DENSE SETS OF INTEGERS WITH PRESCRIBED REPRESENTATION FUNCTIONS

JAVIER CILLERUELO AND MELVYN B. NATHANSON

ABSTRACT. Let \mathcal{A} be a set of integers and let $h \geq 2$. For every integer n, let $r_{\mathcal{A},h}(n)$ denote the number of representations of n in the form $n = a_1 + \cdots + a_h$, where $a_i \in \mathcal{A}$ for $1 \leq i \leq h$, and $a_1 \leq \cdots \leq a_h$. The function $r_{\mathcal{A},h} : \mathbb{Z} \to \mathbb{N}$, where $\mathbb{N} = \mathbb{N} \cup \{0, \infty\}$, is the representation function of order h for \mathcal{A} .

We prove that every function $f : \mathbb{Z} \to \mathbf{N}$ satisfying $\liminf_{|n|\to\infty} f(n) \ge g$ is the representation function of order h for a sequence \mathcal{A} of integers, and that \mathcal{A} can be constructed so that it increases "almost" as slowly as any given $B_h[g]$ sequence. In particular, given $h \ge 2$, for every $\varepsilon > 0$ and for any function $f : \mathbb{Z} \to \mathbf{N}$ satisfying $\liminf_{|n|\to\infty} f(n) \ge g = g(h, \epsilon)$ there exists a sequence \mathcal{A} satisfying $r_{\mathcal{A},h} = f$ and $\mathcal{A}(x) \gg x^{(1/h)-\varepsilon}$.

Roughly speaking we prove that the problem of finding a dense set of integers with prescribed representation function f of order h with $\liminf_{|n|\to\infty} f(n) \ge g$ is "equivalent" to the classical problem of finding a dense $B_h[g]$ sequences of positive integers.

1. INTRODUCTION

Let \mathcal{A} be a set of integers and let $h \geq 2$. For every integer n, let $r_{\mathcal{A},h}(n)$ denote the number of representations of n in the form

$$n = a_1 + \dots + a_h$$

where $a_1 \leq \cdots \leq a_h$ and $a_i \in \mathcal{A}$ for $1 \leq i \leq h$. The function $r_{\mathcal{A},h} : \mathbb{Z} \to \mathbb{N}$ is the representation function of order h for \mathcal{A} , where $\mathbb{N} = \mathbb{N} \cup \{0, \infty\}$.

Nathanson proved [7] that any function $f : \mathbb{Z} \to \mathbf{N}$ satisfying $\liminf_{|n| \to \infty} f(n) \ge 1$ is the representation function of order h of a set of integers \mathcal{A} such that

(1)
$$\mathcal{A}(x) \gg x^{1/(2h-1)}$$

where $\mathcal{A}(x)$ counts the number of positive elements $a \in \mathcal{A}$ no greater than x and $f(x) \gg g(x)$ means that there exists a constant C > 0 such that $f(x) \ge Cg(x)$ for x large enough.

²⁰⁰⁰ Mathematics Subject Classification. 11B13 (primary), 11B34, 11B05, 11A07, 11A41 (secondary). The work of J.C. was supported by grants CCG06-UAM/ESP-0477 and MTM 2005-04730 of MYCIT (Spain).

The work of M.B.N. was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.

It is an open problem to determine how dense the sets \mathcal{A} can be. In this paper we study the connection between this problem and the problem of finding dense $B_h[g]$ sequences. We recall that a set \mathcal{B} of nonnegative integers is called a $B_h[g]$ sequence if

$$r_{\mathcal{B},h}(n) \le g$$

for every nonnegative integer n. It is usual to write B_h to denote $B_h[1]$ sequences.

Luczak and Schoen proved that any B_h sequence satisfying an additional kind of Sidon property (see [6] for the definition of this property, which they call the S_h property) can be enlarged to obtain a sequence with any prescribed representation function f satisfying $\liminf_{|x|\to\infty} f(x) \ge 1$. In particular, since they prove that there exists a B_h sequence \mathcal{A} satisfying the S_h property with $\mathcal{A}(x) \gg x^{1/(2h-1)}$, they recover Nathanson's result.

In this paper we prove that any $B_h[g]$ sequence, without any additional property, can be modified slightly to have any prescribed representation function f of order h satisfying $\liminf_{|x|\to\infty} f(x) \ge g$. Our main theorem is the following.

Theorem 1.1. Let $f : \mathbb{Z} \to \mathbb{N}$ be any function such that $\liminf_{|n|\to\infty} f(n) \ge g$ and let \mathcal{B} be any $B_h[g]$ sequence. Then, for any decreasing function $\epsilon(x) \to 0$ as $x \to \infty$, there exists a sequence \mathcal{A} of integers such that

$$r_{\mathcal{A},h}(n) = f(n)$$
 for all $n \in \mathbb{Z}$ and $\mathcal{A}(x) \gg \mathcal{B}(x\epsilon(x))$.

Roughly speaking, theorem above says that the problem of finding dense sets of integers with prescribed representation functions with $\liminf_{|n|\to\infty} f(n) \ge g$ is "equivalent" to the classical problem of finding dense $B_h[g]$ sequences of positive integers.

It is a difficult problem to construct dense $B_h[g]$ sequences. A trivial counting argument gives $\mathcal{B}(x) \ll x^{1/h}$ for these sequences. On the other hand, the greedy algorithm shows that there exists a B_h sequence \mathcal{B} such that

$$\mathcal{B}(x) \gg x^{1/(2h-1)}$$

For B_2 sequences, also called Sidon sets, Ruzsa proved [9] that there exists a Sidon set \mathcal{B} such that

(3)
$$\mathcal{B}(x) \gg x^{\sqrt{2}-1+o(1)}.$$

This result and Theorem 1.1 give the following corollary.

Corollary 1. Let $f : \mathbb{Z} \to \mathbf{N}$ any function such that $\liminf_{|n|\to\infty} f(n) \ge 1$. Then there exists a sequence of integers \mathcal{A} such that

$$r_{\mathcal{A},2}(n) = f(n)$$
 for all $n \in \mathbb{Z}$ and $\mathcal{A}(x) \gg x^{\sqrt{2}-1+o(1)}$.

This result gives an affirmative answer to the third open problem in [1], which was also posed previously in [8]. Unfortunately, nothing better than (2) is known for B_h sequences for $h \ge 3$.

Erdős and Renyi [3] proved however that, for any $\epsilon > 0$, there exists a positive integer g and a $B_2[g]$ sequence \mathcal{B} such that $\mathcal{B}(x) \gg x^{1/2-\epsilon}$. They claimed that the same method could be extended to $B_h[g]$ sequences, but a serious problem with non-independent events appears when $h \geq 3$. As an application of a more general theory, Vu [11] overcame this problem. He proved that for any $\epsilon > 0$, there exist an integer $g = g(h, \epsilon)$ and a $B_h[g]$ sequence \mathcal{B} such that

$$\mathcal{B}(x) \gg x^{1/h-\epsilon}.$$

This result and Theorem 1.1 imply the next corollary

Corollary 2. Given $h \ge 2$, for any $\varepsilon > 0$, there exists $g = g(h, \varepsilon)$ such that, for any function $f : \mathbb{Z} \to \mathbf{N}$ satisfying $\liminf_{|n|\to\infty} f(n) \ge g$, there exists a sequence \mathcal{A} of integers such that

 $r_{\mathcal{A},h}(n) = f(n)$ for all $n \in \mathbb{Z}$ and $\mathcal{A}(x) \gg x^{\frac{1}{h} - \varepsilon}$.

The construction in [7] for the set \mathcal{A} satisfying the growth condition (14) was based on the greedy algorithm. In this paper we construct the set \mathcal{A} by adjoining a very sparse sequence $\mathcal{U} = \{u_k\}$ to a suitable $B_h[g]$ sequence \mathcal{B} . This idea was used in [2], but in a simpler way, to construct dense *perfect difference sets*, which are sets such that every nonzero integer has a unique representation as a difference of two elements of \mathcal{A} . The proof of the main theorem in [2] can be adapted easily to our problem in the simplest case h = 2.

Theorem 1.2. Let $f : \mathbb{Z} \to \mathbb{N}$ be a function such that $\liminf_{|n|\to\infty} f(n) \ge g$, and let \mathcal{B} be a $B_2[g]$ sequence. Then there exists a sequence of integers \mathcal{A} such that

 $r_{\mathcal{A},2}(n) = f(n)$ for all $n \in \mathbb{Z}$ and $\mathcal{A}(x) \gg \mathcal{B}(x/3)$.

We omit the proof because it is very close to the proof of the main theorem in [2]. Unfortunately, that proof cannot be adapted to the case $h \ge 3$. We need another definition of a "suitable" $B_h[g]$ set. In section §2 we shall show how to modify a $B_h[g]$ sequence \mathcal{B} so that it becomes "suitable." We do this by applying the "Inserting Zeros Transformation" to an arbitrary $B_h[g]$ set. This is the main ingredient in the proof of Theorem 1.1.

Chen [1] has proved that for any $\epsilon > 0$ there exists a unique representation basis \mathcal{A} (that is, a set \mathcal{A} with $r_{\mathcal{A},2}(k) = 1$ for all $k \in \mathbb{Z}$) such that $\limsup_{x\to\infty} \mathcal{A}(x)/x^{1/2-\epsilon} > 1$. J. Lee [5] has improved this result by proving that for any increasing function ω tending to infinity there exists a unique representation basis \mathcal{A} such that $\limsup_{x\to\infty} \mathcal{A}(x)\omega(x)/\sqrt{x} > 0$. Theorem 1.2 and the classical constructions of Erdős [10] and Krückeberg [4] of infinite Sidon sets \mathcal{B} such that $\limsup_{x\to\infty} \mathcal{B}(x)/\sqrt{x} > 0$ provide a unique representation basis \mathcal{A} such that $\limsup_{x\to\infty} \mathcal{A}(x)/\sqrt{x} > 0$. Indeed, we can easily adapt the proof of Theorem 1.3 in [2] to the case of the additive representation function r(n) (instead of the subtractive representation function $d(n) = \#\{n = a - a', a, a' \in \mathcal{A}\}$).

Theorem 1.3. There exists a unique representation basis \mathcal{A} such that

$$\limsup_{x \to \infty} \frac{\mathcal{A}(x)}{\sqrt{x}} \ge \frac{1}{\sqrt{2}}.$$

Again we omit the proof because it is very close to the proof of Theorem 1.3 in [2].

Theorem above answers affirmatively the first open problem in [1]. Note also that if \mathcal{A} is an infinite Sidon set of integers, then the set

$$\mathcal{A}' = \{4a : a \ge 0\} \cup \{-4a + 1 : a < 0\}$$

is also a Sidon set and, in this case, $\liminf |\mathcal{A} \cap (-x, x)|/\sqrt{x} = \liminf \mathcal{A}'(4x)/\sqrt{x}$. A well known result of Erdős states that $\liminf \mathcal{B}(x)/\sqrt{x} = 0$ for any Sidon set \mathcal{B} . Then the above limit is zero, so it answers negatively the second open problem in [1].

It is easy to prove that for any function ω tending to infinity there exists a B_h sequence such that $\limsup_{x\to\infty} \mathcal{B}(x)\omega(x)/x^{1/h} > 1$. We can construct the set \mathcal{B} as follows: Let x_1, \ldots, x_k, \ldots be a sequence of positive integers such that $\omega(x_k) > (hx_{k-1})^{1/h}$ and consider, for each k, a B_h sequence $\mathcal{B}_k \subset [1, x_k/(hx_{k-1})]$ with $|\mathcal{B}_k| \gg (x_k/(hx_{k-1}))^{1/h}$. The set $\mathcal{B} = \bigcup_k (hx_{k-1}) * \mathcal{B}_k$ satisfies the conditions, where we use the notation $t * \mathcal{A} =$ $\{ta, a \in \mathcal{A}\}.$

The construction above and Theorem 1.1 yield the following Corollary, which extends the main theorem in [1] in several ways.

Corollary 3. Let $f : \mathbb{Z} \to \mathbf{N}$ any function such that $\liminf_{|n|\to\infty} f(n) \ge 1$. For any increasing function ω tending to infinity there exists a set \mathcal{A} such that $r_{\mathcal{A},h}(n) = f(n)$ for all integers n, and

$$\limsup_{x \to \infty} \mathcal{A}(x)\omega(x)/x^{1/h} > 0.$$

2. The Inserting Zeros Transformation

Consider the binary expansion of the elements of a set \mathcal{B} of positive integers. We will modify these integers by inserting strings of zeros at fixed places. We will see that this transformation of the set \mathcal{B} preserves certain additive properties.

In this paper we denote by γ any strictly increasing function $\gamma : \mathbb{N}_0 \to \mathbb{N}_0$ with $\gamma(0) = 0$. For every positive integer r, we define the "Inserting Zeros Transformation" T_{γ}^r by

(4)
$$T_{\gamma}^{r}\left(\sum_{i\geq 0}\varepsilon_{i}2^{i}\right) = \sum_{k\geq 0}2^{2rk}\sum_{i=\gamma(k)}^{\gamma(k+1)-1}\varepsilon_{i}2^{i}.$$

In other words, if $\varepsilon_0 \varepsilon_1 \varepsilon_2 \dots$ is the binary expansion of b, then

$$T_{\gamma}^{r}(b) = \varepsilon_{0} \cdots \varepsilon_{\gamma(1)-1} \underbrace{0 \cdots 0}_{2r} \varepsilon_{\gamma(1)} \cdots \varepsilon_{\gamma(2)-1} \underbrace{0 \cdots 0}_{2r} \varepsilon_{\gamma(2)} \cdots \varepsilon_{\gamma(k)-1} \underbrace{0 \cdots 0}_{2r} \varepsilon_{\gamma(k)} \cdots$$

Note that if b < b', then $T_{\gamma}^{r}(b) < T_{\gamma}^{r}(b')$. We define the set

(5)
$$T_{\gamma}^{r}(\mathcal{B}) = \{T_{\gamma}^{r}(b) : b \in \mathcal{B}\}.$$

The next proposition proves that the function T_{γ}^r preserves some Sidon properties.

Proposition 2.1. Let $2r > \log_2 h$. If $b_1, \ldots, b_h, b'_1, \ldots, b'_h$ are positive integers such that

$$T_{\gamma}^{r}(b_{1}) + \dots + T_{\gamma}^{r}(b_{h}) = T_{\gamma}^{r}(b_{1}') + \dots + T_{\gamma}^{r}(b_{h}'),$$

then

$$b_1 + \dots + b_h = b'_1 + \dots + b'_h.$$

In particular, if \mathcal{B} is a $B_h[g]$ set and $2r > \log_2 h$, then $T^r_{\gamma}(\mathcal{B})$ is also a $B_h[g]$ set.

Proof. We write

(6)
$$t_k = \sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_i(b_1) 2^i + \dots + \sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_i(b_k) 2^i.$$

For any $k \ge 1$ we define the integer

(7)
$$m_k = 2^{2rk + \gamma(k)}.$$

It follows from (4), (6) and (7) that

$$T_{\gamma}^{r}(b_{1}) + \dots + T_{\gamma}^{r}(b_{h}) \equiv \sum_{j=0}^{k-1} 2^{2rj} t_{j} \pmod{m_{k}}.$$

Since $T_{\gamma}^r(b_1) + \dots + T_{\gamma}^r(b_h) = T_{\gamma}^r(b'_1) + \dots + T_{\gamma}^r(b'_h)$, we have

$$\sum_{j=0}^{k-1} 2^{2rj} t_j \equiv \sum_{j=0}^{k-1} 2^{2rj} t'_j \pmod{m_k}.$$

Notice that

$$0 \le \sum_{j=0}^{k-1} 2^{2rj} t_j \le 2^{2r(k-1)} \sum_{j=0}^{k-1} t_j \le 2^{2r(k-1)} h \sum_{i=0}^{\gamma(k)-1} 2^i < 2^{2r(k-1)} 2^{2r} 2^{\gamma(k)} = m_k,$$

and the same inequality works for $\sum_{j=0}^{k-1} 2^{rj} t'_j$. Then

$$\sum_{j=0}^{k-1} 2^{2rj} t_j = \sum_{j=0}^{k-1} 2^{2rj} t'_j$$

It follows that $t_k = t'_k$ for all $k \ge 0$, and so

$$b_1 + \dots + b_h = \sum_{k \ge 0} t_k = \sum_{k \ge 0} t'_k = b'_1 + \dots + b'_h.$$

This completes the proof.

Definition 2.2. For all integers $m \ge 2$ and x, let

$$||x||_m = \min\{|y|, x \equiv y \pmod{m}\}.$$

Note that $||x_1+x_2||_m \le ||x_1||_m + ||x_2||_m$ for all integers x_1 and x_2 . Also, if $||x||_m \ne ||x'||_m$ for some m, then $x \ne x'$ (mod m) and so $x \ne x'$.

Proposition 2.3. For $k \ge 1$ and for any positive integer b

 $||T_{\gamma}^{r}(b)||_{m_{k}} < m_{k}2^{-2r},$

where m_k is defined in (7).

Proof. Let $b = \varepsilon_0 \varepsilon_1 \varepsilon_2 \dots$ be the binary expansion of b. Then

$$T_{\gamma}^{r}(b) \equiv \sum_{j=0}^{k-1} 2^{2rj} \sum_{i=\gamma(j)}^{\gamma(j+1)-1} \varepsilon_{i} 2^{i} \pmod{m_{k}}$$

and

$$0 \le \sum_{j=0}^{k-1} 2^{2rj} \sum_{i=\gamma(j)}^{\gamma(j+1)-1} \varepsilon_i 2^i \le \sum_{l=0}^{2r(k-1)+\gamma(k)-1} 2^l < m_k 2^{-2r}.$$

This completes the proof.

3. Proof of Theorem 1.1

3.1. Two auxiliary sequences. Consider the sequence $\{z_j\}_{j=1}^{\infty}$ defined by

(8)
$$z_j = j - [\sqrt{j}]([\sqrt{j}] + 1).$$

For every positive integer j there is a unique positive integer s such that $s^2 \leq j < (s+1)^2$. Then $j = s^2 + s + i$ for some $i \in [-s, s]$ and $z_j = i$. It follows that for every integer i there are infinitely many positive integers j such that $z_j = i$. Moreover, $|z_j| \leq s \leq \sqrt{j}$ for all $j \geq 1$.

Let $f : \mathbb{Z} \to \mathbf{N}$ any function such that $\liminf_{|n|\to\infty} f(n) \ge g$. Let n_0 be the least positive integer such that $f(n) \ge g$ for all $|n| \ge n_0$. Choose an integer $r > 1 + \log_2(h^2 + n_0)$. Then

(9)
$$h^2 < 2^{r-1}$$
 and $n_0 < 2^{r-1}$.

Let $\gamma : \mathbb{N}_0 \to \mathbb{N}_0$ be a strictly increasing function such that $\gamma(0) = 0$. We consider the sequence $\mathcal{U} = \{u_i\}_{i=1}^{\infty}$ defined by

(10)
$$\begin{cases} u_{2k-1} = -m_k 2^{-r}, \\ u_{2k} = (h-1)m_k 2^{-r} + z_k \end{cases}$$

where $m_k = 2^{2rk + \gamma(k)}$. We write

(11)
$$\mathcal{U}_k = \{u_{2k-1}, u_{2k}\}$$
 and $\mathcal{U}_{< k} = \bigcup_{s < k} \mathcal{U}_s.$

Note that for all $j \leq k$ we have

(12)
$$|z_j| \le \sqrt{k} < 2^k \le 2^{\gamma(k)} < 2^{2r(k-1)+\gamma(k)} = m_k 2^{-2r}.$$

3.2. The recursive construction. For any $B_h[g]$ -sequence \mathcal{B} we consider the set $T^r_{\gamma}(\mathcal{B})$ defined in (5). Let $f : \mathbb{Z} \to \mathbb{N}$ be a function such that $f(n) \ge g$ for $|n| \ge n_0$. We construct an increasing sequence $\{\mathcal{A}_k\}_{k=0}^{\infty}$ of sets of integers as follows:

(13)
$$\mathcal{A}_0 = \{ a \in T^r_\gamma(\mathcal{B}) : a \ge n_0 \}$$

and, for $k \geq 1$,

$$\mathcal{A}_{k} = \begin{cases} \mathcal{A}_{k-1} \cup \mathcal{U}_{k} & \text{if } r_{\mathcal{A}_{k-1},h}(z_{k}) < f(z_{k}) \\ \mathcal{A}_{k-1} & \text{otherwise} \end{cases}$$

where z_k and \mathcal{U}_k are defined in (8) and (11).

We shall prove that the set

(14)
$$\mathcal{A} = \bigcup_{k=0}^{\infty} \mathcal{A}_k$$

satisfies $r_{\mathcal{A},h}(n) = f(n)$ for all integers n as consequence of propositions 3.1 and 3.2.

Proposition 3.1. The sequence \mathcal{A} defined in (14) satisfies $r_{\mathcal{A},h}(n) \ge f(n)$ for all integers n.

Proof. Since

it

follows that if
$$r_{\mathcal{A}_{k-1},h}(z_k) < f(z_k)$$
, then $\mathcal{A}_k = \mathcal{A}_{k-1} \cup \mathcal{U}_k$ and

$$r_{\mathcal{A}_k,h}(z_k) \ge r_{\mathcal{A}_{k-1},h}(z_k) + 1.$$

Since the sequence (z_k) takes all the integers infinitely many times, then $r_{\mathcal{A}_k,h}(n) \ge f(n)$ for some k (if $f(n) < \infty$) or $\lim_{k \to \infty} r_{\mathcal{A}_k,h}(n) = \infty$ (if $f(n) = \infty$).

Lemmas 3.1, 3.2 and 3.3 will allow us to give a clean proof of proposition 3.2.

Lemma 3.1. Let $k \ge 1$. For nonnegative integers s and t with $s + t \le h$, let

$$\mathcal{A}_{k}^{(s,t)} = (h - s - t)\mathcal{A}_{k-1} + su_{2k-1} + tu_{2k}$$

The sets $\mathcal{A}_k^{(s,t)}$ are pairwise disjoint, except possibly the sets $\mathcal{A}_k^{(0,0)}$ and $\mathcal{A}_k^{(h-1,1)}$.

Proof. If $n \in \mathcal{A}_k^{(s,t)}$ then

$$n = a_1 + \dots + a_{h-s-t} + su_{2k-1} + tu_{2k}$$

= $a_1 + \dots + a_{h-s-t} + (t(h-1)-s)m_k 2^{-r} + tz_k$

with $a_1, \ldots, a_{h-s-t} \in \mathcal{A}_{k-1} \subset \mathcal{A}_0 \cup \mathcal{U}_{< k}$.

If $a_i \in \mathcal{A}_0$, then $||a_i||_{m_k} \leq m_k 2^{-2r}$ by Proposition 2.3. If $a_i \in \mathcal{U}_{\langle k}$ we use (10) and (12) to obtain

$$||a_i||_{m_k} \le |a_i| \le (h-1)m_{k-1}2^{-r} + m_{k-1}2^{-2r} < hm_k 2^{-2r}.$$

We use again (12) to obtain

(15)
$$\begin{aligned} \|a_1 + \dots + a_{h-s-t} + tz_k\|_{m_k} &\leq \|a_1\|_{m_k} + \dots + \|a_{h-s-t}\|_{m_k} + \|tz_k\|_{m_k} \\ &\leq (h-s-t)m_k h 2^{-2r} + tm_k 2^{-2r} \\ &\leq h^2 m_k 2^{-2r}. \end{aligned}$$

Now suppose that $n \in \mathcal{A}_k^{(s',t')}$ for some $(s',t') \neq (s,t)$. If $\{(s,t), (s',t')\} \neq \{(0,0), (h-1,1)\}$, then $t(h-1) - s \neq t'(h-1) - s'$ and

$$\begin{split} m_k 2^{-r} &\leq \| \left((t(h-1)-s) - (t'(h-1)-s') \right) m_k 2^{-r} \|_{m_k} \\ &= \| (t(h-1)-s) m_k 2^{-r} - (t'(h-1)-s') m_k 2^{-r} \|_{m_k} \\ &= \| \left(n - (t(h-1)-s) m_k 2^{-r} \right) - \left(n - (t'(h-1)-s') m_k 2^{-r} \right) \|_{m_k} \\ &\leq \| a_1 + \dots + a_{h-s-t} + tz_k \|_{m_k} + \| a_1' + \dots + a_{h-s'-t'}' + t'z_k \|_{m_k} \\ &\leq 2h^2 m_k 2^{-2r}. \end{split}$$

It follows that $h^2 \ge 2^{r-1}$, which contradicts (9). This completes the proof.

Lemma 3.2. If $n \in \mathcal{A}_{k}^{(s,t)}$ for some $k \ge 1$ and $(s,t) \notin \{(0,0), (h-1,1)\}$, then $|n| > n_0$. *Proof.* If $n \in \mathcal{A}_{k}^{(s,t)}$, then

$$n = a_1 + \dots + a_{h-s-t} + (t(h-1) - s)m_k 2^{-r} + tz_k$$

and

$$\begin{aligned} |n| &\geq \|n\|_{m_k} \\ &= \|a_1 + \dots + a_{h-s-t} + tz_k + ((h-1)t-s)m_k 2^{-r}\|_{m_k} \\ &\geq \|((h-1)t-s)m_k 2^{-r}\|_{m_k} - \|a_1 + \dots + a_{h-s-t} + tz_k\|_{m_k} \\ &\geq |((h-1)t-s)m_k 2^{-r}| - h^2 m_k 2^{-2r} \\ &\geq m_k 2^{-r} - h^2 m_k 2^{-2r} \geq m_k 2^{-r-1} \geq 2^{2r} 2^{-r-1} \\ &\geq 2^{r-1} > n_0, \end{aligned}$$

We have used that if $|((h-1)t-s)m_k2^{-r}| < m_k/2$, then

$$\|((h-1)t-s)m_k2^{-r}\|_{m_k} = |((h-1)t-s)m_k2^{-r}| \ge m_k2^{-r}.$$

Also we have used $(h-1)t - s \neq 0$ and the inequalities (9) and (15) in the last inequalities.

Lemma 3.3. For any $k \ge 0$, for any h' < h and for any integer m we have that

$$r_{\mathcal{A}_k,h'}(m) \le g$$

Proof. By induction on k. Proposition 2.1 implies that $T^r_{\gamma}(\mathcal{B})$ and consequently \mathcal{A}_0 are $B_h[g]$ -sequences. In particular, \mathcal{A}_0 is a $B_{h'}[g]$ sequence. Then $r_{\mathcal{A}_0,h'}(m) \leq g$ for any integer m.

Suppose that it is true that for any h' < h, and for any integer m we have that $r_{\mathcal{A}_{k-1},h'}(m) \leq g$.

Consider $m \in h' \mathcal{A}_k$.

- Suppose $m \notin (h'-s-t)\mathcal{A}_{k-1} + su_{2k-1} + tu_{2k}$ for any $(s,t) \neq (0,0)$. Then $r_{\mathcal{A}_k,h'}(m) = r_{\mathcal{A}_{k-1},h'}(m) \leq g$ by the induction hypothesis.
- Suppose that $m \in (h' s t)\mathcal{A}_{k-1} + su_{2k-1} + tu_{2k}$ for some $(s,t) \neq (0,0)$. Consider an element $a \in \mathcal{A}_0$. Then

$$m + (h - h')a \in \mathcal{A}_k^{(s,t)} \in (h - s - t)\mathcal{A}_{k-1} + su_{2k-1} + tu_{2k}.$$

Since $(s,t) \neq (h-1,1)$ (because h' < h) we can apply lemma 3.1 and we have

$$r_{\mathcal{A}_k,h'}(m) \le r_{\mathcal{A}_k,h}(m+(h-h')a) = r_{\mathcal{A}_{k-1},h-s-t}(m+(h-h')a - su_{2k-1} - tu_{2k}).$$

We can the apply the induction hypothesis because h - s - t < h.

Proposition 3.2. The sequence \mathcal{A} defined in (14) satisfies $r_{\mathcal{A},h}(n) \leq f(n)$ for all integers n.

Proof. Next we show that, for every integer k, the sequence \mathcal{A}_k satisfies $r_{\mathcal{A}_k,h}(n) \leq f(n)$ for all n. The proof is by induction on k.

Let k = 0. Since \mathcal{A}_0 is a $B_h[g]$ -sequences, we have $r_{\mathcal{A}_0,h}(n) \leq g \leq f(n)$ for $n \geq n_0$. If $n < n_0$, then $r_{\mathcal{A}_0,h}(n) = 0 \leq f(n)$.

Now, suppose that it is true for k-1. In particular $r_{\mathcal{A}_{k-1},h}(z_k) \leq f(z_k)$. If $r_{\mathcal{A}_{k-1},h}(z_k) = f(z_k)$ there is nothing to prove because in that case $\mathcal{A}_k = \mathcal{A}_{k-1}$. But if $r_{\mathcal{A}_{k-1},h}(z_k) \leq f(z_k) - 1$, then $\mathcal{A}_k = \mathcal{A}_{k-1} \cup \mathcal{U}_k = \mathcal{A}_{k-1} \cup \{u_{2k-1}\} \cup \{u_{2k}\}$. We will assume that until the end of the proof.

If $n \notin h\mathcal{A}_k$ then $r_{\mathcal{A}_k,h}(n) = 0 \leq f(n)$.

If $n \in h\mathcal{A}_k$, since $\mathcal{A}_k = \mathcal{A}_{k-1} \cap \mathcal{U}_k$ we can write

$$h\mathcal{A}_{k} = \bigcup_{\substack{s,t=0\\s+t\leq h}}^{h} \left((h-s-t)\mathcal{A}_{k-1} + su_{2k-1} + tu_{2k} \right).$$

Then

(16)
$$n = a_1 + \dots + a_{h-s-t} + su_{2k-1} + tu_{2k}$$

for some s, t, satisfying $0 \le s, t$, $s + t \le h$ and for some $a_1, \ldots, a_{h-s-t} \in \mathcal{A}_{k-1}$.

For short we write $r_{s,t}(n)$ for the number of solutions of (16).

- If $n \in (h s t)\mathcal{A}_{k-1} + su_{2k-1} + tu_{2k}$ for some $(s, t) \neq (0, 0), (s, t) \neq (h 1, 1)$ then, due to lemma 3.1, we have that $r_{\mathcal{A}_k, h}(n) = r_{s,t}(n)$.
 - For $0 \le n \le n_0$ we have that $r_{s,t}(n) = 0 \le f(n)$ (due to lemma 3.2).
 - For $n > n_0$ we apply lemma 3.3 in the first inequality below with h' = h s tand $m = n - su_{2k-1} - tu_{2k}$,

$$r_{s,t}(n) = r_{\mathcal{A}_{k-1},h-s-t}(n - su_{2k-1} - tu_{2k}) \le g \le f(n)$$

• If $n \notin (h-s-t)\mathcal{A}_{k-1} + su_{2k-1} + tu_{2k}$ for any $(s,t) \neq (0,0)$, $(s,t) \neq (h-1,1)$, then $r_{\mathcal{A}_k,h}(n) = r_{0,0}(n) + r_{h-1,1}(n)$. Notice that $r_{0,0}(n) = r_{\mathcal{A}_{k-1},h}(n)$ and that $r_{h-1,1}(n) = 1$ if $n = z_k$ and $r_{h-1,1}(n) = 0$ otherwise.

- If
$$n \neq z_k$$
, then $r_{\mathcal{A}_k,h}(n) = r_{\mathcal{A}_{k-1},h}(n) \leq f(n)$ by the induction hypothesis.
- If $n = z_k$, then $r_{\mathcal{A}_k,h}(n) = r_{\mathcal{A}_{k-1},h}(z_k) + r_{h-1,1}(z_k) \leq (f(z_k) - 1) + 1 = f(n)$.

3.3. The density of \mathcal{A} . Recall that $\gamma : \mathbb{N}_0 \to \mathbb{N}_0$ is a strictly increasing function with $\gamma(0) = 0$. Let $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}$. We extend γ to a strictly increasing function $\gamma : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$. (For example, define $\gamma(x) = \gamma(k+1)(x-k) + \gamma(k)(k+1-x)$ for $k \leq x \leq k+1$.)

We have

$$\mathcal{A}(x) \ge \mathcal{A}_0(x) \ge T_{\gamma}^r(\mathcal{B})(x) - n_0.$$

Thus, to find a lower bound for $\mathcal{A}(x)$ it suffices to find a lower bound for the density of $T^r_{\gamma}(\mathcal{B})$.

Lemma 3.4. $T_{\gamma}^{r}(\mathcal{B})(x) > \mathcal{B}(x2^{-2r\gamma^{-1}(\log_{2} x)}).$

Proof. Let b be a positive integer such that

$$b \le x 2^{-2r\gamma^{-1}(\log_2 x)}.$$

Let ℓ be such that $2^{\gamma(\ell)} \leq b < 2^{\gamma(\ell+1)}$. Then we can write

(17)
$$b = \sum_{k=0}^{\ell} \sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_i 2^i.$$

It follows from the definition (4) of the Zeros Inserting Transformation that

$$T_{\gamma}^{r}(b) = \sum_{k=0}^{\ell} 2^{2rk} \sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_{i} 2^{i}$$

$$\leq 2^{2r\ell} b$$

$$\leq 2^{2r\gamma^{-1}(\log_{2} b)} b$$

$$\leq 2^{2r(\gamma^{-1}(\log_{2} b) - \gamma^{-1}(\log_{2} x))} x$$

$$\leq x.$$

Recall that ϵ is a decreasing positive function defined on $[1, \infty)$ such that $\lim_{x \to \infty} \epsilon(x) = 0$. We complete the proof of Theorem 1 by choosing a function γ that satisfies the inequality

$$2^{-2r\gamma^{-1}(\log_2 x)} \ge \epsilon(x).$$

It suffices to take $\gamma(x) > \log_2(\epsilon^{-1}(2^{-2rx}))$.

References

- [1] Y. G. Chen, A problem on unique representation bases, European J. Combinatorics 28 (2007) 33–35.
- [2] J. Cilleruelo and M. B. Nathanson, Perfect difference sets from Sidon sets, Combinatorica, to appear.
- [3] P. Erdős and A. Renyi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960) 83-110.
- [4] F. Krückeberg, 'B₂-Folgen und verwandte Zahlenfolgen', J. Reine Angew. Math. 206 (1961), 53-60.
- [5] J. Lee, Infinitely often dense bases of integers with a prescribed representation function, arXiv:math/0702279
- [6] T. Luczak and T. Schoen, A note on unique representation bases for the integers, Funct. Approx. Comment. Math. 32 (2004), 67–70.
- M. B. Nathanson, The inverse problem for representation functions of additive bases, Number Theory: New York Seminar 2003, (Springer, 2004), pages 253–262.
- [8] M. B. Nathanson, Unique representation bases for the integers, Acta Arith. 108 (2003), 1-8.
- [9] I. Ruzsa, An infinite Sidon sequence, J. Number Theory 68 (1998), 63–71.
- [10] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe', J. reine angew. Math. 194 (1955), 40–65, 111–140.
- [11] V. Vu, On a refinement of Waring's problem, Duke Math. J. 105 (1) (2000), 107–134.

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA DE MADRID, 28049 MADRID, SPAIN *E-mail address*: franciscojavier.cilleruelo@uam.es

Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468 *E-mail address*: melvyn.nathanson@lehman.cuny.edu