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Abstract. We study finite and infinite Sidon sets in Nd. The additive energy

of two sets is used to obtain new upper bounds for the cardinalities of finite

Sidon subsets of some sets as well as to provide short proofs of already known

results. We also disprove a conjecture of Lindstrom on the largest Sidon set

in [1, N ]× [1, N ] and relate it to a known conjecture of Vinogradov concerning

the size of the smallest quadratic residue modulo a prime p.

For infinite Sidon sets A ⊂ Nd, we prove that lim infn→∞
|A∩[1,n]d|√

nd/ log n
> 0.

Finally, we show how to map infinite Sidon sets in Nd to Nd′ in an effective way.

As an application, we find an explicit Sidon set A such that A(n) ≥ n1/3+o(1).

1. Introduction

A Sidon set is a subset of a semigroup G with the property that all sums

of two elements are distinct. Sidon subsets of positive integers are the most

common case, but other semigroups G have been considered in the literature.

In this paper, we shall deal with Sidon sets in Nd. We study both finite and

infinite Sidon sets.

A major problem concerning finite Sidon sets is to find the largest car-

dinality of a Sidon set contained in a given finite set. For d ≥ 1 we let

Fd(n) denote the maximal cardinaity of a Sidon set in [1, n]d. We omit the

subscript when d = 1.

The trivial counting argument gives F (n) ¿ n1/2. Erdős and Turán [7]

proved that F (n) ≤ n1/2 + O(n1/4). This was shapened by Lindstrom [12]

who proved that

(1) F (n) < n1/2 + n1/4 + 1.
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In the d-dimensional case, Lindstrom [13] obtained

(2) Fd(n) < nd/2 + O(nd2/(2d+2))

using the Erdős-Turán approach.

In Section 2, we study d-dimensional finite Sidon sets. We use the additive

energy of two finite sets to obtain upper bounds for the largest cardinality

of a Sidon set contained in the box
∏d

i=1[1, ni]. As a particular case, we

recover inequality (2). We consider separately the case d = 1 and obtain the

better estimate

F (n) < n1/2 + n1/4 + 1/2.

We use the additive energy to give a short combinatorial proof of a result

of Kolountzakis concerning the distribution of dense Sidon sets in arithmetic

progressions. We also study gaps in dense Sidon sets of integers.

An old conjecture of Erdős claims that F (n) < n1/2 + O(1). It is believed

that this is not true and that the right upper bound should be F (n) <

n1/2+O(nε). Lindstrőm made the analogous conjecture to higher dimensions

Fd(n) < nd/2 + O(1).

We disprove this conjecture for d = 2 by proving that the inequality

F2(n) > n + log n log log log n

holds infinitely often. This result has been obtained independently by Ruzsa

[16].

Perhaps the correct conjecture is F2(n) < n + O(nε) for any ε > 0, where

the constant implied by the above O depends on both d and ε. To emphasize

the difficulty of this problem, we give a quick proof of the fact that the above

conjecture implies that the least non quadratic residue in modulo p is ¿ pε

for any ε > 0, which is a known conjecture of Vinogradov.

As far as lower bounds for the cardinality of finite Sidon sets in higher

dimensions go, we show how to map Sidon sets from N in d-dimensional
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boxes, and we deduce an asymptotic estimate for the cardinality of the

largest Sidon set in the box
∏d

i=1[1, ni], namely that

F (n1, . . . , nd) ∼ (n1 · · ·nd)
1/2

as n1 · · ·nd →∞. In particular, Fd(n) ∼ nd/2 as n →∞.

In Section 3, we move on to infinite Sidon sets. It is a natural problem

to ask for infinite Sidon sets in Nd which are as dense as possible. Writing

A(n) = |A∩[1, n]d| for the counting function of a Sidon set in Nd, we trivially

have that A(n) ¿ nd/2. It is a natural question to ask whether there are

infinite Sidon sets A ⊂ Nd such that A(n) À nd/2. We prove that the answer

here is no and that, in fact, any Sidon set A ⊂ Nd satisfies

lim inf
n→∞

A(n)√
nd/ log n

< ∞.

The case d = 1 of the above result was proved by Erdős.

Next define

αd = sup

{
lim inf
n→∞

log A(n)

log n

}
,

where the supremum above is taken over all infinite Sidon sets A ⊂ Nd. It is

easy to construct an infinite Sidon set of positive integers with A(n) À n1/3.

A construction of Ruzsa [15] provides one with A(n) ≥ n
√

2−1+o(1) as n →∞.

Ruzsa’s construction and the trivial upper bound give
√

2− 1 ≤ α1 ≤ 1/2.

We describe how to map infinite Sidon sets in N to Sidon sets in Nd and

viceversa in an efficient way. As a consequence, we prove that

αd = dα1.

So, d(
√

2 − 1) ≤ αd ≤ d/2. In other words, the problems of finding dense

infinite Sidon sets are equivalent in all dimensions.

We also obtain analogous results when we count in boxes. One of the

interests in these results is that it seems easier to construct Sidon sets in

higher dimensions. As an application of this approach, we obtain an explicit

Sidon sequence of integers with A(n) ≥ n1/3+o(1) as n →∞ by mapping the

infinite Sidon set A = {(x, x2), x ≥ 1} ⊂ N2 to the set of positive integers.
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2. Finite Sidon sets

2.1. Additive energy and upper bounds. For any two finite subsets

X, Y of a fixed additive semigroup G (usually, N or Nd), we write

rX+Y (z) = #{(x, y) ∈ X×Y, x+y = z} and X+Y = {x+y, x ∈ X, y ∈ Y }.

We will use the trivial identities rX−X(0) = |X| and
∑

z rX+Y (z) = |X||Y |
throughout the paper.

The quantity
∑

x r2
A+B(x) is called the additive energy of A and B. It

counts the number of solutions a + b = a′ + b′ with a, a′ ∈ A, b, b′ ∈ B,

which is the same as the number of solutions of the equation a− a′ = b′ − b

with a, a′ ∈ A, b, b′ ∈ B. So,

(3)
∑

x

r2
A+B(x) =

∑
x

rA−A(x)rB−B(x).

See [19] for more properties and applications of the additive energy of two

sets. Here, we exploit relation (3) to obtain several results on Sidon sets.

First we state an easy but useful lemma.

Lemma 2.1. Let A,B ⊂ G. Then

(4) |A|2 ≤ |A + B|
|B|2

∑
x

rA−A(x)rB−B(x).

In particular, if rA−A(x) ≤ s for all x 6= 0, then

(5) |A|2 ≤ |A + B|
(

s +
|A| − s

|B|
)

.

Proof. Cauchy’s inequality together with (3) give

(|A||B|)2 =

( ∑
x∈A+B

rA+B(x)

)2

≤ |A + B|
∑

x

r2
A+B(x)

= |A + B|
∑

x

rA−A(x)rB−B(x).

For the second assertion, we observe that the sum in (4) is bounded by

rA−A(0)rB−B(0) + s
∑

g 6=0

rB−B(g) = |A||B|+ s(|B|2 − |B|).

¤
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The inequality (4) appears in [9], which is a nice introduction to additive

combinatorics. Ruzsa [14] discovered inequality (5) (for s = 1) by a different

method and used it to obtain inequality (2).

Corollary 2.1. Let A ⊂ [1, n] ∩ N be such that rA−A(x) ≤ s for all x 6= 0.

Then

|A| < (sn)1/2 + (sn)1/4 + 1/2.

Proof. We take B = [0, l]∩Z with l = b
√

n(|A| − s)/sc. Then |A+B| ≤ n+l

and |B| = l + 1. So,

|A|2 ≤ (n + l)

(
s +

|A| − s

l + 1

)
< sn + sl +

n(|A| − s)

l + 1
+ |A| − s

≤ sn + 2
√

sn(|A| − s) + |A| − s = (
√

sn +
√
|A| − s)2.

Thus, (|A|−√sn)2 < |A|−s. Writing |A| = √
sn+c(sn)1/4 +1/2, we obtain

c2(sn)1/2 + c(sn)1/4 + 1/4 < (sn)1/2 + c(sn)1/4 − (s− 1/2),

which yields a contradiction when c ≥ 1. ¤

Corollary 2.2. We have F (n) < n1/2 + n1/4 + 1/2.

Proof. We take s = 1 in Corollary 2.1 above. ¤

While Corollary 2.2 is not a huge improvement upon (1), we have included

it because it seems to be the limit of counting small differences.

Corollary 2.3. Let C be a convex set contained in (0, 1]d with µ(C) > 0.

Then, any Sidon set A contained in Xt = t · C ∩ Nd satisfies

|A| ≤ td/2µ1/2(C) + O(td
2/(2d+2)).

Proof. Take B = Xs with s = bt(d+2)/(2d+2)c. Then A + B ⊂ Xt+s =

(t + s) · C ∩ Nd, so

|A + B| ≤ (t + s)dµ(C) + O(td−1) = tdµ(C) + O(std−1).

We now use (5) and the trivial estimate |A| = O(td/2) to obtain

|A|2 ≤ (
tdµ(C) + O(std−1)

) (
1 + O(td/2/sd)

)
= tdµ(C)

(
1 + O(t−

d
2d+2 )

)
.

¤
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We observe that by taking C = (0, 1]d in Corollary 2.3 above we recover

the Lindstrom’s upper bound given in (2.5). The next result deals with

Sidon sets in general boxes. It is interesting to note the dependence of the

error term on the excentricity of the box.

Theorem 2.1. Denote by F (n1, . . . , nd) the largest cardinality of a Sidon

set in the box
∏d

i=1[1, ni]. Let N0 = 1, Ni =
∏i

j=1 nj, 1 ≤ i ≤ d, N = Nd,

and let s be the least index such that nd−s+2
s Ns−1 ≥

√
N . Then

(6) F (n1, . . . , nd) ≤
√

N

(
1 + O

((
Ns−1√

N

) 1
d−s+2

))
.

Furthermore,

(7) F (n1, . . . , nd) ≤
√

N + O(Nd/(2d+2)).

Proof. We first prove that Ni ≤ N i/(2d+2) for all 0 ≤ i < s. This is clear for

i = 0. Suppose that i ≥ 1 and that it is true for i− 1. Then, since i < s, we

have that

Nd−i+2
i = nd−i+2

i Nd−i+2
i−1 =

(
nd−i+2

i Ni−1

)
Nd−i+1

i−1

< N
1
2

(
N

i−1
2d+2

)d−i+1

=
(
N

i
2d+2

)d−i+2

.

In particular, we get
(

Ns−1√
N

) 1
d−s+2

< N− 1
2d+2 , so (6) implies (7).

Let ri = 0 for i < s and ri = bni(Ns−1/
√

Nd)
1/(d−s+2)c for s ≤ i ≤ d. If

we take B = ([0, r1]× · · · [0, rd]) ∩ Zd, then

|B| =
∏
i≥s

(ri + 1) ≥
∏
i≥s

(
ni

(
Ns−1√

N

) 1
d−s+2

)

=
N

Ns−1

(
Ns−1√

N

) d−s+1
d−s+2

=
√

N

( √
N

Ns−1

) 1
d−s+2

.

|A + B| ≤
d∏

i=1

(ni + ri) = N
∏
i≥s

(
1 +

ri

ni

)
≤ N

(
1 + O

((
Ns−1√

N

) 1
d−s+2

))
.

Since A + A ⊂ [1, 2n1]× · · · × [1, 2nd] and |A + A| = (|A|+1
2

)
, we obtain the

trivial estimate, |A| ≤ 2(d+1)/2
√

N . Putting these estimates in Lemma 2.1,
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we obtain

|A|2 ≤ N

(
1 + O

((
Ns−1√

N

) 1
d−s+2

)) 
1 +

2(d+1)/2
√

N
√

N
( √

N
Ns−1

) 1
d−s+2




= N

(
1 + O

((
Ns−1√

N

) 1
d−s+2

))
.

¤

In the next result we show, as an example, how the above Theorem 2.1

specializes when d = 2.

Corollary 2.4. Denote by F (n1, n2) the maximum cardinality of a Sidon

set A ⊂ [1, n1]× [1, n2], n1 ≤ n2. Then

(8) F (n1, n2) ≤ (n1n2)
1/2 + O(min((n1n2)

1/3, (n3
1n2)

1/4)).

Proof. Using the notations of the proof of Theorem 2.1, we have that s = 1

when n3
1 ≥ (n1n2)

1/2; that is, when n2 ≤ n5
1. In this case,

F (n1, n2) ≤ (n1n2)
1/2

(
1 + O

((
1

(n1n2)1/2

)1/3
))

= (n1n2)
1/2+O((n1n2)

1/3).

If n2 > n5
1, then s = 2, therefore

F (n1, n2) ≤ (n1n2)
1/2

(
1 + O

((
n1

(n1n2)1/2

)1/2
))

= (n1n2)
1/2+O((n3

1n2)
1/4).

¤

Although is not our goal to extend this work to the study of B2[g] sets,

which are the sets A with |{(a, a′), a + a′ = x, a ≤ a′, a, a′ ∈ A}| ≤ g for

all x, we cannot resist the temptation to present an immediate application

of the identity (3) to a non trivial upper bound for the largest B2[g] set in

{1, . . . n}.

Corollary 2.5. If A ⊂ {1, . . . , n} is a B2[g] set, then |A| ≤ √
4g − 2 n1/2+1.

Proof. For brevity, we write r(x) = rA+A(x) and d(x) = rA−A(x). Since A is

a B2[g] set, we have that r(x) ≤ 2g for all x. In the sequel, we will use the
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identities
∑

x r(x) =
∑

x d(x) = |A|2, d(0) = |A| and
∑

x r2(x) =
∑

x d2(x).

This last identity is (3) when B = A. Then
∑

x 6=0

d2(x) =
∑

x

d2(x)− |A|2 =
∑

x

r2(x)− |A|2

≤
∑

x

r(x)(r(x)− 2g) + 2g
∑

x

r(x)− |A|2 ≤ (2g − 1)|A|2.
(9)

On the other hand,

(10)
∑

x 6=0

d2(x) =
∑

1≤|x|≤n

d2(x) ≥

(∑
x 6=0 d(x)

)2

2n
=

(|A|2 − |A|)2

2n
.

¤

The case g = 2 was proved in [4]. As it was observed in [10], that proof

can be generalized to any g ≥ 2. Indeed, better upper bounds are known.

See [6] for a recent survey of the current records.

2.2. Distribution in dense Sidon sets.

Corollary 2.6. Let A be a Sidon set contained in [1, n] with size |A| = n1/2−
cn1/4. Then, the maximum gap in A (i.e., distance between two consecutive

elements) satisfies g(A) ≤ (4 + 2c)n3/4.

Proof. Suppose that there exists a gap [m,m + g − 1] and consider X =

([1,m−1]∪ [m+g, n])∩Z and B = [0, l]∩Z with l = b
√

(n− g)n1/2c. Since

A ⊂ X, we have |A + B| ≤ |X + B| ≤ |X|+ 2|B| − 2 ≤ n− g + 2l. We now

use Lemma 2.1 and the trivial estimate |A| ≤ 2n1/2 to get

|A|2 ≤ (n− g + 2l)

(
1 +

2n1/2

l + 1

)
= n− g + 4n1/2 + 2l +

2(n− g)n1/2

l + 1

≤ n− g + 4n1/2 + 4
√

(n− g)n1/2 = (
√

n− g + 2n1/4)2.

Thus, n1/2 − cn1/4 ≤ √
n− g + 2n1/4, which leads to the desired result after

obvious algebraic manipulations. ¤

A less precise statement of the Corollary 2.6 above was proved in [3] as a

consequence of the well distribution in [1, n] of Sidon sets of large cardinality.

We observe that, under the condition |A| = n1/2 + O(n1/4), the exponent
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3/4 is sharp. To see this, we take a Sidon set A ⊂ [1, n] with |A| = n1/2. We

slice the interval [1, n] in n1/4/c intervals of length cn3/4. One of them must

contain no more than |A|/(n1/4/c) ≤ cn1/4 elements of A. Removing these

elements from A, we get a Sidon set A′ with |A′| ≥ n1/2 − cn1/4 and a gap

of length cn3/4. It is believed that the maximum gap of a Sidon set in [1, n]

of maximal cardinality is O(n1/2+ε).

Kolountzakis [11] used analytic methods and a theorem on the minimum

value of a sum of cosines to prove that dense Sidon sets in [1, n] are well

distributed in residues classes (mod q) when q = o(n1/2) as n → ∞. We

now give a short combinatorial proof of this result.

Theorem 2.2 (Kolountzakis). Let A ⊂ {1, . . . , n} be a Sidon set with |A| ≥
n1/2 − l. Given q, we write Ai = {a ∈ A, a ≡ i (mod q)}. Then

i)
∑q−1

i=0

(
|Ai| − |A|

q

)2

≤ 4ln1/2

q
+

8n3/4

q1/2
.

ii) |Ai| = |A|
q

+ θ

(
max{0, l}1/2n1/4

q1/2
+

n3/8

q1/4

)
, for some |θ| < 3.

iii) If q <
n1/6

100
and l < n1/3, then A contains all residues (mod q).

Proof. We split A in residues classes, A = ∪q
i=1(q·Ai+i) with Ai ⊂ [0, bn/qc].

We let B = [0, |B| − 1]∩Z, so |Ai + B| ≤ bn/qc+ |B|. We observe also that

if ai − a′i = aj − a′j 6= 0, then (qai + i) − (qa′i + i) = (qaj + j) − (qa′j + j),

which is impossible since A is a Sidon set. So,
∑q

i=1 rAi−Ai
(g) ≤ 1 for g 6= 0.
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Using Lemma 2.1 for each Ai and summing up the inequality (5) over all

i = 1, . . . , q, we get that

q∑
i=1

|Ai|2 ≤
q∑

i=1

|Ai + B|
|B|2

∑
g

rAi−Ai
(g)rB−B(g)

≤ bn/qc+ |B|
|B|2

(
q∑

i=0

|Ai||B|+
∑

g 6=0

(
q∑

i=1

rAi−Ai
(g)

)
rB−B(g)

)

≤ bn/qc+ |B|
|B|2

(
|A||B|+

∑

g 6=0

rB−B(g)

)

=
bn/qc+ |B|

|B|2
(|A||B|+ |B|2 − |B|)

= bn/qc+ |A| − 1 + |B|+ (|A| − 1)bn/qc/|B|.

Taking |B| =
⌈√

|A|n/q
⌉
, we obtain

q∑
i=1

|Ai|2 <
n

q
+ |A|+ 2

√
|A|n/q.

We now write |A| = n1/2 − l and use the trivial estimate |A| ≤ 3n1/2, to get

∑
i

(|Ai| − |A|/q)2 =
∑

i

|Ai|2 − |A|2/q <
n− |A|2

q
+ |A|+ 2

√
|A|n/q

<
4ln1/2

q
+ 4n1/2 +

4n3/4

q1/2
<

4ln1/2

q
+

8n3/4

q1/2
,

which is i). To deduce ii) from i), we observe that

|Ai − |A|/q| ≤
(∑

i

(|Ai| − |A|/q)2

)1/2

≤ 2l1/2n1/4

q1/2
+

2
√

2n3/8

q1/4
.

Finally, iii) follows easily from ii). ¤

We observe that iii) is tight up to constants. Take a Sidon set A with

n1/2 elements, which is possible for infinitely many values of n. Consider

q = [n1/6]. There exists r such that |{a ∈ A, a ≡ r (mod q)}| ≤ n1/2/q ≤
n1/3. Now we remove these elements from A. The new set A′ satisfies that

|A′| ≥ n1/2 − n1/3 and one of the residues (mod q) with q ∼ n1/6 doesn’t

appear in A′.
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2.3. Lindstrom’s conjecture. Erdős and Turan asked if F (n) < n1/2 +

O(1) holds for all n. This unsolved question was generalized by Lindstrom

[12] in 1969 for any d who asked whether

(11) Fd(n) < nd/2 + O(1)

holds for all n and d, where the constant in O may depend on d.

We answer this question in the negative for d = 2. Ruzsa [16] has also

proved the result below independently by a similar construction.

Theorem 2.3. There exists a constant c > 0 and infinitely many integers

n such that

F2(n) > n + c log n log log log n.

Proof. Let np be the least quadratic non-residue (mod p), where p is an

odd prime. It is known [8] that there exists a constant c0 > 0 such that the

inequality np > c0 log p log log log p holds for infinitely many primes p. For

one of these primes p, consider the set

Ap = {((npk
2)p , (np(k + 1)2)p), k = 1, . . . p},

where (x)p denotes the least positive integer which is congruent with x

(mod p). First we will prove that Ap is a Sidon set in Zp×Zp. Suppose that

(npk
2
1, np(k1+1)2)+(npk

2
2, np(k2+1)2) ≡ (npk

2
3, np(k3+1)2)+(npk

2
4, np(k4+1)2) (mod p).

Then





k2
1 + k2

2 ≡ k2
3 + k2

4 (mod p)

(k1 + 1)2 + (k2 + 1)2 ≡ (k3 + 1)2 + (k4 + 1)2 (mod p),
and we eas-

ily obtain that





k1 ≡ k3 (mod p)

k2 ≡ k4 (mod p)
or





k1 ≡ k4 (mod p)

k2 ≡ k3 (mod p)
. Thus, Ap

is a Sidon set in Zp × Zp, and since that npk
2 and np(k + 1)2 are qua-

dratic non-residues (mod p), we have that Ap ⊂ [np, p]2. Hence, the set

Ap−(np−1, np−1) is a Sidon set with p elements included in [1, p−np +1]2.

Then

F2(p− np + 1) ≥ p = p− np + 1 + np − 1,

and the theorem follows taking n = p− np + 1. ¤
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It is believed that the correct conjecture is the following:

Conjecture: For any ε > 0, we have F2(n) < n + O(nε).

Theorem 2.4. The estimate F2(n) < n + O(nε) implies that the least qua-

dratic non-residue modulo p is of size O(pε), which is a known conjecture of

Vinogradov.

Proof. Using the same construction as in Theorem 2.3, we have with the

notations from its proof that

p ≤ F2(p− np) < p− np + O((p− np)
ε),

and the result follows. ¤

2.4. Lower bounds. Three different constructions of maximal Sidon sets

which show that F (n) ≥ n1/2(1 + o(1)) are known ([1], [14] and [17]). In

particular, they all imply that

(12) F (n) ∼ n1/2.

There is a natural way to map one dimensional Sidon sets to d-dimensional

Sidon sets. The next lemma will help us in this respect.

Lemma 2.2. Let n1, . . . , nd be positive integers and write

N0 = 1, Ni =
∏

1≤k≤i

nk, i = 1, . . . , d.

For each integer a, 0 ≤ a ≤ Nd − 1, let a1, . . . , ad be integers such that

(13) a =
d∑

i=1

aiNi−1, and 0 ≤ ai ≤ ni − 1, i = 1, . . . , d.

Proof. Notice that 0 ≤ a ≤ ∑d
i=1(ni − 1)Ni−1 =

∑d
i=1 Ni −Ni−1 = Nd − 1.

Then, to conclude the proof, it is enough to prove that all the representations

in (13) are distinct.

Suppose that
∑d

i=1 aiNi−1 =
∑d

i=1 a′iNi−1 and let j denote the lowest

index such that aj 6= a′j. Then
∑d

i=j aiNi−1 =
∑d

i=j a′iNi−1. Dividing by

Nj−1 we obtain that aj ≡ a′j (mod nj). But the condition 1 ≤ aj, a
′
j ≤ nj

forces aj = a′j. ¤
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Theorem 2.5. Let n1, . . . , nd be positive integers. If we denote by F (n1, . . . , nd)

the largest size of a Sidon set contained in the box [1, n1]× · · ·× [1, nd], then

F (n1, . . . , nd) ≥ F (n1 · · ·nd).

In particular,

(14) Fd(n) ≥ F (nd)

Proof. Let ϕd denote the function defined by ϕd(a) = (a1, . . . , ad), where

a1, . . . , ad are defined in (13). This function maps Sidon sets to Sidon sets.

To see it, suppose that A is a Sidon set and for a, a′, a′′, a′′′ ∈ A we have that

ϕd(a) + ϕd(a
′) = ϕd(a

′′) + ϕd(a
′′′).

Then,

ai + a′i = a′′i + a′′′i , for i = 1, . . . , d.

Thus,

d∑
i=1

aiNi−1 +
d∑

i=1

a′iNi−1 =
d∑

i=1

a′′i Ni−1 +
d∑

i=1

a′′i Ni−1,

therefore, a + a′ = a′′ + a′′′. Since A is a Sidon set, we have that {a, a′} =

{a′′, a′′′}, so {ϕd(a), ϕd(a
′)} = {ϕd(a

′′), ϕd(a
′′′)}. Hence, we have showed

that the set ϕd(A) is also a Sidon set.

Let A ⊂ [1, n1 · · ·nd] be a Sidon set. If A is a Sidon set in [1, n1 · · ·nd],

then A− 1 is a Sidon set in [0, n1 · · ·nd− 1]. Then ϕd(A− 1) is Sidon set in

[0, n1 − 1]× · · · × [0, nd − 1], so the set ϕd(A− 1) + (1, . . . , 1) is a Sidon set

in [1, n1]× · · · × [1, nd]. ¤

Corollary 2.7. For all positive integers d, we have that

Fd(n) ∼ nd/2 as n →∞

Proof. This is a consequence of (2), (12) and (14). ¤
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3. Infinite Sidon sets

Dealing with infinite Sidon sequences is a much more complicated matter

both for the case for d = 1 as well as when d > 1. Futhermore, there is no

known natural way to map infinite Sidon sets in N to Sidon sets in Nd or

viceversa. Doing it in an economical way is part of this work. Let A ⊂ Nd

be an infinite Sidon set and let

A(n) = #{a = (a1, . . . , ad) ∈ A, ai ≤ n, for all i = 1, . . . , d}

denote, as usual, the natural counting function of A. In general, given

positive numbers t1, . . . , td, we let

A(nt1 , . . . , ntd) = #{a = (a1, . . . , ad) ∈ A, ai ≤ nti , for all i = 1, . . . , d}.

3.1. Upper bounds. Obviously, for any Sidon set A in Nd, we have that

(15) A(n) ≤ Fd(n) ¿ nd/2.

It is a natural question to ask whether there exist infinite Sidon sets A such

that A(n) À nd/2 holds for all n. Erdős [18] answered this question in the

negative for d = 1 by proving that

lim inf
n→∞

A(n)√
n/ log n

¿ 1.

Trujillo [20] studied the 2-dimensional case and gave a partial answer to this

question by proving that

lim
N→∞

inf
n,m>N

A(n,m)√
nm/ log(nm)

¿ 1,

where A(n,m) is the size of A ∩ [1, n]× [1,m]. Unfortunately this estimate

is not strong enough to prove that lim infn→∞
A(n)

n
= 0 for any infinite Sidon

set A ⊂ N2. We solve this question for any d ≥ 1.

Theorem 3.1. For any positive integer d ≥ 1 and for any infinite Sidon set

A in Nd, we have

lim inf
n→∞

A(n)√
nd/ log n

¿ 1.
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Proof. Let τ(N) = infn>N
A(n)(log n)1/2

nd/2 and consider the d-dimensional box

(0, N2]d. For any ~ı = (i1, . . . , id), 0 ≤ ij < N , let denote by C~ı the number

of elements of A lying in the small box N ·~ı + (0, N ]d. For each l = 0, 1, . . . ,

let Dl =
∑

|~ı|=l C~ı, where |~ı| = max1≤j≤d ij. Then

D2
l ≤ d(l + 1)d−1

∑

|~i|=l

C2
~ı ,

so,

1

d

∑

0≤l<N

D2
l

(l + 1)d−1
≤

∑

0≤|~ı|<N

C~ı +
∑

0≤|~ı|<N

C~ı(C~ı − 1).

By (15), we have that

∑

0≤|~ı|<N

C~ı = A(N2) ¿d Nd.

Observe that all the differences a − a′ with a 6= a′ both in the same small

box belong to (−N,N)d. This property together with the Sidon property

give
∑

~ı

C~ı(C~ı − 1) ≤ (2N)d.

So,
∑

0≤l<N

D2
l

(l + 1)d−1
¿d Nd.

On the other hand, we can write

( ∑

0≤l<N

Dl

(l + 1)d/2

)2

≤
∑

0≤l<N

D2
l

(l + 1)d−1

∑

0≤l<N

1

(l + 1)
¿d Nd log N.

Now we sum by parts to obtain

∑

0≤l<N

Dl

(l + 1)d/2
=

∑

1≤l≤N

Dl−1

ld/2
Àd

∫ N

1

∑
l≤t Dl−1

td/2+1
dt =

∫ N

1

A(tN)

td/2+1
dt Àd

∫ N

1

τ(N)(tN)d/2

(log(tN))1/2

1

td/2+1
dt Àd τ(N)Nd/2(log N)1/2.

From (9), (10) and (12), we obtain that limN→∞ τ(N) ¿d 1. ¤
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3.2. Lower bounds. It is time to consider lower bounds for infinite Sidon

sequences in Nd. We introduce the quantity

αd = sup
A Sidon set in Nd

lim inf
n→∞

log A(n)

log n
.

It is known that
√

2−1 ≤ α1 ≤ 1/2. The upper bound follows trivially from

(1), and the lower bound cames from a clever construction by Ruzsa [15]. It

is believed that α1 = 1/2.

To deal with more general counting functions for infinite Sidon sets in Nd,

we introduce the quantity

αt1,...,td = sup
A Sidon set in Nd

lim inf
n→∞

log A(nt1 , . . . , ntd)

log n
.

Notice that α
︷ ︸︸ ︷
1, . . . , 1 = αd. Here, we prove the following result.

Theorem 3.2. For all positive numbers t1, . . . , td, we have that

(16) αt1,...,td = (t1 + · · ·+ td)α1.

In particular, αd = dα1.

Proof. To prove that αt1,...,td ≤ (t1 + · · · + td)α1, we map Nd to N by using

an injective function φ with the following two properties:

i) φ maps Sidon sets in Nd to Sidon sets in N.

ii) φ(([1, nt1 ]× · · · × [1, ntd ]) ∩ Nd) ⊂ [1, nt1+···+td+ε(n)], with ε(n) → 0 as

n →∞.

Suppose that we have constructed such a function φ. Then, given ε > 0, let

A ∈ Nd be an infinite Sidon set such that

(17) αt1,...,td − ε ≤ lim inf
n→∞

log A(nt1 , . . . , ntd)

log n
.

By ii), we have that

(18) A(nt1 , . . . , ntd) ≤ φ(A)(nt1+···+td+ε(n)).
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Then, by i), (18) and (17), we obtain

αt1,...,td − ε

t1 + · · ·+ td
≤ lim inf

n→∞
log A(nt1 , . . . , ntd)

log(nt1+···+td+ε(n))

≤ lim inf
n→∞

log(φ(A)(nt1+···+td+ε(n)))

log(nt1+···+td+ε(n))
≤ α1.

Since this is true for all ε > 0, we have that

αt1,...,td ≤ (t1 + · · ·+ td)α1.

Next, we will construct explicitly the function φ and prove its properties

i) and ii). Given (a1, . . . , ad) ∈ Nd write the binary expansion of ai using

binary strings ∆i
k of length [kti], k ≥ 1 as

a1 = ∆1
1∆

1
2 . . . ∆1

k . . .

a2 = ∆2
1∆

2
2 . . . ∆2

k . . .

· · ·
ad = ∆d

1∆
d
2 . . . ∆d

k . . .

We define φ(a1, . . . , ad) as the integer whose binary expansion is

(19)

∆1
1 0 ∆2

1 0 · · · 0 ∆d
1 0 ∆1

2 0 ∆2
2 0 · · · 0 ∆d

2 0 · · · · · · 0 ∆1
k 0 ∆2

k 0 · · · 0 ∆d
k 0 · · ·

To prove property i), we will show that if A ∈ Nd is a Sidon set, then

φ(A) is also a Sidon set. Suppose that

φ(a1, . . . , ad) + φ(a′1, . . . , a
′
d) = φ(a′′1, . . . , a

′′
d) + φ(a′′′1 , . . . , a′′′d ),

where (a1, . . . , ad), (a
′
1, . . . , a

′
d), (a

′′
1, . . . , a

′′
d), (a

′′′
1 , . . . , a′′′d ) ∈ A. Thanks to the

inserted zeroes between blocks, we have that for all i = 1, . . . , d and j ≥ 1,

∆i
j(ai) + ∆i

j(a
′
i) = ∆i

j(a
′′
i ) + ∆i

j(a
′′′
i ).

Then, for any i = 1, . . . , d,

∆i
1(ai)∆

i
2(ai) · · ·+∆i

1(a
′
i)∆

i
2(a

′
i) · · · = ∆i

1(a
′′
i )∆

i
1(a

′′
i ) · · ·+∆i

1(a
′′′
i )∆i

2(a
′′′
i ) · · · .
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So,

(a1, . . . , ad) + (a′1, . . . , a
′
d) = (a′′1, . . . , a

′′
d) + (a′′′1 , . . . , a′′′d ).

Since A is a Sidon set, we have that

{(a1, . . . , ad), (a
′
1, . . . , a

′
d)} = {(a′′1, . . . , a′′d), (a′′′1 , . . . , a′′′d )},

so

{φ(a1, . . . , ad), φ(a′1, . . . , a
′
d)} = {φ(a′′1, . . . , a

′′
d), φ(a′′′1 , . . . , a′′′d )},

therefore φ(A) is a Sidon set.

To prove ii), suppose that ai ≤ nti . Then the length of the binary ex-

pansion of ai is bounded by ti log2 n. Let k the greatest integer such that

∆i
k 6= 0 for some i. Then

[ti] + [2ti] + · · ·+ [(k − 1)ti] ≤ ti log2 n,

which gives k ≤ √
2 log2 n + O(1).

On the other hand, the length of the binary expansion of φ(a1, . . . , ad) is

bounded by

d∑
i=1

k∑
j=1

([jti] + 1) ≤ k2

2
(t1 + · · ·+ td) + O(k).

Then

φ(a1, . . . , ad) ≤ 2
k2

2
(t1+···+td)+O(k) ≤ nt1+···td+ε(n),

where ε(n) = O(1/
√

log n).

To prove that the inequality αt1,...,td ≥ (t1 + · · ·+ td)α1 holds, we construct

another function ϕ with analogous properties:

i) ϕ maps Sidon sets in N to Sidon sets in Nd.

ii) ϕ([1, nt1+···+td ]∩N) ⊂ [1, nt1+ε1(n)]×· · ·× [1, ntd+εd(n)], with εi(n) → 0

as n →∞ for i = 1, . . . , d,

and we follow a similar argument. We omit the details, but provide the

function ϕ:

Given a ∈ N, write the binary expansion of a in the following way

a = ∆1
1∆

2
1 · · ·∆d

1∆
1
2∆

2
2 · · ·∆d

2 · · · · · ·∆1
k∆

2
k · · ·∆d

k · · · ,
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where the length of ∆i
j is [jti]. We define ϕ(a) = (a1, . . . , ad), where the

binary expansion of ai is

∆i
1 0 ∆i

2 0 · · · 0 ∆i
k 0 · · ·

¤

The set A = {(n, n2), n ≥ 1} is a Sidon set such that A(n, n2) = n.

It shows that α1,2 ≥ 1, so α1 ≥ 1/3. Of course, we can obtain this lower

bound using the greedy algorithm to construct Sidon sets of integers, but

the construction provided by the theorem above is explicit (we don’t need to

know the previous elements of the sequence to compute an). More precisely,

Corollary 3.1. The sequence of integers defined by

(20) an =
∑
j≥1

2
3j2+j

2
−2

(b2−j(j−1)/2(n)2j(j+1)/2c+ 2j+1b2−j(j−1)(n2)2j(j+1)c) ,

where (x)m is the least non negative residue which is congruent with x

(mod m), is a Sidon set which satisfies an = O(n3+o(1)).

Proof. We will check that an = φ(n, n2) where φ is the function defined in

(19) for the special case d = 2, t1 = 1, t2 = 2. Looking at that definition

we observe that

∆1
j = 2−j(j−1)/2

∑

j(j−1)/2≤i<j(j+1)/2

εi2
i = b2−j(j−1)/2(n)2j(j+1)/2c(21)

∆2
j = 2−j(j−1)

∑

j(j−1)≤i<j(j+1)

εi2
i = b2−j(j−1)(n2)2j(j+1)c.(22)

Then

∆1
j 0 ∆2

j 0 = b2−j(j−1)/2(n)2j(j+1)/2c+ 2j+1b2−j(j−1)(n2)2j(j+1)c,

so,

an = φ(n, n2) = ∆1
1 0 ∆2

1 0 ∆1
2 0 ∆2

2 0 · · · · · · 0 ∆1
k 0 ∆2

k 0 · · ·
=

∑
j≥1

2
3j2+j

2
−2

(b2−j(j−1)/2(n)2j(j+1)/2c+ 2j+1b2−j(j−1)(n2)2j(j+1)c) .

¤
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reihe. I, II, J. Reine Angew. Math 194 (1955), 40-65, 111-140.

[19] T. Tao and V. Vu, Additive Combinatorics. Cambridge Studies in Advanced

Mathematics, 105 (2006).

[20] C. Trujillo, Sucesiones de Sidon, Ph. D thesis, (1998) Universidad Politécnica
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