Power Values of Palindromes
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Abstract

We show that for a fixed integer base g > 2 the palindromes to
base g which are k-powers form a very thin set in the set of all base g
palindromes.



1 Introduction

For a fixed integer base g > 2 consider the base g representation of an
arbitrary natural number n € N:

n= Zak(n)gk, (1)

where ax(n) € {0,1,...,9 — 1} for each £ = 0,1,...,L — 1, and the leading
digit ar_1(n) is nonzero. The integer n is said to be a base g palindrome if
its digits satisfy the symmetry condition:

ag(n) = ar—1-x(n) forall k=0,1,...,L — 1. (2)

When the base g is understood, we will refer to these numbers simply as
palindromes.

It has recently been shown in [1] that almost all palindromes are com-
posite. In [6], it has been shown that almost all Fibonacci numbers are not
palindromes, and the argument there applies to some other similar sequences.
For an integer a > 2, the smallest positive integer k such that a* is not a
base g palindrome has been estimated in [4] as exp (O ((log H)?loglog H)),
where H = max{a, g}. Several more results about the prime divisors and
other arithmetic properties of palindromes can be found in [2, 3].

Square values of palindromes have been investigated in [5], where some
constructions of infinite families of palindromes which are perfect squares are
given.

Here, we continue the study of k-power values of palindromes and show
that they form a very thin set in the set of all palindromes. We also show
that this set is larger than standard heuristic arguments suggest.

Throughout the paper, implied constants in the symbols O and < may
depend on the base g (we recall that the notations U = O(V) and U < V
are equivalent to the assertion that the inequality |U| < ¢V holds with some
positive constant c).

2 Upper bound
Let P, 1, denote the set of all palindromes (2) of length L; that is, the set of

positive integers satisfying both (1) and (2).
We also denote by QF ; the set of n € Py, which are k-powers.
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Theorem. The inequality
#Qh < (#Py)"
holds for all L > 1.

Proof. We may assume that L is large. Let M = |(L —1)/(2k)|. We write

QgL ZO<a<gM QgLa where QgLa - {:C € Pg L, T=4a (mOd g >}
We observe that #QF = 0 for those a such that the last digit of a’;M

in base g is 0. Thus, we assume that the last digit of a’;’M is different of

g,L.a

zero. Then, if 2* is a palindrome for some positive integer z, its first M
digits are the mirror reflection of the base g representation of a’g“M. We write

b for this number of M digits. For a* € QgLa, we have bgt™M < 2F <
(b+ 1)gt=™. Thus, (bgL_M)l/ <z < ((b+1)g" M)l/k. The number of
integers in the arithmetic progression # = a (mod ¢g™) lying in the above
interval is bounded above by giM (((b + 1)gL_M)1/k - (bgL_M)l/k> + 1L

So,

#0h, < ¢Mmax#Ql,,
< b+ 1g )" = (g ) g
< g kMz;(gM Dt 4 g %95 M“’%JrgM,
which gives the desired result. O]

3 Lower bound

Most certainly, our result is not tight and there should be very few palin-
dromes which are k-powers. We note that the standard naive heuristic pre-
dictions suggests that

1
#HQ2 Y ;2 ~ Llogyg
’nEPg,L

and

1
#QQL ~ Z PRy

ne€Py L
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for k > 3.

However, the above heuristic is wrong and in fact it is easy to show that
if g > k!, then there are infinitely many palindromic k-powers. To see this,
observe that the polynomial (z +1)* is symmetric and all its coefficients are
at most k!. Thus, for z = ¢ and ¢ > k!, we obtain palindromic kth-powers.
But the following theorem is stronger and unexpected.

Theorem. Given k > 2, there exists a positive constant ¢ = ¢(k) depending
on k such that if g > g(k), then

T
g7 :

Proof. 1t is clear that the k-power of a symmetric polynomial is also symmet-
ric. So, we consider f(x) =) _,2* for a symmetric set A with max A =L
and min A = 0. We have that

fH(x) =Y riln, A)a"

n

where
re(n, A) = #{(a1,...,ax) :n=a; + -+ ag, a; € A}.

Of course, if maxry(n,A) < g — 1, then > 74(n, A)g™ is a palindromic
k-power since (kL — n, A) = r(n, A).

Next, we give a lower bound for the number of symmetric sets A with
max A = L, min A = 0, and maxrg(n, A) < g— 1.

Let H = |(L —1)/2]}, and let B C {1,...,H} be a subset with the
property that all the quantities >, ;b — >, ., b, with disjoint multisets U

and U’ of B, are distinct (mod L). We will refer to this property as property
P.

Claim 1. If B satisfies property P and |B| > 2, then set A ={0,L} UBU
(L — B) is symmetric and satisfies

max 7y (n, A) < 2k!(#B)F/2,

Proof. The summands of any representation of n as a sum of k elements of
A can be ordered as

n=> b+ (L=b+> b+L-b)+> =

bel, beUs beUs xeUy
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where Uy, Us,, Us are non decreasing sequences of elements of B with U;NU, =
(), Uy is a non decreasing sequence of elements of {0, L}, and #U; + #Us +

Since n = Y . 0 — Yy, b (mod L), and B has property P, the se-
quences U; and U, are determined by n. We observe also that, given n, the
sequence Uy is determined by #Uj. Thus, the different representations of n in
this form all come from the #B possible elections for each b;, 1 <1 < #Us,
and the k! different order in the presentations of the k elements. Since
#U;s < k/2, we have that

[k/2]
ri(n, A) < kY (#B)" < 2kI(#B) /2.
r=0
O
So, each set B C {1,...,H} with 2 < #B < (%)ULW?J satisfying

property P provides the k-power palindrome (g% + >,.5(¢9" + ¢* %) + 1)k.
Next, we estimate from below the number of subsets B C {1,...,H},

with cardinality ¢ = L(%)UW QJJ satisfying property P.

We observe that B doesn’t satisfies property P if there exist disjoint
multisets U; and U, with elements in B such that ., b— >, b= jL,
for some j € [k, k.

In the first step, we choose any element b; € B from {1,..., H}, except
those elements of B which are in the form L, L/2, ... L/k. If such an element
cannot be choen, then B cannot satisfy property P.

Assume that r € {1,...,t — 1}, and by,...,b. have been chosen. We
take b,y to be any of the elements of {1,..., H} except for the previous
ones, and those elements = such that there exists disjoint multisets U; and
U, destroying property P, one of them containing x. Since the number of
exceptions depends on t and k, but not on H, we have that once by,...,b,
are chosen, we have H + Oj4(1) possibilities for b,1;. Thus, the number of
such sets of cardinality ¢ chosen in this way is (H + Oy,(1))". But, since the
same set can be ordered in t! different ways, we have that the number of sets
B satisfying property P is > (H + O, x(1))!/t! > L', as L — oco.

Finally, it easy to check that for ¢ > 2¥/2+1kl 4+ 1, we have that t >
cg'/*/2 where ¢ = 1(4k!)~1/F/2], O

Certainly, obtaining tighter lower and upper bounds on #9, 1, is an in-
teresting open question.



On the other hand, we have not been able to produce a similar explicit
construction of k-powers palindromes for g < k!. In particular we don’t know
if there are infinitely many squares among binary palindromes (see also [5],
where this questions has also been mentioned).
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