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Abstract

We show that for a fixed integer base g ≥ 2 the palindromes to
base g which are k-powers form a very thin set in the set of all base g
palindromes.
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1 Introduction

For a fixed integer base g ≥ 2 consider the base g representation of an
arbitrary natural number n ∈ N:

n =
L−1∑

k=0

ak(n)gk, (1)

where ak(n) ∈ {0, 1, . . . , g − 1} for each k = 0, 1, . . . , L− 1, and the leading
digit aL−1(n) is nonzero. The integer n is said to be a base g palindrome if
its digits satisfy the symmetry condition:

ak(n) = aL−1−k(n) for all k = 0, 1, . . . , L− 1. (2)

When the base g is understood, we will refer to these numbers simply as
palindromes.

It has recently been shown in [1] that almost all palindromes are com-
posite. In [6], it has been shown that almost all Fibonacci numbers are not
palindromes, and the argument there applies to some other similar sequences.
For an integer a ≥ 2, the smallest positive integer k such that ak is not a
base g palindrome has been estimated in [4] as exp (O ((log H)3 log log H)),
where H = max{a, g}. Several more results about the prime divisors and
other arithmetic properties of palindromes can be found in [2, 3].

Square values of palindromes have been investigated in [5], where some
constructions of infinite families of palindromes which are perfect squares are
given.

Here, we continue the study of k-power values of palindromes and show
that they form a very thin set in the set of all palindromes. We also show
that this set is larger than standard heuristic arguments suggest.

Throughout the paper, implied constants in the symbols O and ¿ may
depend on the base g (we recall that the notations U = O(V ) and U ¿ V
are equivalent to the assertion that the inequality |U | ≤ cV holds with some
positive constant c).

2 Upper bound

Let Pg,L denote the set of all palindromes (2) of length L; that is, the set of
positive integers satisfying both (1) and (2).

We also denote by Qk
g,L the set of n ∈ Pg,L which are k-powers.
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Theorem. The inequality

#Qk
g,L ¿ (#Pg,L)1/k

holds for all L ≥ 1.

Proof. We may assume that L is large. Let M = b(L− 1)/(2k)c. We write
Qk

g,L =
∑

0≤a<gM Qk
g,L,a where Qk

g,L,a = {xk ∈ Pg,L, x ≡ a (mod gM)}.
We observe that #Qk

g,L,a = 0 for those a such that the last digit of ak
gM

in base g is 0. Thus, we assume that the last digit of ak
gM is different of

zero. Then, if xk is a palindrome for some positive integer x, its first M
digits are the mirror reflection of the base g representation of ak

gM . We write

b for this number of M digits. For xk ∈ Qk
g,L,a, we have bgL−M ≤ xk <

(b + 1)gL−M . Thus,
(
bgL−M

)1/k ≤ x <
(
(b + 1)gL−M

)1/k
. The number of

integers in the arithmetic progression x ≡ a (mod gM) lying in the above

interval is bounded above by 1
gM

((
(b + 1)gL−M

)1/k − (
bgL−M

)1/k
)

+ 1.

So,

#Qk
g,L ≤ gM max

a
#Qk

g,L,a

≤ (
(b + 1)gL−M

)1/k − (
bgL−M

)1/k
+ gM

≤ g
L−M

k
1

k
(gM−1)

1
k
−1 + gM ≤ 1

k
g

L
k
−M+1− 1

k + gM ,

which gives the desired result.

3 Lower bound

Most certainly, our result is not tight and there should be very few palin-
dromes which are k-powers. We note that the standard näıve heuristic pre-
dictions suggests that

#Q2
g,L ≈

∑
n∈Pg,L

1

n1/2
∼ L log g

and

#Qk
g,L ≈

∑
n∈Pg,L

1

n1−1/k
< ∞
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for k ≥ 3.
However, the above heuristic is wrong and in fact it is easy to show that

if g > k!, then there are infinitely many palindromic k-powers. To see this,
observe that the polynomial (xH +1)k is symmetric and all its coefficients are
at most k!. Thus, for x = g` and g > k!, we obtain palindromic kth-powers.
But the following theorem is stronger and unexpected.

Theorem. Given k ≥ 2, there exists a positive constant c = c(k) depending
on k such that if g ≥ g(k), then

#Qk
g,L À Lcg1/bk/2c

.

Proof. It is clear that the k-power of a symmetric polynomial is also symmet-
ric. So, we consider f(x) =

∑
a∈A xa for a symmetric set A with max A = L

and min A = 0. We have that

fk(x) =
∑

n

rk(n,A)xn

where
rk(n,A) = #{(a1, . . . , ak) : n = a1 + · · ·+ ak, ai ∈ A}.

Of course, if max rk(n,A) ≤ g − 1, then
∑

n rk(n,A)gn is a palindromic
k-power since rk(kL− n,A) = r(n,A).

Next, we give a lower bound for the number of symmetric sets A with
max A = L, min A = 0, and max rk(n,A) ≤ g − 1.

Let H = b(L − 1)/2c}, and let B ⊂ {1, . . . , H} be a subset with the
property that all the quantities

∑
b∈U b−∑

b∈U ′ b, with disjoint multisets U
and U ′ of B, are distinct (mod L). We will refer to this property as property
P .

Claim 1. If B satisfies property P and |B| ≥ 2, then set A = {0, L} ∪ B ∪
(L−B) is symmetric and satisfies

max rk(n,A) ≤ 2k!(#B)bk/2c.

Proof. The summands of any representation of n as a sum of k elements of
A can be ordered as

n =
∑

b∈U1

b +
∑

b∈U2

(L− b) +
∑

b∈U3

(b + (L− b)) +
∑
x∈U4

x,
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where U1, U2, U3 are non decreasing sequences of elements of B with U1∩U2 =
∅, U4 is a non decreasing sequence of elements of {0, L}, and #U1 + #U2 +
2#U3 + #U4 = k.

Since n ≡ ∑
b∈U1

b − ∑
b∈U2

b (mod L), and B has property P , the se-
quences U1 and U2 are determined by n. We observe also that, given n, the
sequence U4 is determined by #U3. Thus, the different representations of n in
this form all come from the #B possible elections for each bi, 1 ≤ i ≤ #U3,
and the k! different order in the presentations of the k elements. Since
#U3 ≤ k/2, we have that

rk(n,A) ≤ k!

bk/2c∑
r=0

(#B)r ≤ 2k!(#B)bk/2c.

So, each set B ⊂ {1, . . . , H} with 2 ≤ #B ≤ (
g−1
2k!

)1/bk/2c
satisfying

property P provides the k-power palindrome
(
gL +

∑
b∈B(gb + gL−b) + 1

)k
.

Next, we estimate from below the number of subsets B ⊂ {1, . . . , H},
with cardinality t = b(g−1

2k!

)1/bk/2cc satisfying property P .
We observe that B doesn’t satisfies property P if there exist disjoint

multisets U1 and U2 with elements in B such that
∑

b∈U1
b −∑

b∈U2
b = jL,

for some j ∈ [−k, k].
In the first step, we choose any element b1 ∈ B from {1, . . . , H}, except

those elements of B which are in the form L,L/2, . . . , L/k. If such an element
cannot be choen, then B cannot satisfy property P .

Assume that r ∈ {1, . . . , t − 1}, and b1, . . . , br have been chosen. We
take br+1 to be any of the elements of {1, . . . , H} except for the previous
ones, and those elements x such that there exists disjoint multisets U1 and
U2 destroying property P , one of them containing x. Since the number of
exceptions depends on t and k, but not on H, we have that once b1, . . . , br

are chosen, we have H + Ok,t(1) possibilities for br+1. Thus, the number of
such sets of cardinality t chosen in this way is (H + Ok,t(1))t. But, since the
same set can be ordered in t! different ways, we have that the number of sets
B satisfying property P is ≥ (H + Ot,k(1))t/t! À Lt, as L →∞.

Finally, it easy to check that for g > 2bk/2c+1k! + 1, we have that t ≥
cg1/bk/2c, where c = 1

2
(4k!)−1/bk/2c.

Certainly, obtaining tighter lower and upper bounds on #Qg,L is an in-
teresting open question.
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On the other hand, we have not been able to produce a similar explicit
construction of k-powers palindromes for g ≤ k!. In particular we don’t know
if there are infinitely many squares among binary palindromes (see also [5],
where this questions has also been mentioned).
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