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Abstract

In this note, we give a lower bound for the distance between the
maximal and minimal element in a multiplicative magic square of
dimension r whose entries are distinct positive integers.

1 Introduction

Let A = [A(i, j)]1≤i,j≤r be a square matrix with positive integer entries. We
say that A is an additive magic square of order r if the sums of the entries
in each row, column, and the two diagonals are all equal. We write s(A) for
this common value.

A multiplicative magic square has the property that the products of the
entries in each row, column, and the two diagonals are all equal. We shall
deal only with magic squares whose entries are positive integers.
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The most popular additive magic squares of order r are those whose
entries are the first r2 positive integers. Clearly, there are no multiplicative
magic squares with this property and indeed it is not difficult to guess that
the entries in a multiplicative magic square cannot be very close.

In this note, we take a closer look at this problem. Let X = [xij]1≤i,j,≤r

be a multiplicative magic square whose entries are distinct positive integers,
and let xM and xm be the largest and respectively smallest entry in X. We
prove some nontrivial lower bound for xM − xm. For r = 3, we get a very
precise result.

Theorem 1. In a multiplicative magic square X of order 3 we have that

xM − xm ≥ x3/4
m .

Furthermore, there exists an infinite family (X(n))n≥1 of multiplicative magic
squares of order 3 such that

xM(n)− xm(n) ≤ x3/4
m (n)(1 + o(1)) as n →∞.

For r = 4, we obtain the true minimal order of magnitude for the above
difference.

Theorem 2. In an multiplicative magic square X of order 4 we have that

xM − xm ≥ 55/12x1/2
m .

Furthermore, there exists an infinite family of multiplicative magic squares
(X(n))n≥1 of order 4 such that

xM(n)− xm(n) ≤ 6x1/2
m (n)(1 + o(1)) as n →∞.

An example of such a family is

X(n) =




(n + 2)(n + 4) (n + 3)(n + 7) (n + 1)(n + 6) n(n + 5)
(n + 1)(n + 5) n(n + 6) (n + 2)(n + 7) (n + 3)(n + 4)

n(n + 7) (n + 1)(n + 4) (n + 3)(n + 5) (n + 2)(n + 6)
(n + 3)(n + 6) (n + 2)(n + 5) n(n + 4) (n + 1)(n + 7)


 .

It should be noted that these multiplicative magic squares are almost
additive magic squares since the sums of the entries in each row, column,
and diagonal differ by at most 6. We don’t know if 6 is the smallest possible
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value, but it is not difficult to see that a magic square of order 4 cannot be
simultaneously multiplicative and additive. To see this, observe that if X is
a additive magic square, then

2(x11 + x44 − x32 + x23) = (x11 + x12 + x13 + x14) + (x41 + x42 + x43 + x44)

− (x12 + x22 + x32 + x42)− (x13 + x23 + x33 + x43)

+ (x11 + x22 + x33 + x44)− (x14 + x23 + x32 + x41)

= 0.

So, x11 + x44 = x32 + x23. If in addition X is a multiplicative magic square
we have, for similar reasons, that x11x44 = x32x23, so {x11, x44} = {x23, x32},
which is impossible since these four entries must be distinct.

The method we use to obtain the lower bounds in the Theorems 2 and 3
turns out to be too complicated for r ≥ 5. Thus, when r ≥ 5, we apply a
different method which leads to a weaker result.

Theorem 3. In a multiplicative magic square X of order r ≥ 5 we have

xM − xm Àr x1/(r−1)
m .

Of course the exponent 1/(r − 1) is theorem above is not sharp, at least
for r = 3 and r = 4. It motives the first question we leave:

Problem 1. What is the best exponent er in Theorem 3?

Our results Theorem 1 and Theorem 2 show that e3 = 3/4 and e4 = 1/2.

Problem 2. Are there additive-multiplicative magic squares of order r = 5?

We have seen that the answer is negative for r = 4. On the contrary,
Horner [2] found an additive and multiplicative magic square of order r = 8.

2 Proofs

The multiplicative magic squares can be described in terms of the additive
ones in the following way:

We write nA for the multiplicative magic square given by

nA =
[
nA(i,j)

]
1≤i,j≤r

.

If we write × for the entrywise multiplication of the magic squares, then we
have the following properties:
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(i) nA × nB = nA+B;

(ii) nA ×mA = (nm)A.

Each multiplicative magic square can be factored uniquely as
∏t

s=1 ps
Aps ,

where p1 < · · · < pt are primes and the Aps ’s are additive magic squares for
s = 1, . . . , t.

The additive magic squares of nonnegative integers form the set of integral
points inside a pointed polyhedral cone (see [3]). Thus, the additive magic
squares of order r have a minimal base of irreducible magic squares called
a Hilbert base Hr = {Bl : l ∈ L} in such a way that every additive magic
square A with nonnegative integer entries can be written as

A =
∑

l∈L

clBl, for some nonnegative cl ∈ Z.

The Hilbert bases for the magic squares of orders 3 and 4 have been calculated
in [1].

The basis H3 consists of the following magic squares:

B1 =




2 0 1
0 1 2
1 2 0


 , B2 =




0 2 1
2 1 0
1 0 2


 , B3 =




1 0 2
2 1 0
0 2 1


 , B4 =




1 2 0
0 1 2
2 0 1


 , B5 =




1 1 1
1 1 1
1 1 1


 .

The basis H4 consists of the following magic squares

B1 =




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


 B2 =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 B3 =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 B4 =




0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


 B5 =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1




B6 =




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


 B7 =




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


 B8 =




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0


 B9 =




1 0 0 1
1 1 0 0
0 1 0 1
0 0 2 0


 B10 =




0 0 1 1
0 1 1 0
2 0 0 0
0 1 0 1




B11 =




0 2 0 0
1 0 1 0
0 0 1 1
1 0 0 1


 B12 =




1 0 1 0
0 0 0 2
0 1 1 0
1 1 0 0


 B13 =




1 1 0 0
0 1 1 0
0 0 0 2
1 0 1 0


 B14 =




0 0 2 0
0 1 0 1
1 1 0 0
1 0 0 1


 B15 =




0 1 0 1
2 0 0 0
0 1 1 0
0 0 1 1




B16 =




1 0 0 1
0 0 1 1
1 0 1 0
0 2 0 0


 B17 =




1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


 B18 =




0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0


 B19 =




1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1


 B20 =




0 1 0 1
1 1 0 0
0 0 1 1
1 0 1 0




We recall that for us X = [xij]1≤i,j,≤r is a multiplicative magic square
whose entries are distinct positive integers and that xM and xm denote the
largest and smallest entry in X, respectively. We start with the following
preliminary result.
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Lemma 1. Let R = {(ij, i′j′)} be a collection of pairs of positions in a magic
square of order r having the following property:

∑

(ij,i′j′)∈R

min{Bl(i, j), Bl(i
′, j′)} ≥ ks(Bl) for all Bl ∈ Hr.

Let X = [xij]1≤i,j≤r be a multiplicative magic square of order r. Then the
inequality

xM − xm ≥ xkr/|R|
m

holds.

Proof. Write X =
∏t

s=1 p
Aps
s =

∏t
s=1 p

∑
l cl,psBl

s , where p1 < · · · < pt are
distinct primes and Aps ’s are additive magic squares for s = 1, . . . , t. Thus,
xij =

∏t
s=1 p

∑
l cl,psBl(i,j). Then

|xij − xi′j′| = |
t∏

s=1

ps

∑
l cl,psBl(i,j) −

t∏
s=1

ps

∑
l cl,psBl(i

′,j′)|

≥
t∏

s=1

ps
min{∑l cl,psBl(i,j),

∑
l cl,psBl(i

′,j′)}

≥
t∏

s=1

ps

∑
l cl,ps min{Bl(i,j),Bl(i

′,j′)}.

Thus,

(xM − xm)|R| ≥
∏

(ij,i′j′)∈R

|xij − xi′j′|

≥
t∏

s=1

ps

∑
l cl,ps

∑
(ij,i′j′)∈R min{Bl(i,j),Bl(i

′,j′)}

≥
t∏

s=1

ps

∑
l cl,psks(Bl) =

t∏
s=1

ps(Aps )k
s .

We finish the proof by noting that

xr
m ≤

r∏
i=1

x1i =
t∏

s=1

ps

∑r
i=1 αps(1,i) =

t∏
s=1

ps
s(Aps ).
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Proof of Theorem 1. We take R = {(11, 22), (13, 22), (31, 22), (33, 22)} in Lemma
1 for r = 3. Observe that k = 1.

The family given by

X(n) = nB1 × (n + 1)B2 × (n + 2)B3 × (n + 3)B4

for all n ≥ 1 satisfies the second part of the theorem.

Proof of Theorem 2. We now take R = ∪8
m=1Rm, where for each m = 1, . . . , 8,

the set Rm consists of all the 6 subsets of pairs of positions (ij, i′j′) such that
Bm(i, j) = Bm(i′, j′) = 1. Let us observe that in the notations of Lemma 1,
we have k = 6. Lemma 1 now gives us the inequality

xM − xm ≥ x1/2
m .

To improve a bit on this inequality (on the multiplicative constant, not on
the exponent 1/2), observe that we can write

∏

(ij,i′j′)∈R

|xij − xi′j′| =
8∏

m=1

∏

(ij,i′j′)∈Rm

|xij − xi′j′| ≤
(

1

25
√

5
(xM − xm)6

)8

=
1

520
(xM − xm)48.

In the above chain of inequalities, we have used the easy exercise (left to the
reader) that if 0 ≤ α1 ≤ α2 ≤ α3 ≤ α4 ≤ 1, then

∏
i<j |αi − αj| ≤ 1/(25

√
5).

The family

X(n) = nB6×(n+1)B3×(n+2)B2×(n+3)B7×(n+4)B1×(n+5)B4×(n+6)B8×(n+7)B5

for all positive integers n satisfies the second part of the theorem and corre-
sponds to the family described in the introduction.

Proof of Theorem 3. We proceed by contradiction. We let s be the smallest
element in the magic square and assume that s is on row i and column j.
Write xkl = s + skl for all k, l ∈ {1, . . . , r} and expand the products on row
i and column j as follows:

r∏

l=1

xil =
r∏

l=1

(s + sil) (1)

= s


sr−1 + sr−2

∑

1≤l≤r
l 6=j

sil + sr−3
∑

1≤l1<l2≤r
l1 6=j 6=l2

sil1sil2 + · · ·+
∏

1≤l≤r
l 6=j

sil



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and similarly for column j. Since the two products obtained in this way are
equal and since s is a common factor of both of them, we get that

|
∑

1≤l≤r
l 6=j

sil −
∑

1≤l≤r
l 6=i

slj| < s−1|

∣∣∣∣∣∣∣∣

∑

1≤l1<l2≤r
l1 6=j 6=l2

sil1sil2 −
∑

1≤l1<l2≤r
l1 6=j 6=l2

sl1jsl2j

∣∣∣∣∣∣∣∣

+ · · ·+ s−(r−2)

∣∣∣∣∣∣∣∣

∏

1≤l≤r
l 6=j

sil −
∏

1≤l≤r
l 6=i

slj

∣∣∣∣∣∣∣∣
.

We now assume that 0 < skl < 2−(r−1)/2s1/(r−1) holds for all k, l ∈ {1, . . . , r}
except for (k, l) = (i, j) in order to get a contradiction. We then get that the
right hand side above is

< 2−(r−1)s−1+2/(r−1)

((
r − 1

2

)
+

(
r − 1

3

)
+ · · ·+

(
r − 1

r − 1

))
< 1,

therefore
r∑

l=1

sil =
r∑

l=1

slj. (2)

We now proceed by induction on t to show that the two tth symmetric
polynomials

∑

1≤l1<···<lt≤r

sil1 · · · silt =
∑

1≤l1<···<lt≤r

sl1j · · · sltj (3)

in the (sil)1≤l≤r and (slj)1≤l≤r are equal. Formula (2) shows that this holds
when t = 1 and by induction it is enough to show that the two tth symmetric
polynomials on the sets of r − 1 dimensional indeterminates (sil)1≤l≤r

l 6=j
and

(slj)1≤l≤r
l 6=i

are equal. Assuming that t ≥ 2 and that the above equality holds

for t− 1 < r− 1, then equating again the two products shown at (1) for the
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ith row with the analogous one obtained for the jth row, we get∣∣∣∣∣∣∣∣

∑

1≤l1<...<lt≤r
lk 6=j, 1≤k≤t

sil1 · · · silt −
∑

1≤l1<···<lt≤r
lk 6=i, 1≤k≤t

sl1j · · · sltj

∣∣∣∣∣∣∣∣

≤ s−1

∣∣∣∣∣∣∣∣

∑

1≤l1<...<lt+1≤r
lk 6=j, 1≤k≤t+1

sil1 · · · silt+1 −
∑

1≤l1<···<lt+1≤r
lk 6=i, 1≤k≤t+1

sl1j · · · slt+1j

∣∣∣∣∣∣∣∣

+ · · ·+ s−(r−1−t)

∣∣∣∣∣∣∣∣

∏

1≤l≤r
l 6=j

sil −
∏

1≤l≤r
l 6=i

slj

∣∣∣∣∣∣∣∣
.

Using again the fact that s ≥ 1 and 0 < skl < 2−(r−1)/2s1/(r−1) whenever
(k, l) 6= (i, j), we get that∣∣∣∣∣∣∣∣

∑

1≤l1<···<lt≤r
lk 6=j, 1≤k≤t

sil1 · · · silt −
∑

1≤l1<···<lt≤r
lj 6=i, 1≤k≤t

sl1j · · · sltj

∣∣∣∣∣∣∣∣

< 2−(r−1)s−1+(t+1)/(r−1)

((
r − 1

t + 1

)
+ · · ·+

(
r − 1

r − 1

))
< 1,

therefore relation (3) holds for t as well. Since this is true for all t = 1, . . . , r,
we deduce that the two polynomials

r∏

l=1

(X − sil) and
r∏

l=1

(X − slj)

are equal. In particular, the entries from row i are a permutation of the
entries from column j, but this is not allowed since the union of these entries
should be a set of 2r − 1 distinct integers. This completes the proof of
Theorem 3.

References

[1] Maya Ahmed, “Algebraic combinatorics of magic squares”, Preprint
posted at arXiv:math.CO/0405476.

8



[2] Horner, W. W.“Addition-Multiplication Magic Square of Order 8”,
Scripta Math. 21, 23-27, 1955.

[3] R.P. Stanley, Enumerative Combinatorics , Vol. I, Cambridge Univ.
Press, Cambridge, 1997.

9


