynomials are those with all coefficients in {0, 1}. We consider here

the problem of finding Newman polynomials P such that all the coefficients of

P 2 are so small as possible for deg P and P (1) given.

A set A ⊂ [1, N ] is called a B2[g] sequence if every integer n has at most g

distinct representations as n = a1 + a2 with a1, a2 ∈ A and a1 ≤ a2. Gang Yu

[4] introduced a new idea to obtain the upper bound |A| ≤ √
3.2 gN(1 + o(1))

for any B2[g] sequence A ⊂ [1, N ] which improved all the previous ones. It has

been conjectured by some authors that the constant 3.2 can be substituted by

2. Gang Yu observed that it would follow from conjecture 1 below.

Conjecture 1 (Gang Yu, [4]) For any Newman polynomial P with P (1) =

o(deg P ), we have M(P 2) & P 2(1)/ deg(P ), where M(P 2) denotes the maxi-

mum coefficient of P 2.

The notation g(t) & h(t) means that lim inft→∞ g(t)/h(t) ≥ 1. In the conjecture

above the parameter tending to infinity is deg(P ).

Berenhaut and Saidak [1] observed that the condition P (1) = o(deg P ) in

needed in Yu’s conjecture by exhibiting an infinite sequence Pn of Newman

polynomials such that M(P 2
n) . 8

9P
2
n(1)/ deg Pn. Dubikas [2] has improved 8/9
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to 5/6. These sequences don’t contradict Yu’s conjecture, since they satisfy

Pn(1) ∼ 3
4 deg Pn and Pn(1) ∼ 3

5 deg Pn, respectively.

The aim of this note is to prove the next theorem, which in particular disproves

Yu’s conjecture.

Theorem 2 There exists an infinite sequence of Newman polynomials Pn with

Pn(1) = o(deg Pn) and such that

lim sup
n→∞

(deg Pn)M(P 2
n)/P 2

n(1) ≤ π/4.

We remark that the sequence Pn in theorem 2 satisfies not only Pn(1) =

o(deg Pn) but Pn(1) = O((deg Pn)
1/2(log(deg Pn))

β) for any given β > 1/2.

This growing is close to the best possible because it is easy to see that theorem

2 fails if we take Pn(1) = o((deg Pn)
1/2), even if we allow to substitute π/4

for any greater constant. To see this, we observe that if Pn(1) = o((deg Pn)
1/2)

then P 2
n(1)/ deg Pn = o(1) but clearly M(P 2

n) ≥ 1.

Our proof is based on the classic probabilistic method established by Erdős.

2 Proof of theorem 1.1

For any β > 1/2 we define an infinite sequence of positive integers A randomly

by choosing each number i to be in A with probability

P (i ∈ A) =
(log i)β

√
i

, i ∈ N.

Let ti the boolean random variable with values 1 or 0 according to i ∈ A or

not. We consider the random formal polynomial P (x) =
∑

i tix
i. The coefficient

of xm in P 2(x) is the random variable

Ym =
∑

i1+i2=m

ti1ti2. (1)
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Now, to each random polynomial P (x) we associate the sequence of polynomials

{Pn} defined by

Pn(x) =
∑

i≤n

tix
i. (2)

The proof of theorem 2 will be accomplished by showing that this random

sequence of polynomials satisfies the statement of theorem 2 with positive

probability. The proof of this fact will follow from proposition 1 and propo-

sition 2 below, whose proof, in turn, will be obtained by using a special case of

Chernoff’s inequality (see for example [3], Corollary 1.9).

Theorem 3 (Chernoff’s inequality) If X is a sum of independent boolean

variables, then for any 0 < ε < 1,

P (|X − E(X)| ≥ εE(X)) ≤ 2e−ε2E(X)/4.

Proposition 1 Let Pn(x) the random polynomials defined in (2). Then, for

any ε > 0 there exists N such that

P
(
Pn(1) > (1− ε)2n1/2(log n)β for all n > N

) ≥ 0.9

Proof Fix 0 < ε0 < 1. If we apply theorem 3 to X = Pn(1) we obtain

P (Pn(1) < (1− ε0)E (Pn(1))) ≤ 2e−ε20E(Pn(1))/4. (3)

Since E(Pn(1)) =
∑

i≤n
(log i)β√

i
∼ 2

√
n(log n)β, there exists N1 such that for any

n ≥ N1

E(Pn(1)) ≥ (1− ε0)2
√

n(log n)β. (4)

By (3) and (4) we obtain, for n ≥ N1,

P
(
Pn(1) ≤ (1− ε0)

22
√

n(log n)β
)≤P(

Pn(1) < (1− ε0)E (Pn(1))
)

≤2e−ε20E(Pn(1))/4

≤2e−ε20(1−ε0)
√

n(log n)β/2.
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Clearly
∞∑

n=1
P

(
Pn(1) < (1− ε0)

22
√

n(log n)β
)

< ∞
and we can apply the Borel Cantelli lemma to deduce that there exists N such

that

P
(
Pn(1) > (1− ε0)

22
√

n(log n)β for all n > N
) ≥ 0.9.

Finally we take ε0 = 1−√1− ε.

Proposition 2 Let Ym the random variable defined in (1). Then, for any ε > 0

there exists M such that

P
(
Ym < π(1 + ε)(log m)2β for all m > M

) ≥ 0.9

Proof Write

Zm =
∑

i1+i2=m
i1≤i2

ti1ti2,

so Ym = 2Zm − tm/2. We observe that Zm is a sum of independent boolean

variables, because if i1+i2 = i′1+i′2, then {i1, i2} = {i′1, i′2} or {i1, i2}∩{i′1, i′2} =

∅. Write δm = 1 if m is even and δm = 0 if m is odd. We observe that

E(Zm) =
∑

i+j=m
1≤i<j

(log i)β

√
i

(log j)β

√
j

+ δm
(log(m/2))β

√
m/2

=
∑

1≤i<m/2

(log i)β(log(m− i))β

√
i(m− i)

+ δm
(log(m/2))β

√
m/2

∼ (π/2)(log m)2β

and so, for any ε0 > 0, there exists M1 such that

(π/2)(1− ε0)(log m)2β ≤ E(Zm) ≤ (π/2)(1 + ε0)(log m)2β (5)

for any m ≥ M1. Then we can apply (5) and theorem 3 with X = Zm to deduce

that

P
(
Zm > (π/2)(1 + ε0)

2(log m)2β
) ≤ P(

Zm > (1 + ε0)E(Zm)
)

≤ 2e−ε20E(Zm)/4

≤ 2e−C(log m)2β
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for m > M1, where C = ε2
0(1 − ε0)π/8. Since 2β > 1 and Ym ≤ 2Zm we have

that
∑
m
P

(
Ym > π(1 + ε0)

2(log m)2β
)

< ∞
and we can apply again the Borel-Cantelli lemma to deduce that there exists

M such that

P
(
Ym < π(1 + ε0)

2(log m)2β2 for all m > M
)

> 0.9.

We complete the proof of proposition 2 by taking ε0 = 1−√1− ε.

To conclude the proof of theorem 2, it is clear that M(P 2
n) ≤ maxm≤2n Ym and

so, with probability > 0.9 we have that

M(P 2
n) ≤ max

m≤M
Ym + max

M<m<2n
Ym ≤ M + π(1 + ε)(log(2n))2β.

Then, for any ε > 0, for n large enough, say n ≥ N2, and with probability

> 0.9, we have

M(P 2
n) ≤ π(1 + 2ε)(log n)2β. (6)

On the other hand we know that with probability > 0.9, we have

Pn(1) > (1− ε)2
√

n(log n)β (7)

for all n > N . Then, with probability > 0.8, both (6) and (7) hold simultane-

ously and hence

M(P 2
n) ≤ (π/4)

1 + 2ε

(1− ε)2P
2
n(1)/n (8)

for all n ≥ max{N2, N}. We finish the proof by observing that n ≥ deg Pn and

that we can take ε arbitrarily small.
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