ON A QUESTION OF SÁRKÖZY

JAVIER CILLERUELO AND THÁI HOÀNG LÊ

Abstract

Motivated by a question of Sárközy, we study the gaps in the product sequence $\mathcal{B}=\mathcal{A} \cdot \mathcal{A}=\left\{b_{n}=a_{i} a_{j}, a_{i}, a_{j} \in \mathcal{A}\right\}$ when \mathcal{A} has upper Banach density $\alpha>0$. We prove that there are infinitely many gaps $b_{n+1}-b_{n} \ll \alpha^{-3}$ and that for $t \geq 2$ there are infinitely many t-gaps $b_{n+t}-b_{n} \ll t^{2} \alpha^{-4}$. Furthermore we prove that these estimates are best possible.

We also discuss a related question about the cardinality of the quotient set $\mathcal{A} / \mathcal{A}=\left\{a_{i} / a_{j}, a_{i}, a_{j} \in \mathcal{A}\right\}$ when $\mathcal{A} \subset\{1, \ldots, N\}$ and $|\mathcal{A}|=\alpha N$.

1. Introduction

Let $\mathcal{A}=\left\{a_{1}<a_{2}<\ldots\right\}$ be an infinite sequence of positive integers. The lower and upper asymptotic densities of \mathcal{A} are defined by
$\underline{d}(\mathcal{A})=\liminf _{N \rightarrow \infty} \frac{|\mathcal{A} \cap\{1, \ldots, N\}|}{N} \quad$ and $\quad \bar{d}(\mathcal{A})=\limsup _{N \rightarrow \infty} \frac{|\mathcal{A} \cap\{1, \ldots, N\}|}{N}$.
The lower and upper Banach density of \mathcal{A} are defined by

$$
d_{*}(\mathcal{A})=\liminf _{|I| \rightarrow \infty} \frac{|\mathcal{A} \cap I|}{|I|} \quad \text { and } \quad d^{*}(\mathcal{A})=\limsup _{|I| \rightarrow \infty} \frac{|\mathcal{A} \cap I|}{|I|}
$$

where I runs through all intervals. Clearly $d_{*}(\mathcal{A}) \leq \underline{d}(\mathcal{A}) \leq \bar{d}(\mathcal{A}) \leq d^{*}(\mathcal{A})$.
Sárközy considered the set

$$
\mathcal{B}=\mathcal{A} \cdot \mathcal{A}=\left\{b_{1}<b_{2}<\ldots\right\}
$$

of all products $a_{i} a_{j}$ with $a_{i}, a_{j} \in \mathcal{A}$ and asked the following question, stated as problem 22 in [4].

Question 1. Is it true that for all $\alpha>0$ there is a number $c=c(\alpha)>0$ such that if $\mathcal{A} \subset \mathbb{N}$ is an infinite sequence with $\underline{d}(\mathcal{A})>\alpha$, then $b_{n+1}-b_{n} \leq c$ holds for infinitely many n ?

[^0]This question is not trivial, since for any $0<\alpha<1$ and $\epsilon>0$ there is a sequence \mathcal{A} such that $\underline{d}(\mathcal{A})>\alpha>0$ but $\bar{d}(\mathcal{B})<\epsilon$, thus the gaps of \mathcal{B} are greater than $\frac{1}{\epsilon}$ on average. See the construction in [1].

Bérczi [1] answered Sárközy's question in the affirmative by proving that $c(\alpha) \ll \alpha^{-4}$. Sándor [3] improved it to $c(\alpha) \ll \alpha^{-3}$ even assuming the weaker hypothesis $\bar{d}(\mathcal{A})>\alpha$.

In this work we consider Sárközy's question for the upper Banach density, that is to find a constant $c^{*}(\alpha)$ such that $b_{n+1}-b_{n} \leq c^{*}(\alpha)$ infinitely often whenever $d^{*}(\mathcal{A})>\alpha$. In this setting we can find the best possible value for $c^{*}(\alpha)$ up to a multiplicative constant.

Theorem 1. For every $0<\alpha<1$ and every sequence \mathcal{A} with $d^{*}(\mathcal{A})>\alpha$, we have $b_{n+1}-b_{n} \leq 2^{4} \alpha^{-3}$ infinitely often.

Theorem 2. For every $0<\alpha<1$, there exists a sequence \mathcal{A} such that $d^{*}(\mathcal{A})>\alpha$ and $b_{n+1}-b_{n} \geq 2^{-12} \alpha^{-3}$ for every n.

We observe that, since $d^{*}(\mathcal{A}) \geq \bar{d}(\mathcal{A})$, Theorem 1 is stronger than Sándor's result.

We also extend this question and study the difference $b_{n+t}-b_{n}$ for a fixed t, namely to find a constant $c^{*}(\alpha, t)$ such that $b_{n+t}-b_{n} \leq c^{*}(\alpha, t)$ infinitely often. The theorems above correspond to the case $t=1$. For greater t the answer is perhaps surprising, in that the exponent of α involved in $c^{*}(\alpha, t)$ is -4 , not -3 like in the case $t=1$.

Theorem 3. For every $0<\alpha<1$, every $t \geq 2$ and every sequence \mathcal{A} with $d^{*}(\mathcal{A})>\alpha$, we have $b_{n+t}-b_{n} \leq 2^{5} t^{2} \alpha^{-4}$ infinitely often.

Theorem 4. For every $0<\alpha<1$ and every $t \geq 2$, there is a sequence \mathcal{A} such that $d^{*}(\mathcal{A})>\alpha$ and $b_{n+t}-b_{n} \geq 2^{-22} t^{2} \alpha^{-4}$ for every n.

Notation. We will denote by $\lceil x\rceil$ the smallest integer greater or equal to $x,\lfloor x\rfloor$ the greatest integer small than or equal to x. For quantities A, B we write $A \ll B$ if there is an absolute constant $c>0$ such that $A \leq c B$.

2. Proof of the results

Proof of Theorem 1. Let $L=\left\lceil 2 \alpha^{-1}\right\rceil$. Since $d^{*}(\mathcal{A}) \geq \alpha$, there are arbitrarily large intervals in which the density of \mathcal{A} is $\geq \alpha$ and by the pigeonhole principle we can find infinitely many intervals I of length L^{2} such that $|I \cap \mathcal{A}| \geq \alpha L^{2}$.

We divide each interval I into L subintervals of equal length L. For $i=1, \ldots, L$, let A_{i} be the number of elements of \mathcal{A} in the i-th interval. We
count the number of differences $a-a^{\prime}$ where $0<a^{\prime}<a$ are in the same interval. On the one hand, it is

$$
\begin{aligned}
\sum_{1 \leq i \leq L}\binom{A_{i}}{2} & =\frac{1}{2} \sum_{1 \leq i \leq L}\left(A_{i}^{2}-A_{i}\right) \geq \frac{1}{2}\left(\frac{1}{L}\left(\sum_{1 \leq i \leq L} A_{i}\right)^{2}-\sum_{1 \leq i \leq L} A_{i}\right) \\
& =\frac{1}{2}\left(\frac{|\mathcal{A} \cap I|^{2}}{L}-|\mathcal{A} \cap I|\right)=\frac{|\mathcal{A} \cap I|}{2}\left(\frac{|\mathcal{A} \cap I|}{L}-1\right) \\
& \geq \frac{|\mathcal{A} \cap I|}{2}(\alpha L-1)=\frac{|\mathcal{A} \cap I|}{2}\left(\alpha\left\lceil 2 \alpha^{-1}\right\rceil-1\right) \\
& \geq \frac{|\mathcal{A} \cap I|}{2} \geq \frac{\alpha L^{2}}{2} \geq L
\end{aligned}
$$

On the other hand, the number of their possible values is at most $L-1$. Thus we can find 2 couples $\left(a, a^{\prime}\right),\left(a^{\prime \prime}, a^{\prime \prime \prime}\right)$ such that $0<a-a^{\prime}=a^{\prime \prime}-a^{\prime \prime \prime}<L$. Then $0<\left|a a^{\prime \prime}-a^{\prime} a^{\prime \prime \prime}\right|=\left|a a^{\prime \prime}-a^{\prime}\left(a^{\prime \prime}+a^{\prime}-a\right)\right|=\left|\left(a-a^{\prime}\right)\left(a^{\prime \prime}-a^{\prime}\right)\right| \leq$ $(L-1)\left(L^{2}-1\right)=\left(\left\lceil 2 \alpha^{-1}\right\rceil-1\right)^{2}\left(\left\lceil 2 \alpha^{-1}\right\rceil+1\right) \leq 4 \alpha^{-2}\left(4 \alpha^{-1}\right)=16 \alpha^{-3}$.
Proof of Theorem 3. Let $L=\left\lceil 4 t / \alpha^{2}\right\rceil$. Again, since $d^{*}(\mathcal{A})>\alpha$, there exist infinitely many intervals $I=[x+1, x+L]$ which contains more than αL elements of \mathcal{A}. For each interval I, the number of sums $a+a^{\prime}, a \leq a^{\prime}, a, a^{\prime} \in$ $I \cap \mathcal{A}$ is at least $(\alpha L)^{2} / 2$ and they are all contained in an interval of length $2 L$. Since $(\alpha L)^{2} / 2 \geq 2 L t$ then some sum must be obtained in t different ways, $a_{i}+a_{i}^{\prime}, a_{i}, a_{i}^{\prime} \in I \cap \mathcal{A}$. If $i \neq j$ then $0<\left|a_{i} a_{i}^{\prime}-a_{j} a_{j}^{\prime}\right|=\left|a_{i}^{\prime}-a_{j}\right|\left|a_{i}-a_{j}\right|<L^{2}$, so the t products $a_{i} a_{i}^{\prime}$ lie in an interval of length $L^{2}<\left(4 t / \alpha^{2}+1\right)^{2} \leq$ $2^{5} t^{2} \alpha^{-4}$.

For the proofs of Theorems 2 and 4 we will construct a special sequence \mathcal{A} in the following way.
Definition 1. Given a positive value x_{1} and an infinite sequence of finite sets of positive integers $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ we define the associated sequence \mathcal{A} to these inputs by

$$
\begin{equation*}
\mathcal{A}=\bigcup_{n=1}^{\infty}\left(x_{n}+\mathcal{A}_{n}\right) \tag{1}
\end{equation*}
$$

where the sequence $\left(x_{n}\right)$ is defined by

$$
x_{n}=x_{1}+M_{n}^{2}+M_{n}\left(x_{n-1}+M_{n-1}\right)+\left(x_{n-1}+M_{n-1}\right)^{2}, n \geq 2
$$

and M_{n} is the largest element of \mathcal{A}_{n}.
Lemma 1. Let \mathcal{A} be defined as in (1). Then, all the nonzero differences $d=c_{1} c_{2}-c_{3} c_{4}$, with $c_{1}, c_{2}, c_{3}, c_{4} \in \mathcal{A}$ but not all c_{i} in the same $x_{n}+\mathcal{A}_{n}$, satisfy $|d| \geq x_{1}$.

Proof. Let n be the largest integer such that $c_{i} \in x_{n}+\mathcal{A}_{n}$ for some $i=$ $1,2,3,4$. We can assume that $c_{1} \in \mathcal{A}_{n}$. Now we distinguish different cases.

- $c_{2} \in x_{n}+\mathcal{A}_{n}$ and c_{3} or $c_{4} \notin x_{n}+\mathcal{A}_{n}$. In this case

$$
\begin{aligned}
|d| \geq x_{n}^{2}-\left|c_{3} c_{4}\right| & \geq x_{n}^{2}-\left(x_{n}+M_{n}\right)\left(x_{n-1}+M_{n-1}\right) \\
& =x_{n}\left(x_{n}-x_{n-1}-M_{n-1}\right)-M_{n}\left(x_{n-1}+M_{n-1}\right) \\
& \geq x_{n}-M_{n}\left(x_{n-1}+M_{n-1}\right) \geq x_{1}
\end{aligned}
$$

- $c_{2}, c_{3}, c_{4} \notin x_{n}+\mathcal{A}_{n}$. In this case

$$
|d| \geq x_{n}-c_{3} c_{4} \geq x_{n}-\left(x_{n-1}+M_{n-1}\right)^{2} \geq x_{1}
$$

- $c_{3} \in x_{n}+\mathcal{A}_{n}$ and $c_{2}, c_{4} \notin x_{n}+\mathcal{A}_{n}$. In this case we write $c_{1}=x_{n}+a_{1}$ and $c_{3}=x_{n}+a_{3}$. Then $|d|=\left|x_{n}\left(c_{2}-c_{4}\right)+a_{1} c_{2}-a_{3} c_{4}\right|$.

If $c_{2}=c_{4}$, then $|d|=c_{2}\left|a_{1}-a_{3}\right| \geq x_{1}$. If $c_{2} \neq c_{4}$, then

$$
|d| \geq x_{n}-\left|a_{1} c_{2}-a_{3} c_{4}\right| \geq x_{n}-M_{n}\left(x_{n-1}+M_{n-1}\right) \geq x_{1} .
$$

In order to prove Theorems 2 and 4, we also need the following construction of Sidon sets due to Erdős and Turán [2]:

Lemma 2. Let p be an odd prime number. Let $\mathcal{S}=\left\{s_{i}=2 p i+\left(i^{2}\right)_{p}: i=\right.$ $0, \ldots, p-1\}$, where $(x)_{p} \in[0, p-1]$ is the residue of x modulo p. Then \mathcal{S} is a Sidon set in $\left[0,2 p^{2}\right.$) with p elements and $\left|s_{i}-s_{j}\right| \geq p$ for every $i \neq j$.
Proof. It is clear that $\left|s_{i}-s_{j}\right| \geq 2 p|i-j|-\left|\left(i^{2}\right)_{p}-\left(j^{2}\right)_{p}\right| \geq p$. Suppose we have an equation $s_{i}+s_{j}=s_{k}+s_{l}$ for some i, j, k, l. Then $2 p(i+j-k-l)=$ $\left(i^{2}\right)_{p}+\left(j^{2}\right)_{p}-\left(k^{2}\right)_{p}-\left(l^{2}\right)_{p}$. The left hand side is a multiple of $2 p$ while the right hand side is strictly smaller than $2 p$. Thus $i+j-j-l=0$ and $\left(i^{2}\right)_{p}+\left(j^{2}\right)_{p}-\left(k^{2}\right)_{p}-\left(l^{2}\right)_{p}=0$, i.e., $i^{2}+j^{2} \equiv j^{2}+l^{2}(\bmod p)$. Thus $i^{2}+j^{2}-k^{2}+l^{2}=(i-k)(i+k-j-l) \equiv 0(\bmod p)$. Either $i=k$ and $j=l$, or $i+k-j-l \equiv 0(\bmod p)$, in which case $k=l$ and $i=j$.

Proof of Theorem 2. For $\alpha \geq 1 / 16$ we take $\mathcal{A}=\mathbb{N}$. Obviously $d^{*}(\mathcal{A})=1 \geq$ α and all the gaps in $\mathcal{A} \cdot \mathcal{A}$ are $\geq 1 \geq 2^{-12} \alpha^{-3}$.

For $\alpha<1 / 16$, let p be an odd prime such that $\frac{1}{4 \alpha} \geq p>\frac{1}{8 \alpha}, \mathcal{S}$ the Sidon set defined in Lemma 2 and $m=2 p^{2}$. We consider the sequence \mathcal{A} defined in (1) with $x_{1}=4 p^{3}$ and

$$
\begin{equation*}
\mathcal{A}_{n}=\bigcup_{k=1}^{n}(2 k m+\mathcal{S}) \tag{2}
\end{equation*}
$$

First we observe that \mathcal{A}_{n} is contained in the interval $I_{n}=[2 m, 2 m n+m)$ and then

$$
d^{*}(\mathcal{A}) \geq \limsup _{n \rightarrow \infty} \frac{\left|\mathcal{A}_{n}\right|}{\left|I_{n}\right|}=\limsup _{n \rightarrow \infty} \frac{|n p|}{|(2 m-1) n|}>\frac{1}{4 p} \geq \alpha
$$

Next we will prove that all the nonzero differences $d=c_{1} c_{2}-c_{3} c_{4}$ with $c_{1}, c_{2}, c_{3}, c_{4} \in \mathcal{A}$ satisfy $|d| \geq 4 p^{3}$, and clearly $|d| \geq 2^{-7} \alpha^{-3}$.
By Lemma 1 it is true when not all c_{i} belong to the same $x_{n}+\mathcal{A}_{n}$.
Suppose then that $c_{i}=x_{n}+a_{i}, i=1,2,3,4$. Then

$$
\begin{aligned}
d & =\left(x_{n}+a_{1}\right)\left(x_{n}+a_{2}\right)-\left(x_{n}+a_{3}\right)\left(x_{n}+a_{4}\right) \\
& =x_{n}\left(a_{1}+a_{2}-a_{3}-a_{4}\right)+a_{1} a_{2}-a_{3} a_{4} .
\end{aligned}
$$

If $a_{1}+a_{2} \neq a_{3}+a_{4}$ then $|d| \geq x_{n}-\left|a_{1} a_{2}-a_{3} a_{4}\right| \geq x_{n}-M_{n}^{2} \geq 4 p^{3}$. If $a_{1}+a_{2}=a_{3}+a_{4}$ then $|d|=\left|a_{1}-a_{2}\right|\left|a_{1}-a_{3}\right|$. Now we write

$$
a_{i}=2 k_{i} m+s_{i}, 1 \leq k_{i} \leq n, s_{i} \in \mathcal{S} .
$$

The condition $a_{1}+a_{2}=a_{3}+a_{4}$ implies $2 m\left(k_{1}+k_{2}-k_{3}-k_{4}\right)=s_{3}+s_{4}-s_{1}-s_{2}$. Since $\left|s_{1}+s_{2}-s_{3}-s_{4}\right|<2 m$, we have $k_{1}+k_{2}=k_{3}+k_{4}$ and $s_{1}+s_{2}=s_{3}+s_{4}$. Now we use the fact that \mathcal{S} is a Sidon set to conclude that $\left\{s_{1}, s_{2}\right\}=\left\{s_{3}, s_{4}\right\}$. We can assume that $s_{1}=s_{3}$ and $s_{2}=s_{4}$, Then

$$
|d|=\left|2 m\left(k_{1}-k_{2}\right)+\left(s_{1}-s_{2}\right)\right|\left|2 m\left(k_{1}-k_{3}\right)\right| .
$$

By Lemma 2 we know that $p \leq\left|s_{1}-s_{2}\right|<m$. If $k_{1} \neq k_{2}$ then $|d| \geq$ $|2 m-m||2 m|=2 m^{2}=8 p^{4}$. If $k_{1}=k_{2}$ then $|d| \geq p 2 m=4 p^{3}$. In any case $|d| \geq 4 p^{3}$.
Proof of Theorem 4. For $\alpha \geq 1 / 16$ we consider the sequence \mathcal{A} defined in (1) with $x_{1}=t^{2}$ and $\mathcal{A}_{n}=\{1, \ldots, n\}$. Clearly $d^{*}(\mathcal{A})=1 \geq \alpha$.

Next, let $c_{0} c_{0}^{\prime}, \ldots, c_{t} c_{t}^{\prime}$ distinct elements in $\mathcal{A} \cdot \mathcal{A}$. We will prove that $\left|c_{i} c_{i}^{\prime}-c_{j} c_{j}^{\prime}\right| \geq t^{2} / 36$ for some $i, j, i \neq j$.
We have to study the case where all c_{i}, c_{i}^{\prime} belong to the same $x_{n}+\mathcal{A}_{n}$. Otherwise we apply Lemma 1.

Clearly it is true for $2 \leq t \leq 6$. Suppose $t \geq 7$. We write

$$
\begin{aligned}
d_{i}=c_{0} c_{0}^{\prime}-c_{i} c_{i}^{\prime} & =\left(x_{n}+a_{0}\right)\left(x_{n}+a_{0}^{\prime}\right)-\left(x_{n}+a_{i}\right)\left(x_{n}+a_{i}^{\prime}\right) \\
& =x_{n}\left(a_{0}+a_{0}^{\prime}-a_{i}-a_{i}^{\prime}\right)+a_{0} a_{0}^{\prime}-a_{i} a_{i}^{\prime} .
\end{aligned}
$$

If the coefficient of x_{n} is non zero then $\left|d_{i}\right| \geq x_{n}-M_{n}^{2} \geq x_{1}=t^{2}$.
We suppose then that $a_{0}+a_{0}^{\prime}-a_{i}-a_{i}^{\prime}=0$ for all i. It implies that $a_{i} \neq a_{j}$ if $i \neq j$. Otherwise $c_{i} c_{i}^{\prime}=c_{j} c_{j}^{\prime}$. Then we have $\left|c_{0} c_{0}^{\prime}-c_{i} c_{i}^{\prime}\right|=\left|a_{0}^{\prime}-a_{i}\right|\left|a_{0}-a_{i}\right|$. Since there are at most $2(1+2(t / 6))<t$ values of i for which $\left|a_{0}-a_{i}\right| \leq t / 6$ or $\left|a_{0}^{\prime}-a_{i}\right| \leq t / 6$ we obtain that $\left|a_{0}^{\prime}-a_{i}\right|\left|a_{0}-a_{i}\right|>(t / 6)^{2} \geq 2^{-22} t^{2} \alpha^{-4}$ for some i.

For $0<\alpha<1 / 16$ we take the same sequence \mathcal{A} used in the proof of Theorem 2 but with $x_{1}=t^{2} p^{4}$. As we saw, this sequence has density $d^{*}(\mathcal{A}) \geq$ α. As in that proof, we apply Lemma 1 to see that if $c_{i}, c_{i}^{\prime}, c_{j}, c_{j}^{\prime}$ not in the same $x_{n}+\mathcal{A}_{n}$ for some $i \neq j$ then $\left|c_{i} c_{i}^{\prime}-c_{j} c_{j}^{\prime}\right| \geq x_{1}=t^{2} p^{4}$ and it is done because $t^{2} p^{4} \geq 2^{-12} t^{2} \alpha^{-4}$.

Therefore, if $c_{0} c_{0}^{\prime}, \ldots, c_{t} c_{t}^{\prime}$ are different elements of $\mathcal{A} \cdot \mathcal{A}$, we can assume that all c_{i}, c_{i}^{\prime} belong to the same $x_{n}+\mathcal{A}_{n}$ and we write them as $c_{i}=$ $x_{n}+a_{i}, a_{i} \in \mathcal{A}_{n}$. Then

$$
d_{i}=c_{0} c_{0}^{\prime}-c_{i} c_{i}^{\prime}=x_{n}\left(a_{0}+a_{0}^{\prime}-a_{i}-a_{i}^{\prime}\right)+a_{0} a_{0}^{\prime}-a_{i} a_{i}^{\prime}
$$

If $a_{i}+a_{i}^{\prime} \neq a_{0}+a_{0}^{\prime}$ for some $i \neq 0$ then $\left|d_{i}\right| \geq x_{n}-M_{n}^{2} \geq x_{1}=t^{2} p^{4}$. So we assume that $a_{i}+a_{i}^{\prime}=a_{0}+a_{0}^{\prime}$ for all $i=0, \ldots, t$. We write $a_{i}=2 m k_{i}+s_{i}$ and we can assume that $s_{i} \leq s_{i}^{\prime}$ for $i=0, \ldots, t$. The condition $a_{i}+a_{i}^{\prime}=a_{0}+a_{0}^{\prime}$ for all $i=0, \ldots, t$ implies that $2 m\left(k_{i}+k_{i}^{\prime}-k_{0}-k_{0}^{\prime}\right)=s_{0}+s_{0}^{\prime}-s_{i}-s_{i}^{\prime}$ and since $\left|s_{0}+s_{0}^{\prime}-s_{i}-s_{i}^{\prime}\right|<2 m$ then $k_{i}+k_{i}^{\prime}=k_{0}+k_{0}^{\prime}$ and $s_{i}+s_{i}^{\prime}=s_{0}+s_{0}^{\prime}$.

Since S is a Sidon set and $s_{i} \leq s_{i}^{\prime}$ we have $s_{i}=s_{0}$ and $s_{i}^{\prime}=s_{0}^{\prime}$ for $i=0, \ldots, t$. Then

$$
c_{i} c_{i}^{\prime}-c_{0} c_{0}^{\prime}=2 m\left(k_{i}-k_{0}\right)\left(2 m\left(k_{i}-k_{0}^{\prime}\right)+s_{0}-s_{0}^{\prime}\right) .
$$

We observe that all k_{i} are distinct and $k_{i} \neq 0$. (Otherwise, if $k_{i}=k_{j}$ then $k_{i}^{\prime}=k_{j}^{\prime}$ and then $c_{i} c_{i}^{\prime}=c_{j} c_{j}^{\prime}$.)

If $k_{i} \neq k_{0}^{\prime}$ then

$$
\begin{aligned}
\left|c_{i} c_{i}^{\prime}-c_{0} c_{0}^{\prime}\right| & =\left|2 m\left(k_{i}-k_{0}\right)\left(2 m\left(k_{i}-k_{0}^{\prime}\right)+s_{0}-s_{0}^{\prime}\right)\right| \\
& \geq 2 m\left|k_{i}-k_{0}\right|\left(2 m\left|k_{i}-k_{0}^{\prime}\right|-m\right) \\
& >2 m^{2}\left|k_{i}-k_{0} \| k_{i}-k_{0}^{\prime}\right| \\
& =8 p^{4}\left|k_{i}-k_{0} \| k_{i}-k_{0}^{\prime}\right|
\end{aligned}
$$

If $2 \leq t \leq 6$ we consider k_{1} and k_{2}. One of them (or both) is distinct from k_{0}^{\prime}. For that k_{i} we have $\left|c_{0} c_{0}^{\prime}-c_{i} c_{i}^{\prime}\right| \geq 8 p^{4} \geq 2^{-9} \alpha^{-4} \geq 2^{-14} t^{2} \alpha^{-4}$.

If $t \geq 7$ we observe that there are at most $2(1+2(t / 6))<t$ values of i such that $\left|k_{0}-k_{i}\right| \leq t / 6$ or $\left|k_{0}^{\prime}-k_{i}\right| \leq t / 6$. So there exists some i such that

$$
\left|c_{0} c_{0}^{\prime}-c_{i} c_{i}^{\prime}\right| \geq 8 p^{4}(t / 6)^{2} \geq 2^{-14} t^{2} \alpha^{-4}
$$

3. A Related question

We do not know if the exponent -3 in Theorem 1 can be improved when $\bar{d}(\mathcal{A})>\alpha$ or when $\underline{d}(\mathcal{A})>\alpha$, which is the original problem of Sárközy. Clearly nothing better than -2 is possible. We present an alternative approach to this question, which gives the bound of G. Bérczi quickly.

Let $\mathcal{A} \subset\{1, \ldots, N\}$ a set with αN elements. We consider the set

$$
\mathcal{A} / \mathcal{A}=\left\{a / a^{\prime}, a<a^{\prime}, a, a^{\prime} \in A\right\}
$$

What can we say about the cardinality of $\mathcal{A} / \mathcal{A}$ when N is large? Clearly $|\mathcal{A} / \mathcal{A}| \ll \alpha^{2} N^{2}$. Probably it is the true order of magnitude but we do not know how to improve the theorem below
Theorem 5. If $\mathcal{A} \subset\{1, \ldots, N\}$ with $|\mathcal{A}|=\alpha N$, then $|\mathcal{A} / \mathcal{A}| \gg \alpha^{4} N^{2}$.
Proof. Let $(\mathcal{A} \times \mathcal{A})_{d}=\left\{\left(a, a^{\prime}\right) \in \mathcal{A} \times \mathcal{A}: a<a^{\prime}, \operatorname{gcd}\left(a, a^{\prime}\right)=d\right\}$. Then for every d, all the quotients $\frac{a}{a^{\prime}},\left(a, a^{\prime}\right) \in(\mathcal{A} \times \mathcal{A})_{d}$ are distinct and contained in $[0,1]$. We first show that there exists d such that $\left|(\mathcal{A} \times \mathcal{A})_{d}\right| \geq \frac{1}{c(\alpha)} N^{2}$. Let T be an integer to be chosen later. Then

$$
\begin{aligned}
(\alpha N)^{2} \leq|\mathcal{A}|^{2} & =\sum_{d}\left|(\mathcal{A} \times \mathcal{A})_{d}\right| \\
& =\sum_{d \leq T}\left|(\mathcal{A} \times \mathcal{A})_{d}\right|+\sum_{d>T}\left|(\mathcal{A} \times \mathcal{A})_{d}\right| \\
& \leq T \max _{d \leq T}\left|(\mathcal{A} \times \mathcal{A})_{d}\right|+\sum_{d>T}\left(\frac{N}{d}\right)^{2} \\
& \leq T \max _{d \leq T}\left|(\mathcal{A} \times \mathcal{A})_{d}\right|+N^{2} / T
\end{aligned}
$$

Thus there exists $d \leq T$ such that $\mid \mathcal{A} \times \mathcal{A})_{d} \left\lvert\, \geq N^{2}\left(\frac{\alpha^{2}}{T}-\frac{1}{T^{2}}\right)\right.$. If we choose $T=\left\lceil\frac{2}{\alpha^{2}}\right\rceil$ then $\frac{\alpha^{2}}{T}-\frac{1}{T} \geq \frac{1}{T} \geq \frac{\alpha^{2}}{4}$. Thus for some $d,\left|(\mathcal{A} \times \mathcal{A})_{d}\right| \geq N^{2} \alpha^{4} / 4$. Finally we observe that $|\mathcal{A} / \mathcal{A}| \geq\left|(\mathcal{A} \times \mathcal{A})_{d}\right|$ for any d.

We observe that if $\bar{d}(A)>\alpha$ there exist infinitely many intervals $[1, N]$ such that $|\mathcal{A} \cap[1, N]|>\alpha$. If we apply the theorem above we obtain $a / a^{\prime}, a^{\prime \prime} / a^{\prime \prime \prime} \in \mathcal{A} / \mathcal{A}$ such that $\left|\frac{a}{a^{\prime}}-\frac{a^{\prime \prime}}{a^{\prime \prime \prime}}\right| \leq 4 \alpha^{-4} N^{-2}$, so $\left|a a^{\prime \prime \prime}-a^{\prime} a^{\prime \prime}\right| \leq 4 \alpha^{-4}$.

Theorem 5 motivates the following questions:
Question 2. Is it true that for some $d,\left|\left(A_{N} \times \mathcal{A}_{N}\right)_{d}\right| \gg \alpha^{2} N^{2}$?
Question 3. Is it true that $\left|\mathcal{A}_{N} / \mathcal{A}_{N}\right| \gg \alpha^{2} N^{2}$?
Clearly an affirmative answer to Question 2 will answer Question 3 which in turn answers Question 1.

References

[1] G. Bérczi, on the distribution of products of members of a sequence with positive density, Per. Math. Hung., 44 (2002), 137-145.
[2] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
[3] C. Sándor, On the minimal gaps between products of members of a sequence of positive density, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 48 (2005), 3-7.
[4] A. Sárközy, Unsolved problems in number theory, Per. Math. Hung., 42 (2001), 1736.

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

E-mail address: franciscojavier.cilleruelo@uam.es
Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
E-mail address: leth@math.ucla.edu

[^0]: This work was developed during the Doccourse in Additive Combinatorics held in the Centre de Recerca Matemàtica from January to March 2007. Both authors are extremely grateful for its hospitality

