DENSE SETS OF INTEGERS WITH PRESCRIBED REPRESENTATION FUNCTIONS

JAVIER CILLERUELO AND MELVYN B. NATHANSON

Abstract

Let \mathcal{A} be a set of integers and let $h \geq 2$. For every integer n, let $r_{\mathcal{A}, h}(n)$ denote the number of representations of n in the form $n=a_{1}+\cdots+a_{h}$, where $a_{i} \in \mathcal{A}$ for $1 \leq i \leq h$, and $a_{1} \leq \cdots \leq a_{h}$. The function $r_{\mathcal{A}, h}: \mathbb{Z} \rightarrow \mathbf{N}$, where $\mathbf{N}=\mathbb{N} \cup\{0, \infty\}$, is the representation function of order h for \mathcal{A}.

We prove that every function $f: \mathbb{Z} \rightarrow \mathbf{N}$ satisfying $\liminf _{|n| \rightarrow \infty} f(n) \geq g$ is the representation function of order h for a sequence \mathcal{A} of integers, and that \mathcal{A} can be constructed so that it increases "almost" as slowly as any given $B_{h}[g]$ sequence. In particular, given $h \geq 2$, for every $\varepsilon>0$ and for any function $f: \mathbb{Z} \rightarrow \mathbf{N}$ satisfying $\liminf _{|n| \rightarrow \infty} f(n) \geq g=g(h, \epsilon)$ there exists a sequence \mathcal{A} satisfying $r_{\mathcal{A}, h}=f$ and $\mathcal{A}(x) \gg x^{(1 / h)-\varepsilon}$.

Roughly speaking we prove that the problem of finding a dense set of integers with prescribed representation function f of order h with $\liminf _{|n| \rightarrow \infty} f(n) \geq g$ is "equivalent" to the classical problem of finding a dense $B_{h}[g]$ sequences of positive integers.

1. Introduction

Let \mathcal{A} be a set of integers and let $h \geq 2$. For every integer n, let $r_{\mathcal{A}, h}(n)$ denote the number of representations of n in the form

$$
n=a_{1}+\cdots+a_{h}
$$

where $a_{1} \leq \cdots \leq a_{h}$ and $a_{i} \in \mathcal{A}$ for $1 \leq i \leq h$. The function $r_{\mathcal{A}, h}: \mathbb{Z} \rightarrow \mathbf{N}$ is the representation function of order h for \mathcal{A}, where $\mathbf{N}=\mathbb{N} \cup\{0, \infty\}$.

Nathanson proved [7] that any function $f: \mathbb{Z} \rightarrow \mathbf{N}$ satisfying $\liminf _{|n| \rightarrow \infty} f(n) \geq 1$ is the representation function of order h of a set of integers \mathcal{A} such that

$$
\begin{equation*}
\mathcal{A}(x) \gg x^{1 /(2 h-1)} \tag{1}
\end{equation*}
$$

where $\mathcal{A}(x)$ counts the number of positive elements $a \in \mathcal{A}$ no greater than x and $f(x) \gg$ $g(x)$ means that there exists a constant $C>0$ such that $f(x) \geq C g(x)$ for x large enough.

[^0]It is an open problem to determine how dense the sets \mathcal{A} can be. In this paper we study the connection between this problem and the problem of finding dense $B_{h}[g]$ sequences. We recall that a set \mathcal{B} of nonnegative integers is called a $B_{h}[g]$ sequence if

$$
r_{\mathcal{B}, h}(n) \leq g
$$

for every nonnegative integer n. It is usual to write B_{h} to denote $B_{h}[1]$ sequences.
Luczak and Schoen proved that any B_{h} sequence satisfying an additional kind of Sidon property (see [6] for the definition of this property, which they call the S_{h} property) can be enlarged to obtain a sequence with any prescribed representation function f satisfying $\liminf _{|x| \rightarrow \infty} f(x) \geq 1$. In particular, since they prove that there exists a B_{h} sequence \mathcal{A} satisfying the S_{h} property with $\mathcal{A}(x) \gg x^{1 /(2 h-1)}$, they recover Nathanson's result.

In this paper we prove that any $B_{h}[g]$ sequence, without any additional property, can be modified slightly to have any prescribed representation function f of order h satisfying $\lim \inf _{|x| \rightarrow \infty} f(x) \geq g$. Our main theorem is the following.

Theorem 1.1. Let $f: \mathbb{Z} \rightarrow \mathbf{N}$ be any function such that $\liminf _{|n| \rightarrow \infty} f(n) \geq g$ and let \mathcal{B} be any $B_{h}[g]$ sequence. Then, for any decreasing function $\epsilon(x) \rightarrow 0$ as $x \rightarrow \infty$, there exists a sequence \mathcal{A} of integers such that

$$
r_{\mathcal{A}, h}(n)=f(n) \quad \text { for all } \quad n \in \mathbb{Z} \quad \text { and } \quad \mathcal{A}(x) \gg \mathcal{B}(x \epsilon(x))
$$

Roughly speaking, theorem above says that the problem of finding dense sets of integers with prescribed representation functions with $\lim \inf _{|n| \rightarrow \infty} f(n) \geq g$ is "equivalent" to the classical problem of finding dense $B_{h}[g]$ sequences of positive integers.

It is a difficult problem to construct dense $B_{h}[g]$ sequences. A trivial counting argument gives $\mathcal{B}(x) \ll x^{1 / h}$ for these sequences. On the other hand, the greedy algorithm shows that there exists a B_{h} sequence \mathcal{B} such that

$$
\begin{equation*}
\mathcal{B}(x) \gg x^{1 /(2 h-1)} \tag{2}
\end{equation*}
$$

For B_{2} sequences, also called Sidon sets, Ruzsa proved [9] that there exists a Sidon set \mathcal{B} such that

$$
\begin{equation*}
\mathcal{B}(x) \gg x^{\sqrt{2}-1+o(1)} \tag{3}
\end{equation*}
$$

This result and Theorem 1.1 give the following corollary.
Corollary 1. Let $f: \mathbb{Z} \rightarrow \mathbf{N}$ any function such that $\liminf _{|n| \rightarrow \infty} f(n) \geq 1$. Then there exists a sequence of integers \mathcal{A} such that

$$
r_{\mathcal{A}, 2}(n)=f(n) \quad \text { for all } \quad n \in \mathbb{Z} \quad \text { and } \quad \mathcal{A}(x) \gg x^{\sqrt{2}-1+o(1)} .
$$

This result gives an affirmative answer to the third open problem in [1], which was also posed previously in [8]. Unfortunately, nothing better than (2) is known for B_{h} sequences for $h \geq 3$.

Erdős and Renyi [3] proved however that, for any $\epsilon>0$, there exists a positive integer g and a $B_{2}[g]$ sequence \mathcal{B} such that $\mathcal{B}(x) \gg x^{1 / 2-\epsilon}$. They claimed that the same method could be extended to $B_{h}[g]$ sequences, but a serious problem with non-independent events appears when $h \geq 3$. As an application of a more general theory, Vu [11] overcame this problem. He proved that for any $\epsilon>0$, there exist an integer $g=g(h, \epsilon)$ and a $B_{h}[g]$ sequence \mathcal{B} such that

$$
\mathcal{B}(x) \gg x^{1 / h-\epsilon} .
$$

This result and Theorem 1.1 imply the next corollary
Corollary 2. Given $h \geq 2$, for any $\varepsilon>0$, there exists $g=g(h, \varepsilon)$ such that, for any function $f: \mathbb{Z} \rightarrow \mathbf{N}$ satisfying $\lim _{\inf }^{|n| \rightarrow \infty} \mid ~ f(n) \geq g$, there exists a sequence \mathcal{A} of integers such that

$$
r_{\mathcal{A}, h}(n)=f(n) \quad \text { for all } \quad n \in \mathbb{Z} \quad \text { and } \quad \mathcal{A}(x) \gg x^{\frac{1}{h}-\varepsilon} .
$$

The construction in [7] for the set \mathcal{A} satisfying the growth condition (14) was based on the greedy algorithm. In this paper we construct the set \mathcal{A} by adjoining a very sparse sequence $\mathcal{U}=\left\{u_{k}\right\}$ to a suitable $B_{h}[g]$ sequence \mathcal{B}. This idea was used in [2], but in a simpler way, to construct dense perfect difference sets, which are sets such that every nonzero integer has a unique representation as a difference of two elements of \mathcal{A}. The proof of the main theorem in [2] can be adapted easily to our problem in the simplest case $h=2$.

Theorem 1.2. Let $f: \mathbb{Z} \rightarrow \mathbf{N}$ be a function such that $\liminf _{|n| \rightarrow \infty} f(n) \geq g$, and let \mathcal{B} be a $B_{2}[g]$ sequence. Then there exists a sequence of integers \mathcal{A} such that

$$
r_{\mathcal{A}, 2}(n)=f(n) \quad \text { for all } \quad n \in \mathbb{Z} \quad \text { and } \quad \mathcal{A}(x) \gg \mathcal{B}(x / 3)
$$

We omit the proof because it is very close to the proof of the main theorem in [2]. Unfortunately, that proof cannot be adapted to the case $h \geq 3$. We need another definition of a "suitable" $B_{h}[g]$ set. In section $\S 2$ we shall show how to modify a $B_{h}[g]$ sequence \mathcal{B} so that it becomes "suitable." We do this by applying the "Inserting Zeros Transformation" to an arbitrary $B_{h}[g]$ set. This is the main ingredient in the proof of Theorem 1.1.

Chen [1] has proved that for any $\epsilon>0$ there exists a unique representation basis \mathcal{A} (that is, a set \mathcal{A} with $r_{\mathcal{A}, 2}(k)=1$ for all $k \in \mathbb{Z}$) such that $\lim \sup _{x \rightarrow \infty} \mathcal{A}(x) / x^{1 / 2-\epsilon}>1$. J. Lee [5] has improved this result by proving that for any increasing function ω tending to infinity there exists a unique representation basis \mathcal{A} such that $\lim \sup _{x \rightarrow \infty} \mathcal{A}(x) \omega(x) / \sqrt{x}>0$.

Theorem 1.2 and the classical constructions of Erdős [10] and Krückeberg [4] of infinite Sidon sets \mathcal{B} such that $\lim _{\sup _{x \rightarrow \infty} \mathcal{B}(x) / \sqrt{x}>0 \text { provide a unique representation basis } \mathcal{A}, ~(x)}$ such that $\lim \sup _{x \rightarrow \infty} \mathcal{A}(x) / \sqrt{x}>0$. Indeed, we can easily adapt the proof of Theorem 1.3 in [2] to the case of the additive representation function $r(n)$ (instead of the subtractive representation function $\left.d(n)=\#\left\{n=a-a^{\prime}, a, a^{\prime} \in \mathcal{A}\right\}\right)$.

Theorem 1.3. There exists a unique representation basis \mathcal{A} such that

$$
\limsup _{x \rightarrow \infty} \frac{\mathcal{A}(x)}{\sqrt{x}} \geq \frac{1}{\sqrt{2}} .
$$

Again we omit the proof because it is very close to the proof of Theorem 1.3 in [2]. Theorem above answers affirmatively the first open problem in [1]. Note also that if \mathcal{A} is an infinite Sidon set of integers, then the set

$$
\mathcal{A}^{\prime}=\{4 a: a \geq 0\} \cup\{-4 a+1: a<0\}
$$

is also a Sidon set and, in this case, $\lim \inf |\mathcal{A} \cap(-x, x)| / \sqrt{x}=\lim \inf \mathcal{A}^{\prime}(4 x) / \sqrt{x}$. A well known result of Erdős states that $\lim \inf \mathcal{B}(x) / \sqrt{x}=0$ for any Sidon set \mathcal{B}. Then the above limit is zero, so it answers negatively the second open problem in [1].

It is easy to prove that for any function ω tending to infinity there exists a B_{h} sequence such that $\lim \sup _{x \rightarrow \infty} \mathcal{B}(x) \omega(x) / x^{1 / h}>1$. We can construct the set \mathcal{B} as follows: Let $x_{1}, \ldots, x_{k}, \ldots$ be a sequence of positive integers such that $\omega\left(x_{k}\right)>\left(h x_{k-1}\right)^{1 / h}$ and consider, for each k, a B_{h} sequence $\mathcal{B}_{k} \subset\left[1, x_{k} /\left(h x_{k-1}\right)\right]$ with $\left|\mathcal{B}_{k}\right| \gg\left(x_{k} /\left(h x_{k-1}\right)\right)^{1 / h}$. The set $\mathcal{B}=\cup_{k}\left(h x_{k-1}\right) * \mathcal{B}_{k}$ satisfies the conditions, where we use the notation $t * \mathcal{A}=$ $\{t a, a \in \mathcal{A}\}$.

The construction above and Theorem 1.1 yield the following Corollary, which extends the main theorem in [1] in several ways.

Corollary 3. Let $f: \mathbb{Z} \rightarrow \mathbf{N}$ any function such that $\liminf _{|n| \rightarrow \infty} f(n) \geq 1$. For any increasing function ω tending to infinity there exists a set \mathcal{A} such that $r_{\mathcal{A}, h}(n)=f(n)$ for all integers n, and

$$
\limsup _{x \rightarrow \infty} \mathcal{A}(x) \omega(x) / x^{1 / h}>0
$$

2. The Inserting Zeros Transformation

Consider the binary expansion of the elements of a set \mathcal{B} of positive integers. We will modify these integers by inserting strings of zeros at fixed places. We will see that this transformation of the set \mathcal{B} preserves certain additive properties.

In this paper we denote by γ any strictly increasing function $\gamma: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ with $\gamma(0)=0$. For every positive integer r, we define the "Inserting Zeros Transformation" T_{γ}^{r} by

$$
\begin{equation*}
T_{\gamma}^{r}\left(\sum_{i \geq 0} \varepsilon_{i} 2^{i}\right)=\sum_{k \geq 0} 2^{2 r k} \sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_{i} 2^{i} . \tag{4}
\end{equation*}
$$

In other words, if $\varepsilon_{0} \varepsilon_{1} \varepsilon_{2} \ldots$ is the binary expansion of b, then

$$
T_{\gamma}^{r}(b)=\varepsilon_{0} \cdots \varepsilon_{\gamma(1)-1} \underbrace{0 \cdots 0}_{2 r} \varepsilon_{\gamma(1)} \cdots \varepsilon_{\gamma(2)-1} \underbrace{0 \cdots 0}_{2 r} \varepsilon_{\gamma(2)} \cdots \varepsilon_{\gamma(k)-1} \underbrace{0 \cdots 0}_{2 r} \varepsilon_{\gamma(k)} \cdots
$$

Note that if $b<b^{\prime}$, then $T_{\gamma}^{r}(b)<T_{\gamma}^{r}\left(b^{\prime}\right)$. We define the set

$$
\begin{equation*}
T_{\gamma}^{r}(\mathcal{B})=\left\{T_{\gamma}^{r}(b): b \in \mathcal{B}\right\} \tag{5}
\end{equation*}
$$

The next proposition proves that the function T_{γ}^{r} preserves some Sidon properties.
Proposition 2.1. Let $2 r>\log _{2} h$. If $b_{1}, \ldots, b_{h}, b_{1}^{\prime}, \ldots, b_{h}^{\prime}$ are positive integers such that

$$
T_{\gamma}^{r}\left(b_{1}\right)+\cdots+T_{\gamma}^{r}\left(b_{h}\right)=T_{\gamma}^{r}\left(b_{1}^{\prime}\right)+\cdots+T_{\gamma}^{r}\left(b_{h}^{\prime}\right),
$$

then

$$
b_{1}+\cdots+b_{h}=b_{1}^{\prime}+\cdots+b_{h}^{\prime} .
$$

In particular, if \mathcal{B} is a $B_{h}[g]$ set and $2 r>\log _{2} h$, then $T_{\gamma}^{r}(\mathcal{B})$ is also a $B_{h}[g]$ set.
Proof. We write

$$
\begin{equation*}
t_{k}=\sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_{i}\left(b_{1}\right) 2^{i}+\cdots+\sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_{i}\left(b_{h}\right) 2^{i} . \tag{6}
\end{equation*}
$$

For any $k \geq 1$ we define the integer

$$
\begin{equation*}
m_{k}=2^{2 r k+\gamma(k)} . \tag{7}
\end{equation*}
$$

It follows from (4), (6) and (7) that

$$
T_{\gamma}^{r}\left(b_{1}\right)+\cdots+T_{\gamma}^{r}\left(b_{h}\right) \equiv \sum_{j=0}^{k-1} 2^{2 r j} t_{j} \quad\left(\bmod m_{k}\right)
$$

Since $T_{\gamma}^{r}\left(b_{1}\right)+\cdots+T_{\gamma}^{r}\left(b_{h}\right)=T_{\gamma}^{r}\left(b_{1}^{\prime}\right)+\cdots+T_{\gamma}^{r}\left(b_{h}^{\prime}\right)$, we have

$$
\sum_{j=0}^{k-1} 2^{2 r j} t_{j} \equiv \sum_{j=0}^{k-1} 2^{2 r j} t_{j}^{\prime} \quad\left(\bmod m_{k}\right)
$$

Notice that

$$
0 \leq \sum_{j=0}^{k-1} 2^{2 r j} t_{j} \leq 2^{2 r(k-1)} \sum_{j=0}^{k-1} t_{j} \leq 2^{2 r(k-1)} h \sum_{i=0}^{\gamma(k)-1} 2^{i}<2^{2 r(k-1)} 2^{2 r} 2^{\gamma(k)}=m_{k}
$$

and the same inequality works for $\sum_{j=0}^{k-1} 2^{r j} t_{j}^{\prime}$. Then

$$
\sum_{j=0}^{k-1} 2^{2 r j} t_{j}=\sum_{j=0}^{k-1} 2^{2 r j} t_{j}^{\prime}
$$

It follows that $t_{k}=t_{k}^{\prime}$ for all $k \geq 0$, and so

$$
b_{1}+\cdots+b_{h}=\sum_{k \geq 0} t_{k}=\sum_{k \geq 0} t_{k}^{\prime}=b_{1}^{\prime}+\cdots+b_{h}^{\prime} .
$$

This completes the proof.

Definition 2.2. For all integers $m \geq 2$ and x, let

$$
\|x\|_{m}=\min \{|y|, x \equiv y \quad(\bmod m)\}
$$

Note that $\left\|x_{1}+x_{2}\right\|_{m} \leq\left\|x_{1}\right\|_{m}+\left\|x_{2}\right\|_{m}$ for all integers x_{1} and x_{2}. Also, if $\|x\|_{m} \neq\left\|x^{\prime}\right\|_{m}$ for some m, then $x \not \equiv x^{\prime}(\bmod m)$ and so $x \neq x^{\prime}$.

Proposition 2.3. For $k \geq 1$ and for any positive integer b

$$
\left\|T_{\gamma}^{r}(b)\right\|_{m_{k}}<m_{k} 2^{-2 r}
$$

where m_{k} is defined in (7).
Proof. Let $b=\varepsilon_{0} \varepsilon_{1} \varepsilon_{2} \ldots$ be the binary expansion of b. Then

$$
T_{\gamma}^{r}(b) \equiv \sum_{j=0}^{k-1} 2^{2 r j} \sum_{i=\gamma(j)}^{\gamma(j+1)-1} \varepsilon_{i} 2^{i} \quad\left(\bmod m_{k}\right)
$$

and

$$
0 \leq \sum_{j=0}^{k-1} 2^{2 r j} \sum_{i=\gamma(j)}^{\gamma(j+1)-1} \varepsilon_{i} 2^{i} \leq \sum_{l=0}^{2 r(k-1)+\gamma(k)-1} 2^{l}<m_{k} 2^{-2 r} .
$$

This completes the proof.

3. Proof of Theorem 1.1

3.1. Two auxiliary sequences. Consider the sequence $\left\{z_{j}\right\}_{j=1}^{\infty}$ defined by

$$
\begin{equation*}
z_{j}=j-[\sqrt{j}]([\sqrt{j}]+1) \tag{8}
\end{equation*}
$$

For every positive integer j there is a unique positive integer s such that $s^{2} \leq j<(s+1)^{2}$. Then $j=s^{2}+s+i$ for some $i \in[-s, s]$ and $z_{j}=i$. It follows that for every integer i there are infinitely many positive integers j such that $z_{j}=i$. Moreover, $\left|z_{j}\right| \leq s \leq \sqrt{j}$ for all $j \geq 1$.

Let $f: \mathbb{Z} \rightarrow \mathbf{N}$ any function such that $\liminf _{|n| \rightarrow \infty} f(n) \geq g$. Let n_{0} be the least positive integer such that $f(n) \geq g$ for all $|n| \geq n_{0}$. Choose an integer $r>1+\log _{2}\left(h^{2}+n_{0}\right)$. Then

$$
\begin{equation*}
h^{2}<2^{r-1} \text { and } n_{0}<2^{r-1} \tag{9}
\end{equation*}
$$

Let $\gamma: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ be a strictly increasing function such that $\gamma(0)=0$.
We consider the sequence $\mathcal{U}=\left\{u_{i}\right\}_{i=1}^{\infty}$ defined by

$$
\begin{cases}u_{2 k-1} & =-m_{k} 2^{-r} \tag{10}\\ u_{2 k} & =(h-1) m_{k} 2^{-r}+z_{k}\end{cases}
$$

where $m_{k}=2^{2 r k+\gamma(k)}$. We write

$$
\begin{equation*}
\mathcal{U}_{k}=\left\{u_{2 k-1}, u_{2 k}\right\} \quad \text { and } \quad \mathcal{U}_{<k}=\bigcup_{s<k} \mathcal{U}_{s} \tag{11}
\end{equation*}
$$

Note that for all $j \leq k$ we have

$$
\begin{equation*}
\left|z_{j}\right| \leq \sqrt{k}<2^{k} \leq 2^{\gamma(k)}<2^{2 r(k-1)+\gamma(k)}=m_{k} 2^{-2 r} . \tag{12}
\end{equation*}
$$

3.2. The recursive construction. For any $B_{h}[g]$-sequence \mathcal{B} we consider the set $T_{\gamma}^{r}(\mathcal{B})$ defined in (5). Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be a function such that $f(n) \geq g$ for $|n| \geq n_{0}$. We construct an increasing sequence $\left\{\mathcal{A}_{k}\right\}_{k=0}^{\infty}$ of sets of integers as follows:

$$
\begin{equation*}
\mathcal{A}_{0}=\left\{a \in T_{\gamma}^{r}(\mathcal{B}): a \geq n_{0}\right\} \tag{13}
\end{equation*}
$$

and, for $k \geq 1$,

$$
\mathcal{A}_{k}= \begin{cases}\mathcal{A}_{k-1} \cup \mathcal{U}_{k} & \text { if } r_{\mathcal{A}_{k-1}, h}\left(z_{k}\right)<f\left(z_{k}\right) \\ \mathcal{A}_{k-1} & \text { otherwise }\end{cases}
$$

where z_{k} and \mathcal{U}_{k} are defined in (8) and (11).
We shall prove that the set

$$
\begin{equation*}
\mathcal{A}=\bigcup_{k=0}^{\infty} \mathcal{A}_{k} \tag{14}
\end{equation*}
$$

satisfies $r_{\mathcal{A}, h}(n)=f(n)$ for all integers n as consequence of propositions 3.1 and 3.2.
Proposition 3.1. The sequence \mathcal{A} defined in (14) satisfies $r_{\mathcal{A}, h}(n) \geq f(n)$ for all integers n.

Proof. Since

$$
\underbrace{u_{2 k-1}+\cdots+u_{2 k-1}}_{h-1}+u_{2 k}=z_{k}
$$

it follows that if $r_{\mathcal{A}_{k-1}, h}\left(z_{k}\right)<f\left(z_{k}\right)$, then $\mathcal{A}_{k}=\mathcal{A}_{k-1} \cup \mathcal{U}_{k}$ and

$$
r_{\mathcal{A}_{k}, h}\left(z_{k}\right) \geq r_{\mathcal{A}_{k-1}, h}\left(z_{k}\right)+1 .
$$

Since the sequence $\left(z_{k}\right)$ takes all the integers infinitely many times, then $r_{\mathcal{A}_{k}, h}(n) \geq f(n)$ for some k (if $f(n)<\infty)$ or $\lim _{k \infty} r_{\mathcal{A}_{k}, h}(n)=\infty($ if $f(n)=\infty)$.

Lemmas 3.1, 3.2 and 3.3 will allow us to give a clean proof of proposition 3.2.
Lemma 3.1. Let $k \geq 1$. For nonnegative integers s and t with $s+t \leq h$, let

$$
\mathcal{A}_{k}^{(s, t)}=(h-s-t) \mathcal{A}_{k-1}+s u_{2 k-1}+t u_{2 k} .
$$

The sets $\mathcal{A}_{k}^{(s, t)}$ are pairwise disjoint, except possibly the sets $\mathcal{A}_{k}^{(0,0)}$ and $\mathcal{A}_{k}^{(h-1,1)}$.
Proof. If $n \in \mathcal{A}_{k}^{(s, t)}$ then

$$
\begin{aligned}
n & =a_{1}+\cdots+a_{h-s-t}+s u_{2 k-1}+t u_{2 k} \\
& =a_{1}+\cdots+a_{h-s-t}+(t(h-1)-s) m_{k} 2^{-r}+t z_{k}
\end{aligned}
$$

with $a_{1}, \ldots, a_{h-s-t} \in \mathcal{A}_{k-1} \subset \mathcal{A}_{0} \cup \mathcal{U}_{<k}$.

If $a_{i} \in \mathcal{A}_{0}$, then $\left\|a_{i}\right\|_{m_{k}} \leq m_{k} 2^{-2 r}$ by Proposition 2.3. If $a_{i} \in \mathcal{U}_{<k}$ we use (10) and (12) to obtain

$$
\left\|a_{i}\right\|_{m_{k}} \leq\left|a_{i}\right| \leq(h-1) m_{k-1} 2^{-r}+m_{k-1} 2^{-2 r}<h m_{k} 2^{-2 r} .
$$

We use again (12) to obtain

$$
\begin{align*}
\left\|a_{1}+\cdots+a_{h-s-t}+t z_{k}\right\|_{m_{k}} & \leq\left\|a_{1}\right\|_{m_{k}}+\cdots+\left\|a_{h-s-t}\right\|_{m_{k}}+\left\|t z_{k}\right\|_{m_{k}} \\
& \leq(h-s-t) m_{k} h 2^{-2 r}+t m_{k} 2^{-2 r} \\
& \leq h^{2} m_{k} 2^{-2 r} \tag{15}
\end{align*}
$$

Now suppose that $n \in \mathcal{A}_{k}^{\left(s^{\prime}, t^{\prime}\right)}$ for some $\left(s^{\prime}, t^{\prime}\right) \neq(s, t)$.
If $\left\{(s, t),\left(s^{\prime}, t^{\prime}\right)\right\} \neq\{(0,0),(h-1,1)\}$, then $t(h-1)-s \neq t^{\prime}(h-1)-s^{\prime}$ and

$$
\begin{aligned}
m_{k} 2^{-r} & \leq\left\|\left((t(h-1)-s)-\left(t^{\prime}(h-1)-s^{\prime}\right)\right) m_{k} 2^{-r}\right\|_{m_{k}} \\
& =\left\|(t(h-1)-s) m_{k} 2^{-r}-\left(t^{\prime}(h-1)-s^{\prime}\right) m_{k} 2^{-r}\right\|_{m_{k}} \\
& =\left\|\left(n-(t(h-1)-s) m_{k} 2^{-r}\right)-\left(n-\left(t^{\prime}(h-1)-s^{\prime}\right) m_{k} 2^{-r}\right)\right\|_{m_{k}} \\
& \leq\left\|a_{1}+\cdots+a_{h-s-t}+t z_{k}\right\|_{m_{k}}+\left\|a_{1}^{\prime}+\cdots+a_{h-s^{\prime}-t^{\prime}}^{\prime}+t^{\prime} z_{k}\right\|_{m_{k}} \\
& \leq 2 h^{2} m_{k} 2^{-2 r} .
\end{aligned}
$$

It follows that $h^{2} \geq 2^{r-1}$, which contradicts (9). This completes the proof.
Lemma 3.2. If $n \in \mathcal{A}_{k}^{(s, t)}$ for some $k \geq 1$ and $(s, t) \notin\{(0,0),(h-1,1)\}$, then $|n|>n_{0}$.
Proof. If $n \in \mathcal{A}_{k}^{(s, t)}$, then

$$
n=a_{1}+\cdots+a_{h-s-t}+(t(h-1)-s) m_{k} 2^{-r}+t z_{k}
$$

and

$$
\begin{aligned}
|n| & \geq\|n\|_{m_{k}} \\
& =\left\|a_{1}+\cdots+a_{h-s-t}+t z_{k}+((h-1) t-s) m_{k} 2^{-r}\right\|_{m_{k}} \\
& \geq\left\|((h-1) t-s) m_{k} 2^{-r}\right\|_{m_{k}}-\left\|a_{1}+\cdots+a_{h-s-t}+t z_{k}\right\|_{m_{k}} \\
& \geq\left|((h-1) t-s) m_{k} 2^{-r}\right|-h^{2} m_{k} 2^{-2 r} \\
& \geq m_{k} 2^{-r}-h^{2} m_{k} 2^{-2 r} \geq m_{k} 2^{-r-1} \geq 2^{2 r} 2^{-r-1} \\
& \geq 2^{r-1}>n_{0},
\end{aligned}
$$

We have used that if $\left|((h-1) t-s) m_{k} 2^{-r}\right|<m_{k} / 2$, then

$$
\left\|((h-1) t-s) m_{k} 2^{-r}\right\|_{m_{k}}=\left|((h-1) t-s) m_{k} 2^{-r}\right| \geq m_{k} 2^{-r}
$$

Also we have used $(h-1) t-s \neq 0$ and the inequalities (9) and (15) in the last inequalities.

Lemma 3.3. For any $k \geq 0$, for any $h^{\prime}<h$ and for any integer m we have that

$$
r_{\mathcal{A}_{k}, h^{\prime}}(m) \leq g
$$

Proof. By induction on k. Proposition 2.1 implies that $T_{\gamma}^{r}(\mathcal{B})$ and consequently \mathcal{A}_{0} are $B_{h}[g]$-sequences. In particular, \mathcal{A}_{0} is a $B_{h^{\prime}}[g]$ sequence. Then $r_{\mathcal{A}_{0}, h^{\prime}}(m) \leq g$ for any integer m.

Suppose that it is true that for any $h^{\prime}<h$, and for any integer m we have that $r_{\mathcal{A}_{k-1}, h^{\prime}}(m) \leq g$.

Consider $m \in h^{\prime} \mathcal{A}_{k}$.

- Suppose $m \notin\left(h^{\prime}-s-t\right) \mathcal{A}_{k-1}+s u_{2 k-1}+t u_{2 k}$ for any $(s, t) \neq(0,0)$. Then $r_{\mathcal{A}_{k}, h^{\prime}}(m)=r_{\mathcal{A}_{k-1}, h^{\prime}}(m) \leq g$ by the induction hypothesis.
- Suppose that $m \in\left(h^{\prime}-s-t\right) \mathcal{A}_{k-1}+s u_{2 k-1}+t u_{2 k}$ for some $(s, t) \neq(0,0)$. Consider an element $a \in \mathcal{A}_{0}$. Then

$$
m+\left(h-h^{\prime}\right) a \in \mathcal{A}_{k}^{(s, t)} \in(h-s-t) \mathcal{A}_{k-1}+s u_{2 k-1}+t u_{2 k} .
$$

Since $(s, t) \neq(h-1,1)$ (because $\left.h^{\prime}<h\right)$ we can apply lemma 3.1 and we have

$$
r_{\mathcal{A}_{k}, h^{\prime}}(m) \leq r_{\mathcal{A}_{k}, h}\left(m+\left(h-h^{\prime}\right) a\right)=r_{\mathcal{A}_{k-1}, h-s-t}\left(m+\left(h-h^{\prime}\right) a-s u_{2 k-1}-t u_{2 k}\right)
$$

We can the apply the induction hypothesis because $h-s-t<h$.

Proposition 3.2. The sequence \mathcal{A} defined in (14) satisfies $r_{\mathcal{A}, h}(n) \leq f(n)$ for all integers n.

Proof. Next we show that, for every integer k, the sequence \mathcal{A}_{k} satisfies $r_{\mathcal{A}_{k}, h}(n) \leq f(n)$ for all n. The proof is by induction on k.

Let $k=0$. Since \mathcal{A}_{0} is a $B_{h}[g]$-sequences, we have $r_{\mathcal{A}_{0}, h}(n) \leq g \leq f(n)$ for $n \geq n_{0}$. If $n<n_{0}$, then $r_{\mathcal{A}_{0}, h}(n)=0 \leq f(n)$.

Now, suppose that it is true for $k-1$. In particular $r_{\mathcal{A}_{k-1}, h}\left(z_{k}\right) \leq f\left(z_{k}\right)$. If $r_{\mathcal{A}_{k-1}, h}\left(z_{k}\right)=$ $f\left(z_{k}\right)$ there is nothing to prove because in that case $\mathcal{A}_{k}=\mathcal{A}_{k-1}$. But if $r_{\mathcal{A}_{k-1}, h}\left(z_{k}\right) \leq$ $f\left(z_{k}\right)-1$, then $\mathcal{A}_{k}=\mathcal{A}_{k-1} \cup \mathcal{U}_{k}=\mathcal{A}_{k-1} \cup\left\{u_{2 k-1}\right\} \cup\left\{u_{2 k}\right\}$. We will assume that until the end of the proof.

If $n \notin h \mathcal{A}_{k}$ then $r_{\mathcal{A}_{k}, h}(n)=0 \leq f(n)$.
If $n \in h \mathcal{A}_{k}$, since $\mathcal{A}_{k}=\mathcal{A}_{k-1} \cap \mathcal{U}_{k}$ we can write

$$
h \mathcal{A}_{k}=\bigcup_{\substack{s, t=0 \\ s+t \leq h}}^{h}\left((h-s-t) \mathcal{A}_{k-1}+s u_{2 k-1}+t u_{2 k}\right)
$$

Then

$$
\begin{equation*}
n=a_{1}+\cdots+a_{h-s-t}+s u_{2 k-1}+t u_{2 k} \tag{16}
\end{equation*}
$$

for some s, t, satisfying $0 \leq s, t, s+t \leq h$ and for some $a_{1}, \ldots, a_{h-s-t} \in \mathcal{A}_{k-1}$.
For short we write $r_{s, t}(n)$ for the number of solutions of (16).

- If $n \in(h-s-t) \mathcal{A}_{k-1}+s u_{2 k-1}+t u_{2 k}$ for some $(s, t) \neq(0,0),(s, t) \neq(h-1,1)$ then, due to lemma 3.1, we have that $r_{\mathcal{A}_{k}, h}(n)=r_{s, t}(n)$.
- For $0 \leq n \leq n_{0}$ we have that $r_{s, t}(n)=0 \leq f(n)$ (due to lemma 3.2).
- For $n>n_{0}$ we apply lemma 3.3 in the first inequality below with $h^{\prime}=h-s-t$ and $m=n-s u_{2 k-1}-t u_{2 k}$,

$$
r_{s, t}(n)=r_{\mathcal{A}_{k-1}, h-s-t}\left(n-s u_{2 k-1}-t u_{2 k}\right) \leq g \leq f(n)
$$

- If $n \notin(h-s-t) \mathcal{A}_{k-1}+s u_{2 k-1}+t u_{2 k}$ for any $(s, t) \neq(0,0),(s, t) \neq(h-1,1)$, then $r_{\mathcal{A}_{k}, h}(n)=r_{0,0}(n)+r_{h-1,1}(n)$. Notice that $r_{0,0}(n)=r_{\mathcal{A}_{k-1}, h}(n)$ and that $r_{h-1,1}(n)=1$ if $n=z_{k}$ and $r_{h-1,1}(n)=0$ otherwise.
- If $n \neq z_{k}$, then $r_{\mathcal{A}_{k}, h}(n)=r_{A_{k-1}, h}(n) \leq f(n)$ by the induction hypothesis.
- If $n=z_{k}$, then $r_{\mathcal{A}_{k}, h}(n)=r_{\mathcal{A}_{k-1}, h}\left(z_{k}\right)+r_{h-1,1}\left(z_{k}\right) \leq\left(f\left(z_{k}\right)-1\right)+1=f(n)$.
3.3. The density of \mathcal{A}. Recall that $\gamma: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ is a strictly increasing function with $\gamma(0)=0$. Let $\mathbb{R}_{\geq 0}=\{x \in \mathbb{R}: x \geq 0\}$. We extend γ to a strictly increasing function $\gamma: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$. (For example, define $\gamma(x)=\gamma(k+1)(x-k)+\gamma(k)(k+1-x)$ for $k \leq x \leq k+1$.)

We have

$$
\mathcal{A}(x) \geq \mathcal{A}_{0}(x) \geq T_{\gamma}^{r}(\mathcal{B})(x)-n_{0}
$$

Thus, to find a lower bound for $\mathcal{A}(x)$ it suffices to find a lower bound for the density of $T_{\gamma}^{r}(\mathcal{B})$.

Lemma 3.4. $T_{\gamma}^{r}(\mathcal{B})(x)>\mathcal{B}\left(x 2^{-2 r \gamma^{-1}\left(\log _{2} x\right)}\right)$.
Proof. Let b be a positive integer such that

$$
b \leq x 2^{-2 r \gamma^{-1}\left(\log _{2} x\right)}
$$

Let ℓ be such that $2^{\gamma(\ell)} \leq b<2^{\gamma(\ell+1)}$. Then we can write

$$
\begin{equation*}
b=\sum_{k=0}^{\ell} \sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_{i} 2^{i} \tag{17}
\end{equation*}
$$

It follows from the definition (4) of the Zeros Inserting Transformation that

$$
\begin{aligned}
T_{\gamma}^{r}(b) & =\sum_{k=0}^{\ell} 2^{2 r k} \sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_{i} 2^{i} \\
& \leq 2^{2 r \ell} b \\
& \leq 2^{2 r \gamma^{-1}\left(\log _{2} b\right)} b \\
& \leq 2^{2 r\left(\gamma^{-1}\left(\log _{2} b\right)-\gamma^{-1}\left(\log _{2} x\right)\right)} x \\
& \leq x
\end{aligned}
$$

Recall that ϵ is a decreasing positive function defined on $[1, \infty)$ such that $\lim _{x \rightarrow \infty} \epsilon(x)=$ 0 . We complete the proof of Theorem 1 by choosing a function γ that satisfies the inequality

$$
2^{-2 r \gamma^{-1}\left(\log _{2} x\right)} \geq \epsilon(x)
$$

It suffices to take $\gamma(x)>\log _{2}\left(\epsilon^{-1}\left(2^{-2 r x}\right)\right)$.

References

[1] Y. G. Chen, A problem on unique representation bases, European J. Combinatorics 28 (2007) 33-35.
[2] J. Cilleruelo and M. B. Nathanson, Perfect difference sets from Sidon sets, Combinatorica, to appear.
[3] P. Erdős and A. Renyi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960) 83-110.
[4] F. Krückeberg, ' B_{2}-Folgen und verwandte Zahlenfolgen', J. Reine Angew. Math. 206 (1961), 53-60.
[5] J. Lee, Infinitely often dense bases of integers with a prescribed representation function, arXiv:math/0702279
[6] T. Luczak and T. Schoen, A note on unique representation bases for the integers, Funct. Approx. Comment. Math. 32 (2004), 67-70.
[7] M. B. Nathanson, The inverse problem for representation functions of additive bases, Number Theory: New York Seminar 2003, (Springer, 2004), pages 253-262.
[8] M. B. Nathanson, Unique representation bases for the integers, Acta Arith. 108 (2003), 1-8.
[9] I. Ruzsa, An infinite Sidon sequence, J. Number Theory 68 (1998), 63-71.
[10] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe', J. reine angew. Math. 194 (1955), 40-65, 111-140.
[11] V. Vu, On a refinement of Waring's problem, Duke Math. J. 105 (1) (2000), 107-134.

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
E-mail address: franciscojavier.cilleruelo@uam.es

Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468
E-mail address: melvyn.nathanson@lehman.cuny.edu

[^0]: 2000 Mathematics Subject Classification. 11B13 (primary), 11B34, 11B05, 11A07, 11A41 (secondary).
 The work of J.C. was supported by grants CCG06-UAM/ESP-0477 and MTM 2005-04730 of MYCIT (Spain).

 The work of M.B.N. was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.

