THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE

JAVIER CILLERUELO

Abstract

We obtain, for any irreducible quadratic polynomial $f(x)=a x^{2}+$ $b x+c$, the asymptotic estimate log l.c.m. $\{f(1), \ldots, f(n)\} \sim n \log n$. When $f(x)=a x^{2}+c$ we prove the more precise estimate, \log l.c.m. $\{f(1), \ldots, f(n)\}=$ $n \log n+B n+o(n)$ for a suitable constant $B=B(a, c)$.

1. Introduction

It is well known that \log l.c.m. $\{1, \ldots, n\} \sim n$. Actually it is equivalent to the prime number theorem. The analogous for arithmetic progressions is also known [2],

$$
\log \text { l.c.m. }\{a+b, \ldots, a n+b\} \sim n \frac{a}{\varphi(a)} \sum_{\substack{1 \leq k \leq a \\(k, a)=1}} \frac{1}{k}
$$

We address here the problem of estimate $L_{n}(f)=$ l.c.m. $\{f(1), \ldots, f(n)\}$, where f is an irreducible quadratic polynomial in \mathbb{Z}. The case $f(x)=x^{2}+1$ has been considered in [1] where the estimate $\log L_{n}(f)=\log$ l.c.m. $\{f(1), \ldots, f(n)\} \geq A n+B$ was obtained in this case for explicit constants $A, B>0$.

In section $\S 2$ we give an asymptotic estimate for a general irreducible quadratic polynomial $f(x)=a x^{2}+b x+c$.

Theorem 1.1. For any irreducible quadratic polynomial we have

$$
\log \text { l.c.m. }\{f(1), \ldots, f(n)\} \sim n \log n .
$$

In section $\S 3$, which is the main part of this work, we obtain a more precise estimate in some particular cases.

Theorem 1.2. For any irreducible polynomial $f(x)=a x^{2}+c$ we have

$$
\log \text { l.c.m. }\{f(1), \ldots, f(n)\}=n \log n+B n+o(n),
$$

for an explicit constant $B=B(a, c)$.
It includes the simplest case $f(x)=x^{2}+1$ with

$$
B(1,1)=-1-\frac{3 \log 2}{2}-\lim _{t \rightarrow \infty}\left(\sum_{\substack{p \leq t \\ p \equiv 1 \\(\bmod 4)}} \frac{2 \log p}{p-1}-\log t\right)
$$

[^0]To prove theorem 1.2 we need to use a deep result about the distribution of the solutions of the quadratic congruences $f(x) \equiv 0(\bmod p)$ due to Duke, Friedlander and Iwaniec (for $D>0$), and Toth (for $D<0$), where $D=b^{2}-4 a c$ is the discriminant of f.

Theorem 1.3 ([3], [4]). For any irreducible quadratic polynomial f, the sequence $\{\nu / p, 0 \leq \nu<p \leq x, f(\nu) \equiv 0(\bmod p)\}$ is well distributed in $[0,1)$ when $x \rightarrow \infty$.

It would be interesting to extend these estimates to irreducible polynomials of higher degree, but we have found a serious obstruction in our argument. Some heuristic arguments allow us to conjecture that the asymptotic

$$
\log \text { l.c.m. }\{f(1), \ldots, f(n)\} \sim(\operatorname{deg}(f)-1) n \log n
$$

holds for any irreducible polynomial f.

2. Preliminaries and the general case

For any irreducible $f(x)=a x^{2}+b x+c$ we write $P_{n}(f)=\prod_{i=1}^{n} f(i)=\prod_{p} p^{\alpha_{p}}$ and $L_{n}(f)=$ l.c.m. $\{f(1), \ldots, f(n)\}=\prod_{p} p^{\beta_{p}}$.
Lemma 2.1. With the notation above we have that $\alpha_{p}=\beta_{p}$ for $p \geq 2 a n+b$.
Proof. Notice that $\alpha_{p} \neq \beta_{p}$ if and only if there exist $i, j, i<j \leq n$ such that $p \mid f(i)$ and $p \mid f(j)$. In that case we have $p \mid f(j)-f(i)$, so $p \mid(j-i)(a(j+i)+b)$ and then $p<2 a n+b$.

For short we write $L_{n}=L_{n}(f)$ and $P_{n}=P_{n}(f)$. The lemma above allow us to write

$$
\begin{equation*}
\log L_{n}=\log P_{n}+\sum_{p<2 a n+b}\left(\beta_{p}-\alpha_{p}\right) \log p \tag{2.1}
\end{equation*}
$$

We have $\log P_{n}=\sum_{i \leq n} \log \left(a i^{2}+b i+c\right)=n \log a+\sum_{i \leq n} 2 \log i+O\left(\sum_{i \leq n} 1 / i\right)$, so

$$
\begin{equation*}
\log P_{n}=2 n \log n+(\log a-2) n+o(n) \tag{2.2}
\end{equation*}
$$

Notice also that if $p^{\beta} \mid f(i)$ for some $i \leq n$, then $\beta \leq \log f(n) / \log p=O(\log n / \log p)$. Thus $\sum_{p<2 a n+b} \beta_{p} \log p=O(\log n \pi(2 a n+b))=O(n)$ and then

$$
\begin{equation*}
\log L_{n}=2 n \log n-\sum_{p \leq 2 a n+b} \alpha_{p} \log p+O(n) \tag{2.3}
\end{equation*}
$$

We observe that we can write $\alpha_{p}=\sum_{x \leq n} \nu_{p}(f(x))$, where $\nu_{p}(m)$ denotes the maximum l such that $p^{l} \mid m$. As $\nu_{p}(m)=\sum_{k} \chi_{p^{k}}(m)$, with $\chi_{p^{k}}(m)=\left\{\begin{array}{ll}1, & p^{k} \mid m \\ 0, & \text { otherwise }\end{array}\right.$, we have

$$
\begin{equation*}
\alpha_{p}=\sum_{k} \sum_{x \leq n} \chi_{p^{k}}(f(x))=\sum_{k} \sum_{\substack{x \leq n \\ p^{k} \mid f(x)}} 1 \tag{2.4}
\end{equation*}
$$

and we obtain the trivial estimate

$$
\begin{equation*}
s\left(f ; p^{k}\right)\left[n / p^{k}\right] \leq \sum_{\substack{x \leq n \\ p^{k} \mid f(x)}} 1 \leq s\left(f ; p^{k}\right)\left(\left[n / p^{k}\right]+1\right) \tag{2.5}
\end{equation*}
$$

where $s\left(f ; p^{k}\right)$ denotes the number of solutions of $f(x) \equiv 0\left(\bmod p^{k}\right), 0 \leq x<p^{k}$. Since $k \leq \log f(n) / \log p$ we have

$$
\begin{equation*}
\alpha_{p}=n \sum_{k \leq \log (f(n)) / \log p} \frac{s\left(f, p^{k}\right)}{p^{k}}+O\left(\sum_{k \leq \log f(n) / \log p} s\left(f ; p^{k}\right)\right) . \tag{2.6}
\end{equation*}
$$

Lemma belove resumes all the casuistic for $s\left(f, p^{k}\right)$.
Lemma 2.2. Let $f(x)=a x^{2}+b x+c$ be an irreducible polynomial and $D=b^{2}-4 a c$.
(1) If $p \nmid 2 a, D=p^{l} D_{p},\left(D_{p}, p\right)=1$, then

$$
s\left(f, p^{k}\right)= \begin{cases}p^{k-\lceil k / 2\rceil}, & k \leq l \\ 0, & k>l, l \text { odd or }\left(D_{p} / p\right)=-1 \\ 2 p^{l / 2}, & k>l, l \text { even }\left(D_{p} / p\right)=1\end{cases}
$$

(2) If $p \mid a, p \neq 2$ then $s\left(f, p^{k}\right)=\left\{\begin{array}{l}0, p \mid b \\ 1, p \nmid b\end{array}\right.$
(3) If b is odd then $s\left(f, 2^{k}\right)=s(f, 2)$ for any $k \geq 2$.
(4) If b is even, let $D=4^{l} D^{\prime}, D^{\prime} \not \equiv 0(\bmod 4)$.
(a) If $D^{\prime} \equiv 2,3(\bmod 4), s\left(f ; 2^{k}\right)= \begin{cases}2^{[k / 2]}, & k \leq 2 l-1 \\ 0, & k \geq 2 l\end{cases}$
(b) If $D^{\prime} \equiv 1(\bmod 8), s\left(f ; 2^{k}\right)= \begin{cases}2^{[k / 2]}, & k \leq 2 l \\ 2^{l+1}, & k \geq 2 l+1\end{cases}$
(c) If $D^{\prime} \equiv 5(\bmod 8), s\left(f ; 2^{k}\right)= \begin{cases}2^{[k / 2]}, & k \leq 2 l \\ 0, & k \geq 2 l+1\end{cases}$

Proof. The proof is a consequence of elementary manipulations and Hensel's lemma.

Since for any prime $s\left(f ; p^{k}\right)$ is bounded we have

$$
\begin{equation*}
\alpha_{p}=n \sum_{k \geq 1} \frac{s\left(f, p^{k}\right)}{p^{k}}+O(\log n / \log p) \tag{2.7}
\end{equation*}
$$

which gives the trivial estimate $\alpha_{p}=O(n / p)$ for any prime p.
If $p \nmid 2 a D$ then $s\left(f ; p^{k}\right)=2$ or 0 according with $(D / p)=1$ or -1 . Then, for these primes we have

$$
\alpha_{p}= \begin{cases}0, & (D / p)=-1 \tag{2.8}\\ \frac{2 n}{p-1}+O\left(\frac{\log n}{\log p}\right), & (D / p)=1\end{cases}
$$

Now we put together the estimate $\alpha_{p}=O(n / p)$ for the primes $p \mid 2 a D$, the estimate $\pi(x) \ll x / \log x$ and the formulas (2.3) and (2.8) to obtain

$$
\begin{equation*}
\log L_{n}=2 n \log n-2 n \sum_{\substack{p \leq 2 a n+b \\(\bar{D} / p)=1}} \frac{\log p}{p-1}+O(n) \tag{2.9}
\end{equation*}
$$

The quadratic reciprocity law allow us to split the residues $d,(d, D)=1$ in two sets D_{1}, D_{-1} of the same size, $\varphi(D) / 2$, such that $(D / p)=1 \Longleftrightarrow p \equiv d(\bmod D)$
with $d \in D_{1}$. The prime number theorem for arithmetic progressions says that

$$
\begin{equation*}
\sum_{\substack{p \leq t \\ p \equiv d \\(\bmod D)}} \log p=\frac{t}{\varphi(D)}+O\left(t / \log ^{2} t\right) \tag{2.10}
\end{equation*}
$$

for $d \in D_{1}$. Then

$$
\begin{equation*}
\sum_{\substack{p \leq t \\(D / p)=1}} \log p=\frac{t}{2}+O\left(t / \log ^{2} t\right) \tag{2.11}
\end{equation*}
$$

Actually a better error term is known in (2.10) and (2.11), but this one is enough to deduce, by partial summation, that

$$
\begin{equation*}
\sum_{\substack{p \leq t \\(D / p)=1}} \frac{\log p}{p-1}=\frac{\log t}{2}+A_{D}+o(1) \tag{2.12}
\end{equation*}
$$

for a constant A_{D}. We finish the proof of theorem 1.1 by performing a substitution in (2.9) with the formula above.
3. A more precise estimate for $f(x)=a x^{2}+c$

We can strength lemma 2.1 when $b=0$.
Lemma 3.1. If $f(x)=a x^{2}+c$ we have that $\alpha_{p}=\beta_{p}$ for $p \geq 2 n$.
Proof. If $\alpha_{p}>\beta_{p}$ then there exists $i<j \leq n$ such that $p \mid a i^{2}+c$ and $p \mid a j^{2}+c$. But it implies that $p \mid a(i-j)(i+j)$, so $p|i-j, p| a$ or $p \mid i+j$. In any case $p<2 n$.

Then we can write

$$
\begin{equation*}
\log L_{n}=\log P_{n}+\sum_{p<2 n}\left(\beta_{p}-\alpha_{p}\right) \log p \tag{3.1}
\end{equation*}
$$

Define $\mathcal{Q}=\{p, p \mid 2 c\}$ and $\mathcal{P}=\{p<2 n, p \nmid 2 a c,(-a c / p)=1\}$. Lemma 2.2 implies that if $p \notin \mathcal{P} \cup \mathcal{Q}$ then $\beta_{p}=\alpha_{p}=0$. We define also the bad and the good primes as

$$
\begin{equation*}
\mathcal{P}_{\text {bad }}=\left\{p \in \mathcal{P}, p^{2} \mid a i^{2}+c \text { for some } i \leq n\right\} \text { and } \mathcal{P}_{\text {good }}=\mathcal{P} \backslash \mathcal{P}_{\text {bad }} \tag{3.2}
\end{equation*}
$$

Lemma 3.2. Suppose that $p \in \mathcal{P}_{\text {good }}$. Then
i) $\alpha_{p}=\frac{2 n}{p}+z_{p}$ where $z_{p}=1-\left\{\frac{n+x_{p}}{p}\right\}-\left\{\frac{n-x_{p}}{p}\right\}$, where x_{p} denotes the solution of $a x^{2}+c \equiv 0(\bmod p)$ such that $0<x \leq(p-1) / 2$
ii) $\beta_{p}=1$ for $p<2 n$.

Proof. i) Since p is a good prime we have

$$
\alpha_{p}=\#\left\{l, x_{p}+(l-1) p \leq n\right\}+\#\left\{l, p-x_{p}+(l-1) p \leq n\right\}
$$

So $\alpha_{p}=\left[\frac{n-x_{p}}{p}\right]+1+\left[\frac{n+x_{p}}{p}\right]=\frac{2 n}{p}+z_{p}$ where $z_{p}=1-\left\{\frac{n+x_{p}}{p}\right\}-\left\{\frac{n-x_{p}}{p}\right\}$.
ii) Since p is good we have always that $\beta_{p} \leq 1$. On the other hand, since $x_{p} \leq$ $(p-1) / 2<n$ and $p \mid a x_{p}^{2}+c$ we have that $\beta_{p} \geq 1$.

Lemma 3.3. For any $J \geq 1$ we have $\#\left\{p, n / J<p \leq 2 n, p \in \mathcal{P}_{\text {bad }}\right\} \ll J^{3}$.

Proof. If $p>n / J$ is bad, then there exists $i \leq n$ such that $a i^{2}+c=p^{2} r$ for some $2 \leq r \leq a J^{2}$. For each $r, 2 \leq r \leq a J^{2}$, consider $P_{r}=\left\{p>n / J, a i_{p}^{2}+c=\right.$ $p^{2} r$, for some $\left.i_{p} \leq n\right\}$. If $p \in P_{r}$ we have that $\left|\frac{\sqrt{r}}{\sqrt{a}}-\frac{i_{p}}{p}\right| \leq \frac{|c|}{p^{2} \sqrt{r a}} \leq \frac{|c| J^{2}}{n^{2} \sqrt{r a}}$ and then all i_{p} / p lie on an interval of length $\frac{2|c| J^{2}}{n^{2} \sqrt{r a}}$. On the other hand, $\left|\frac{i_{p}}{p}-\frac{i_{p}^{\prime}}{p^{\prime}}\right| \geq \frac{1}{p p^{\prime}} \geq \frac{1}{4 n^{2}}$, so $\left|P_{r}\right| \leq \frac{8|c| J^{2}}{\sqrt{r a}}+1$ and $\sum_{r \leq J^{2}}\left|P_{r}\right| \ll J^{3}$.

We fix a large integer J and use the lemmas above to write

$$
\begin{aligned}
\sum_{p<2 n} \beta_{p} \log p=\sum_{\substack{p<2 n \\
p \mid 2 c}} \beta_{p} \log p+\sum_{\substack{p<2 n \\
p \in \mathcal{P}}} \log p+\sum_{\substack{p \leq n / J \\
p \in \mathcal{P}}}\left(\beta_{p}-1\right) \log p+\sum_{\substack{n / J<p<2 n \\
p \in \mathcal{P}}}\left(\beta_{p}-1\right) \log p= \\
O(\log n)+\sum_{\substack{p<2 n \\
p \in \mathcal{P}}} \log p+\sum_{\substack{p \leq n / J \\
p \in \mathcal{P}}} O(\log n)+\sum_{\substack{n / J<p<2 n \\
p \text { bad }}} O(\log n) .
\end{aligned}
$$

By (2.11) and lemma 3.2 we have

$$
\begin{equation*}
\sum_{p<2 n} \beta_{p} \log p=n+o(n)+O\left(\frac{n}{J \log (n / J)} \log n\right)+O\left(J^{3} \log n\right) \tag{3.3}
\end{equation*}
$$

when $n \rightarrow \infty$. Now we write

$$
\begin{align*}
& \sum_{p<2 n} \alpha_{p} \log p=\sum_{p \mid 2 c} \alpha_{p} \log p+\sum_{\substack{p<n / J \\
p \in \mathcal{P}}}\left(2 n \frac{\log p}{p-1}+O(\log n)\right)+ \tag{3.4}\\
& \sum_{\substack{n / J \leq p<2 n \\
p \in \mathcal{P}}}\left(\frac{2 n}{p}+z_{p}\right) \log p+O\left(\sum_{\substack{n / J \leq p<2 n \\
p \text { bad }}} \frac{n}{p} \log p\right)= \\
& n C(a, c)+O(\log n)+2 n \sum_{\substack{p<2 n \\
p \in \mathcal{P}}} \frac{\log p}{p-1}+O\left(\frac{n}{J \log (n / J)} \log n\right) \\
& -2 n \sum_{\substack{n / J \leq p<2 n \\
p \in \mathcal{P}}} \frac{\log p}{p(p-1)}+\sum_{\substack{n / J \leq p<2 n \\
p \in \mathcal{P}}} z_{p} \log p+O\left(J^{4} \log n\right),
\end{align*}
$$

where

$$
\begin{equation*}
C(a, c)=\sum_{p \mid 2 c} \log p \sum_{k \geq 1} \frac{s\left(f ; p^{k}\right)}{p^{k}} \tag{3.8}
\end{equation*}
$$

We use (2.12) and the estimates

$$
\begin{array}{r}
\sum_{\substack{n / J \leq p<2 n \\
p \in \mathcal{P}}} \frac{\log p}{p(p-1)}=O\left(\frac{\log (n / J)}{n / J}\right), \\
\sum_{\substack{n / J \leq p<2 n \\
p \in \mathcal{P}}} z_{p} \log p=\log n \sum_{\substack{n / J \leq p<2 n \\
p \in \mathcal{P}}} z_{p}+O\left(\log J \frac{n}{\log n}\right) \tag{3.10}
\end{array}
$$

to obtain

$$
\begin{array}{r}
\sum_{p<2 n} \alpha_{p} \log p=n \log n+\left(C(a, c)+\log 2+2 A_{D}\right) n+ \\
\log n \sum_{\substack{n \leq p<2 n \\
p \in \mathcal{P}}} z_{p}+o(n)+O(n / J) \tag{3.12}
\end{array}
$$

when $n \rightarrow \infty$. Notice that most of the error terms have been included in $o(n)$.
To estimate $\sum_{\substack{n / J \leq p<2 n \\ p \in \mathcal{P}}} z_{p}$ we first split the primes $n / J<p<2 n$ in short intervals $[n / J, n H / J]$ and $I_{j}=\left(\frac{j-1}{J} n, \frac{j}{J} n\right], H<j<2 J$ to write

$$
\begin{align*}
\sum_{\substack{n / J \leq p<2 n \\
p \in \mathcal{P}}} z_{p}= & \sum_{\substack{n / J \leq p \leq n H / J \\
p \in \mathcal{P}}} z_{p}+\sum_{\substack{H<j \leq 2 J}} \sum_{\substack{p \in I_{j} \\
p \in \mathcal{P}}} z_{p}= \tag{3.13}\\
& \sum_{H<j \leq 2 J} \sum_{\substack{p \in I_{j} \\
p \in \mathcal{P}}} z_{p}+O\left(\frac{n H}{J \log (n H / J)}\right) \tag{3.14}
\end{align*}
$$

where H is an integer which will be chosen later.
For $p \in I_{j}, j>H$ we can write $\frac{n}{p}=t_{j}-\epsilon_{j}(p)$ where $t_{j}=\frac{J}{j-1}$ and $\epsilon_{j}(p)=$ $\frac{p J-(j-1) n}{p(j-1)}$. Notice that $0 \leq \epsilon_{j}(p) \leq \frac{J}{(j-1)^{2}} \leq \frac{J}{H^{2}}$. Then we have

$$
z_{p}=1-\left\{t_{j}+x_{p} / p+\epsilon_{j}(p)\right\}-\left\{t_{j}-x_{p} / p+\epsilon_{j}(p)\right\}
$$

We denote by E_{j} the set of the primes $p \in I_{j}$ such that

$$
\begin{equation*}
\left\{t_{j}\right\} \leq x_{p} / p \leq\left\{t_{j}\right\}+\frac{J}{H^{2}} \quad \text { or } \quad 1-\left\{t_{j}\right\} \leq x_{p} / p \leq 1-\left\{t_{j}\right\}+\frac{J}{H^{2}} \tag{3.15}
\end{equation*}
$$

If $p \in I_{j} \backslash E_{j}$ we have that $z_{p}=1-\left\{t_{j}+x_{p} / p\right\}-\left\{t_{j}-x_{p} / p\right\}-2 \epsilon_{j}(p)$, so

$$
\begin{equation*}
z_{p}=1-\left\{t_{j}+x_{p} / p\right\}-\left\{t_{j}-x_{p} / p\right\}+O\left(J / H^{2}\right) \tag{3.16}
\end{equation*}
$$

for these primes. For primes $p \in E_{j}$ it is useful to write

$$
\begin{equation*}
z_{p}=1-\left\{t_{j}+x_{p} / p\right\}-\left\{t_{j}-x_{p} / p\right\}+O(1) . \tag{3.17}
\end{equation*}
$$

Theorem 1.3 implies that the sequences $\left\{t_{j}+x_{p} / p\right\}$ and $\left\{t_{j}-x_{p} / p\right\}$ are well distributed on \mathcal{M}_{j}^{+}and \mathcal{M}_{j}^{-}respectively, where $\mathcal{M}_{j}^{ \pm}=t_{j} \pm[0,1 / 2)(\bmod 1)$. Observe also that $\mathcal{M}_{j}^{+} \cup \mathcal{M}_{j}^{-}=[0,1)$. Then we have that

$$
\begin{equation*}
\sum_{\substack{p \leq y \\ p \in \mathcal{P}}}\left\{t_{j}+x_{p} / p\right\}=2 \int_{\mathcal{M}_{j}^{+}} s d s \pi(\mathcal{P} ; y)+o(\pi(\mathcal{P} ; y)) \tag{3.18}
\end{equation*}
$$

where $\pi(\mathcal{P} ; y)=\sum_{\substack{p \leq y \\ p \in \mathcal{P}}} 1$. For the same reason we have that

$$
\begin{equation*}
\sum_{\substack{p \leq y \\ p \in \mathcal{P}}}\left\{t_{j}-x_{p} / p\right\}=2 \int_{\mathcal{M}_{j}^{-}} s d s \pi(\mathcal{P} ; y)+o(\pi(\mathcal{P} ; y)) \tag{3.19}
\end{equation*}
$$

and then

$$
\begin{array}{r}
\sum_{p \leq y, p \in \mathcal{P}}\left(1-\left\{t_{j}+x_{p} / p\right\}-\left\{t_{j}-x_{p} / p\right\}\right)= \\
\left(1-2 \int_{[0,1)} s d s\right) \pi(\mathcal{P} ; y)+o(\pi(\mathcal{P} ; y))=o(y / \log y) . \tag{3.21}
\end{array}
$$

In particular we have that

$$
\begin{equation*}
\sum_{p \in I_{j} \cap \mathcal{P}}\left(1-\left\{t_{j}+x_{p} / p\right\}-\left\{t_{j}-x_{p} / p\right\}\right)=o(n / \log n) . \tag{3.22}
\end{equation*}
$$

So, if $j \leq H$, by (3.16), (3.17) and (3.22) we obtain

$$
\begin{equation*}
\sum_{p \in I_{j} \cap \mathcal{P}} z_{p}=o(n / \log n)+O\left(\frac{J}{H^{2}} \sum_{p \in I_{j}} 1\right)+O\left(\left|E_{j}\right|\right) \tag{3.23}
\end{equation*}
$$

and then,
(3.24) $\sum_{H \leq j \leq 2 J} \sum_{p \in I_{j} \cap \mathcal{P}} z_{p}=o(J n / \log n)+O\left(\frac{J}{H^{2}} \frac{n}{\log n}\right)+O\left(\sum_{H \leq j \leq 2 J}\left|E_{j}\right|\right)$.

Since x_{p} / p is well distributed we have that

$$
\left|E_{j}\right|=\frac{2 J}{H^{2}}(\pi(\mathcal{P}, n j / J)-\pi(\mathcal{P}, n(j-1) / J)+o(\pi(\mathcal{P}, n j / J) .
$$

Hence

$$
\begin{equation*}
\sum_{H<j \leq 2 J}\left|E_{j}\right|=\frac{2 J}{H^{2}}(\pi(\mathcal{P} ; 2 n)-\pi(\mathcal{P} ; n H / J))+o(J n / \log n) \tag{3.25}
\end{equation*}
$$

If we take $H=\left[J^{2 / 3}\right]$, formulas (3.25), (3.24), (3.13) and (3.14) give

$$
\begin{equation*}
\sum_{\substack{n / J \leq p<2 n \\ p \in \mathcal{P}}} z_{p}=O\left(\frac{n}{J^{1 / 3} \log n}\right)+o(n / \log n) . \tag{3.26}
\end{equation*}
$$

This and (3.11) yield
$\left(3.27 \sum_{p<2 n} \alpha_{p} \log p=n \log n+\left(C(a, c)+\log 2+2 A_{D}\right) n+O\left(n / J^{1 / 3}\right)+o(n)\right.$.
Putting (3.27), (3.3), (2.1) and (2.2), we have finally

$$
\log L_{n}=n \log n+B(a, c) n+o(n)+O\left(n / J^{1 / 3}\right)
$$

where
$B(a, c)=\log a-1-\log 2-\sum_{p \mid 2 c} \log p \sum_{k \geq 1} \frac{s\left(a x^{2}+c ; p^{k}\right)}{p^{k}}-\lim _{t \rightarrow \infty}\left(\sum_{p \in \mathcal{P}} \frac{2 \log p}{p-1}-\log t\right)$
and we finish the proof of theorem 1.2 observing that we can choose J arbitrary large.

References

[1] B. Farhi, Non trivial lower bounds for the least common multiple of some finite sequences of integers. Journal of Number theory (2007),doi:10.1016/j.jnt.2006.10.017
[2] P. Bateman, A limit involving Least Common Multiples: 10797, American Mathematical Monthly 109 (2002), no. 4, 393-394.
[3] W. Duke, J. Friedlander and H.Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. 141 (1995), no. 2, 423-441.
[4] T. Arpad, Root of quadratic congruences, Internat. Math. Res. Notices 14 (2000), 719-739.
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

E-mail address: franciscojavier.cilleruelo@uam.es

[^0]: 1991 Mathematics Subject Classification. 2000 Mathematics Subject Classification: 11A05.
 Key words and phrases. least common multiple, quadratic sequences.
 This work was supported by Grant MTM 2005-04730 of MYCIT (Spain).

