THE LEAST COMMON MULTIPLE OF A QUADRATIC
SEQUENCE

JAVIER CILLERUELO

ABSTRACT. We obtain, for any irreducible quadratic polynomial f(z) = az?+
bz + ¢, the asymptotic estimate log l.c.m. {f(1),..., f(n)} ~ nlogn. When
f(x) = az?+c we prove the more precise estimate, log l.c.m. {f(1),..., f(n)} =
nlogn + Bn + o(n) for a suitable constant B = B(a,c).

1. INTRODUCTION

It is well known that logl.cm.{1,...,n} ~ n. Actually it is equivalent to the
prime number theorem. The analogous for arithmetic progressions is also known

2],

1

loglcem{a+b,...,an+b} ~n Ela) E T
1<k<a
(k,a)=1

We address here the problem of estimate L, (f) = Lem.{f(1),..., f(n)}, where
f is an irreducible quadratic polynomial in Z. The case f(z) = x? + 1 has been
considered in [1] where the estimate log L,,(f) = logl.c.m.{f(1),..., f(n)} > An+B
was obtained in this case for explicit constants A, B > 0.

In section §2 we give an asymptotic estimate for a general irreducible quadratic
polynomial f(z) = ax? + bx + c.

Theorem 1.1. For any irreducible quadratic polynomial we have

log Le.m. {f(1),...,f(n)} ~nlogn.

In section §3, which is the main part of this work, we obtain a more precise
estimate in some particular cases.

Theorem 1.2. For any irreducible polynomial f(x) = ax? + ¢ we have
loglem. {f(1),...,f(n)} =nlogn+ Bn+ o(n),
for an explicit constant B = B(a,c).

It includes the simplest case f(z) = 22 + 1 with

3log 2 21
B(1,1) = —1— (;g ~ Jim 3y (igf —logt
p<t

p=1 (mod 4)
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To prove theorem 1.2 we need to use a deep result about the distribution of the
solutions of the quadratic congruences f(x) =0 (mod p) due to Duke, Friedlander
and Iwaniec (for D > 0), and Toth (for D < 0), where D = b* — 4ac is the
discriminant of f.

Theorem 1.3 ([3], [4]). For any irreducible quadratic polynomial f, the sequence
{v/p, 0<v<p<z f(r)=0 (mod p)} is well distributed in [0,1) when x — co.

It would be interesting to extend these estimates to irreducible polynomials of
higher degree, but we have found a serious obstruction in our argument. Some
heuristic arguments allow us to conjecture that the asymptotic

loglem. {f(1),..., f(n)} ~ (deg(f) — 1)nlogn

holds for any irreducible polynomial f.

2. PRELIMINARIES AND THE GENERAL CASE
For any irreducible f(z) = az® + bz + ¢ we write P,(f) = [[;=, f(i) = [[, p*"
and L, (f) = Lem.{f(1),...,f(n)} = prﬁp.
Lemma 2.1. With the notation above we have that o, = B, for p > 2an + b.

Proof. Notice that oy, # G, if and only if there exist 4, j, i < j < n such that p|f(¢)
and p|f (7). In that case we have p|f(j) — f(7), so p|(j —)(a(j + ¢) + b) and then
p < 2an+b. O

For short we write L, = L,(f) and P, = P,(f). The lemma above allow us to
write

(2.1) log L,, = log P, + Z (Bp — ap) log p.

p<22an-+b
We have log P,, = 3, log(ai® +bi+c) = nloga+ 3, ., 2logi+O(3, ., 1/i), so
(2.2) log P, = 2nlogn + (loga — 2)n + o(n).

Notice also that if p?| f(i) for some i < n, then 3 < log f(n)/logp = O(logn/logp).
Thus 37, 9an4p Bplogp = O(logn m(2an + b)) = O(n) and then

(2.3) log L,, = 2nlogn — Z aplogp + O(n).
p<2an+b
We observe that we can write a, = >, vp(f(2)), where v,(m) denotes the max-

1 k
imum [ such that p'|m. As v,(m) =3, xpr(m), with x,x(m) = pelm )
0, otherwise

we have

(2.4) A= Y (@) =) > 1

and we obtain the trivial estimate

(2.5) s(fP) /1 < Y 1< s(f:0F) (n/p*) + 1),

z<n

PEIf(x)
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where s(f;p*) denotes the number of solutions of f(x) =0 (mod p*), 0 <z < p*.
Since k < log f(n)/logp we have

s(f.pF
(2.6) ap=n Z (f,kp ) +0 Z s(f;p")

k<log(f(m))/logp L k<log f(n)/ log p

Lemma belove resumes all the casuistic for s(f,p"*).

Lemma 2.2. Let f(x) = ax?+bx+c be an irreducible polynomial and D = b*—4ac.
(1) Ifp f2a, D =p'D,, (D,,p) =1 ,then

phIR2l k<

s(f.p") = 0, k>1, 1 odd or (D,/p) = —1.
2pt/2, k>1, 1even (Dp/p)=1
0, plb
(2) If pla, p # 2 then s(f,p*) = P!
Lopfo

(3) If b is odd then s(f,2%) = s(f,2) for any k > 2.
(4) If b is even, let D =4'D', D' #0 (mod 4).

olk/2l <ol —1
IfD' =2 4 :2k) = ’ =
(a) If ;3 (mod 4), s(f;2%) {07 k> 9l

olk/2l | < 9
W I D =1 a8 -9ky — ) >
(b) If (mod 8), s(f;2%) {21+1’ k>20+1
olk/2] k<2l
IfD’' =5 (mod 8), s(f;2%) = S
(c) If (mod 8), s(f;2%) {0’ E>20+1

Proof. The proof is a consequence of elementary manipulations and Hensel’s lemma.

O
Since for any prime s(f;p*) is bounded we have
k
(2.7) ap :nzs(f’i]ép) + O (logn/logp)

E>1
which gives the trivial estimate o, = O(n/p) for any prime p.

If p /2aD then s(f;p*) = 2 or 0 according with (D/p) = 1 or —1. Then, for
these primes we have

o :{07 (D/p):_l

(2.8) I%H)(l"g"), (D/p) = 1.

logp

Now we put together the estimate a;, = O(n/p) for the primes p|2aD, the esti-
mate 7(z) < x/logx and the formulas (2.3) and (2.8) to obtain

1
(2.9) log L,, = 2nlogn — 2n Z Ogﬁ + O(n).
p<2an+b o
(D/p)=1

The quadratic reciprocity law allow us to split the residues d, (d, D) =1 in two
sets Dy, D_; of the same size, ¢(D)/2, such that (D/p) =1 < p=d (mod D)



4 JAVIER CILLERUELO

with d € Dy. The prime number theorem for arithmetic progressions says that

(2.10) g logp = ﬁ +0(t/1og” t)

p=d (mod D)
for d € Dy. Then
t
(2.11) > logp = 5 Ot/ log?t).

p<t
(D/p)=1

Actually a better error term is known in (2.10) and (2.11), but this one is enough
to deduce, by partial summation, that

logp logt
2.12 =—+4A 1
(2.12) Z 1 9 + Ap +o(1)
p<t
(D/p)=1

for a constant Ap. We finish the proof of theorem 1.1 by performing a substitution
in (2.9) with the formula above.

3. A MORE PRECISE ESTIMATE FOR f(z) = az® + ¢
We can strength lemma 2.1 when b = 0.
Lemma 3.1. If f(z) = az® + ¢ we have that o, = 3, for p > 2n.

Proof. If oy, > 3, then there exists i < j < n such that plai® + ¢ and p|aj? + c. But
it implies that pla(i — 7)(i + j), so p|i — j, pla or p|i + j. In any case p < 2n. O

Then we can write
(3.1) log L,, =log P, + Z (Bp — ap) log p.
p<2n

Define Q@ = {p, p|2¢} and P = {p < 2n, p A2ac, (—ac/p) = 1}. Lemma 2.2
implies that if p € P U Q then 3, = oy, = 0. We define also the bad and the good
primes as

(3.2) Prad = {p € P, p*|ai® + c for some i < n} and Pgood = P\ Phad-
Lemma 3.2. Suppose that p € Pyooa. Then

i) ap = QF”Jrzp where z, = 1—{%}7{%}, where x, denotes the solution
of ar® + ¢ =0 (mod p) such that 0 <z < (p—1)/2
ii) Bp =1 forp<2n.

Proof. 1) Since p is a good prime we have

ap=#{, 2, +({—Dp<n}+#{, p—x,+ (1 —1)p <n}.

_ n N -
So ay = [2576] + 1+ [252] = 2 42, where 2, = 1 - {Z52) - {752},
ii) Since p is good we have always that 3, < 1. On the other hand, since z;,, <
(p—1)/2 <n and p\am%—&—cwe have that 5, > 1. 0

Lemma 3.3. For any J > 1 we have #{p, n/J <p <2n, p € Ppaa} < J>.
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Proof. If p > n/J is bad, then there exists i < n such that ai? + ¢ = p?r for some
2 < r < aJ? Foreach r, 2 < r < aJ? consider P, = {p > n/J, az’% +c=

p*r, for some i, < n}. If p € P, we have that |— - —| < C‘m < nlﬁl\‘/]i and then
all i, /p lie on an interval of length = 2‘C|J . On the other hand, |— - —\ > p}) > I,
so |P| < 8‘\;‘1 +1land >, 5 |Pr | < J3 O

We fix a large integer J and use the lemmas above to write

> Bplogp= > Bylogp+ Y logp+ Y (B~ Dlogp+ Y (B, —1)logp=

p<2n p<2n p<2n p<n/J n/J<p<2n
pl2¢ peEP peP peP
O(logn) + Z logp + Z O(logn) + Z O(logn).
p<2n p<n/J n/J<p<2n
pEP pEP p bad

By (2.11) and lemma 3.2 we have
— 3
(3.3) p;n Bplogp =n+o(n) + O (JIO(/J) log n) + O(J” logn),
when n — co. Now we write

(3.4) Zaplogp Zaplogp—i— Z ( 1ng +O(10gn)>+

p<2n pl2c p<n/J
pEP

2
(3.5) Z (;l + z,,) logp+ O Z n logp | =

n/J<p<2n n/J<p<2n
pEP p bad
log p
. 1 2 _—
(3.6) nC(a,c)+ O(logn) + np;np +O(J10 " /J) n)
peP
lo
(3.7) —2n Z ( g_pl) + Z z,logp + O(J*logn),
n/J<p<2n pip n/J<p<2n
peEP peP
where
(3.8)
p|2¢c k>1

We use (2.12) and the estimates

logp _  (log(n/J)
(39) n/J§<2np<p—1> O( nf] >
peEP

n
(3.10) Z zplogp =logn Z zp—l—O(longogn>

n/J<p<2n n/J<p<2n
pEP pEP
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to obtain
(3.11) Z aplogp =nlogn+ (C(a,c) +1log2 + 2Ap)n +
p<2n
(3.12) logn Z zp +o(n) + 0 (n/J)
n/J<p<2n
pEP

when n — oco. Notice that most of the error terms have been included in o(n).

To estimate ),/ <p<on 2p We first split the primes n/J < p < 2n in short

peEP ) )
intervals [n/J,nH/J] and I; = (53 n, in], H < j < 2J to write
SR SR R T S
n/J<p<2n n/J<p<nH/J H<j<2J pel;
peEP peEP peEP
nH
.14 O(——F——F—
(3.14) Z Dt SITREY L
H<j<2J pel;

peEP

where H is an integer which will be chosen later.
For p € I;, j > H we can write % = t; — €;(p) where t; = 3%1 and €;(p) =
%. Notice that 0 < ¢;(p) < ﬁ < % Then we have
zp=1—{tj +ap/p+e;j(p)} —{t; —zp/p+e;(p)}-
We denote by F; the set of the primes p € I; such that

(3.15) {tj}ﬁzp/pﬁ{tj}nL% or 1—{tj}§xp/p§1f{tj}+%_

If p e I; \ Ej we have that z, =1 — {t; + z,/p} — {t; — xp/p} — 2¢;(p), so

(3.16) zp =1 —{t; +x,/p} — {t; — x,/p} + O(J/H?)
for these primes. For primes p € Ej it is useful to write
(3.17) zp=1—{tj +xp/p} — {t; —xp/p} + O(1).

Theorem 1.3 implies that the sequences {t; + x,/p} and {t; — z,/p} are well dis-
tributed on ./\/lj' and M respectively, where /\/l]jE =1;+[0,1/2) (mod 1). Observe
also that /\/lj UM; =[0,1). Then we have that

318 YAy+a/ph=2 [ sds P+ ola(Piy)

p<y J
peEP

where 7(P;y) = Y p<y 1. For the same reason we have that
peP

(3.19) Z{tj —xp/p} = 2//\/1‘ sds w(P;y) + o(n(P;y))
i
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and then

(3.20) Yo (U {tytap/py —{t; —ap/p}) =

p<y, p€P
(3.21) <1 -2 /[0 .y sds) m(P;y) + o(m(P;y)) = o(y/ logy).

In particular we have that

(3.22) Y (= {ty +ap/p} — {t; — 2p/p}) = o(n/logn).

pel;NP
So, if j < H, by (3.16), (3.17) and (3.22) we obtain
J
(3.23) >z =o(n/logn)+0 7] > 1] +0(E)
pEIjﬁ’P pte

and then,
J n
(3.24) Z Z zpzo(Jn/logn)—i—O(HQk)gn) + O( Z |E;]).
H<j<2J pe;NP H<j<2J
Since z,,/p is well distributed we have that

1B}l = 2 (n(P.mj /) = 7P, — /) + o(x(P,mj .]).

Hence

2J

(3.25) Z |E;| = el (w(P;2n) — w(P;nH/J)) + o(Jn/logn).

H<j<2J

If we take H = [J?/3], formulas (3.25), (3.24), (3.13) and (3.14) give
n
n/J<p<2n
pEP
This and (3.11) yield
(3.272 aplogp =nlogn + (C(a,c) +log2 + 24p)n + O(n/J3) + o(n).
p<2n

Putting (3.27), (3.3), (2.1) and (2.2), we have finally
log L, = nlogn + B(a,c)n + o(n) + O(n/J/?)
where

2 .k 21
B(a,c):logaflflongZIngZL—:C’p)ftlim (Z nglogt)
p — 00

pl2¢ k>1 peEP p=

and we finish the proof of theorem 1.2 observing that we can choose J arbitrary
large.
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