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Abstract. Let A be a set of integers and let h ≥ 2. For every integer n, let rA,h(n)

denote the number of representations of n in the form n = a1 + · · ·+ah, where ai ∈ A
for 1 ≤ i ≤ h, and a1 ≤ · · · ≤ ah. The function rA,h : Z→ N, where N = N∪{0,∞},
is the representation function of order h for A.

We prove that every function f : Z → N satisfying lim inf|n|→∞ f(n) ≥ g is the

representation function of order h for a sequence A of integers, and that A can be

constructed so that it increases “almost” as slowly as any given Bh[g] sequence. In

particular, given h ≥ 2, for every ε > 0 and for any function f : Z → N satisfying

lim inf|n|→∞ f(n) ≥ g = g(h, ε) there exists a sequence A satisfying rA,h = f and

A(x) À x(1/h)−ε.

Roughly speaking we prove that the problem of finding a dense set of integers

with prescribed representation function f of order h with lim inf|n|→∞ f(n) ≥ g is

“equivalent” to the classical problem of finding a dense Bh[g] sequences of positive

integers.

1. Introduction

Let A be a set of integers and let h ≥ 2. For every integer n, let rA,h(n) denote the

number of representations of n in the form

n = a1 + · · ·+ ah

where a1 ≤ · · · ≤ ah and ai ∈ A for 1 ≤ i ≤ h. The function rA,h : Z → N is the

representation function of order h for A, where N = N ∪ {0,∞}.
Nathanson proved [7] that any function f : Z→ N satisfying lim inf |n|→∞ f(n) ≥ 1 is

the representation function of order h of a set of integers A such that

(1) A(x) À x1/(2h−1),

where A(x) counts the number of positive elements a ∈ A no greater than x and f(x) À
g(x) means that there exists a constant C > 0 such that f(x) ≥ Cg(x) for x large enough.
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It is an open problem to determine how dense the sets A can be. In this paper we study

the connection between this problem and the problem of finding dense Bh[g] sequences.

We recall that a set B of nonnegative integers is called a Bh[g] sequence if

rB,h(n) ≤ g

for every nonnegative integer n. It is usual to write Bh to denote Bh[1] sequences.

Luczak and Schoen proved that any Bh sequence satisfying an additional kind of Sidon

property (see [6] for the definition of this property, which they call the Sh property) can

be enlarged to obtain a sequence with any prescribed representation function f satisfying

lim inf |x|→∞ f(x) ≥ 1. In particular, since they prove that there exists a Bh sequence A
satisfying the Sh property with A(x) À x1/(2h−1), they recover Nathanson’s result.

In this paper we prove that any Bh[g] sequence, without any additional property, can

be modified slightly to have any prescribed representation function f of order h satisfying

lim inf |x|→∞ f(x) ≥ g. Our main theorem is the following.

Theorem 1.1. Let f : Z → N be any function such that lim inf |n|→∞ f(n) ≥ g and let

B be any Bh[g] sequence. Then, for any decreasing function ε(x) → 0 as x → ∞, there

exists a sequence A of integers such that

rA,h(n) = f(n) for all n ∈ Z and A(x) À B(xε(x)).

Roughly speaking, theorem above says that the problem of finding dense sets of integers

with prescribed representation functions with lim inf |n|→∞ f(n) ≥ g is “equivalent” to the

classical problem of finding dense Bh[g] sequences of positive integers.

It is a difficult problem to construct dense Bh[g] sequences. A trivial counting argument

gives B(x) ¿ x1/h for these sequences. On the other hand, the greedy algorithm shows

that there exists a Bh sequence B such that

(2) B(x) À x1/(2h−1).

For B2 sequences, also called Sidon sets, Ruzsa proved [9] that there exists a Sidon set B
such that

(3) B(x) À x
√

2−1+o(1).

This result and Theorem 1.1 give the following corollary.

Corollary 1. Let f : Z → N any function such that lim inf |n|→∞ f(n) ≥ 1. Then there

exists a sequence of integers A such that

rA,2(n) = f(n) for all n ∈ Z and A(x) À x
√

2−1+o(1).
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This result gives an affirmative answer to the third open problem in [1], which was also

posed previously in [8]. Unfortunately, nothing better than (2) is known for Bh sequences

for h ≥ 3.

Erdős and Renyi [3] proved however that, for any ε > 0, there exists a positive integer

g and a B2[g] sequence B such that B(x) À x1/2−ε. They claimed that the same method

could be extended to Bh[g] sequences, but a serious problem with non-independent events

appears when h ≥ 3. As an application of a more general theory, Vu [11] overcame this

problem. He proved that for any ε > 0, there exist an integer g = g(h, ε) and a Bh[g]

sequence B such that

B(x) À x1/h−ε.

This result and Theorem 1.1 imply the next corollary

Corollary 2. Given h ≥ 2, for any ε > 0, there exists g = g(h, ε) such that, for any

function f : Z→ N satisfying lim inf |n|→∞ f(n) ≥ g, there exists a sequence A of integers

such that

rA,h(n) = f(n) for all n ∈ Z and A(x) À x
1
h−ε.

The construction in [7] for the set A satisfying the growth condition (14) was based

on the greedy algorithm. In this paper we construct the set A by adjoining a very sparse

sequence U = {uk} to a suitable Bh[g] sequence B. This idea was used in [2], but in

a simpler way, to construct dense perfect difference sets, which are sets such that every

nonzero integer has a unique representation as a difference of two elements of A. The

proof of the main theorem in [2] can be adapted easily to our problem in the simplest

case h = 2.

Theorem 1.2. Let f : Z → N be a function such that lim inf |n|→∞ f(n) ≥ g, and let B
be a B2[g] sequence. Then there exists a sequence of integers A such that

rA,2(n) = f(n) for all n ∈ Z and A(x) À B(x/3).

We omit the proof because it is very close to the proof of the main theorem in [2].

Unfortunately, that proof cannot be adapted to the case h ≥ 3. We need another definition

of a “suitable” Bh[g] set. In section §2 we shall show how to modify a Bh[g] sequence B so

that it becomes “suitable.” We do this by applying the “Inserting Zeros Transformation”

to an arbitrary Bh[g] set. This is the main ingredient in the proof of Theorem 1.1.

Chen [1] has proved that for any ε > 0 there exists a unique representation basisA (that

is, a set A with rA,2(k) = 1 for all k ∈ Z) such that lim supx→∞A(x)/x1/2−ε > 1. J. Lee

[5] has improved this result by proving that for any increasing function ω tending to infin-

ity there exists a unique representation basis A such that lim supx→∞A(x)ω(x)/
√

x > 0.
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Theorem 1.2 and the classical constructions of Erdős [10] and Krückeberg [4] of infinite

Sidon sets B such that lim supx→∞ B(x)/
√

x > 0 provide a unique representation basis A
such that lim supx→∞A(x)/

√
x > 0. Indeed, we can easily adapt the proof of Theorem

1.3 in [2] to the case of the additive representation function r(n) (instead of the subtractive

representation function d(n) = #{n = a− a′, a, a′ ∈ A}).

Theorem 1.3. There exists a unique representation basis A such that

lim sup
x→∞

A(x)√
x
≥ 1√

2
.

Again we omit the proof because it is very close to the proof of Theorem 1.3 in [2].

Theorem above answers affirmatively the first open problem in [1]. Note also that if

A is an infinite Sidon set of integers, then the set

A′ = {4a : a ≥ 0} ∪ {−4a + 1 : a < 0}

is also a Sidon set and, in this case, lim inf |A∩ (−x, x)|/√x = lim inf A′(4x)/
√

x. A well

known result of Erdős states that lim inf B(x)/
√

x = 0 for any Sidon set B. Then the

above limit is zero, so it answers negatively the second open problem in [1].

It is easy to prove that for any function ω tending to infinity there exists a Bh se-

quence such that lim supx→∞ B(x)ω(x)/x1/h > 1. We can construct the set B as follows:

Let x1, . . . , xk, . . . be a sequence of positive integers such that ω(xk) > (hxk−1)1/h and

consider, for each k, a Bh sequence Bk ⊂ [1, xk/(hxk−1)] with |Bk| À (xk/(hxk−1))1/h.

The set B = ∪k(hxk−1) ∗ Bk satisfies the conditions, where we use the notation t ∗ A =

{ta, a ∈ A}.
The construction above and Theorem 1.1 yield the following Corollary, which extends

the main theorem in [1] in several ways.

Corollary 3. Let f : Z → N any function such that lim inf |n|→∞ f(n) ≥ 1. For any

increasing function ω tending to infinity there exists a set A such that rA,h(n) = f(n) for

all integers n, and

lim sup
x→∞

A(x)ω(x)/x1/h > 0.

2. The Inserting Zeros Transformation

Consider the binary expansion of the elements of a set B of positive integers. We will

modify these integers by inserting strings of zeros at fixed places. We will see that this

transformation of the set B preserves certain additive properties.

In this paper we denote by γ any strictly increasing function γ : N0 → N0 with γ(0) = 0.

For every positive integer r, we define the “Inserting Zeros Transformation” T r
γ by

(4) T r
γ


∑

i≥0

εi2i


 =

∑

k≥0

22rk

γ(k+1)−1∑

i=γ(k)

εi2i.
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In other words, if ε0ε1ε2 . . . is the binary expansion of b, then

T r
γ (b) = ε0 · · · εγ(1)−1 0 · · · 0︸ ︷︷ ︸

2r

εγ(1) · · · εγ(2)−1 0 · · · 0︸ ︷︷ ︸
2r

εγ(2) · · · εγ(k)−1 0 · · · 0︸ ︷︷ ︸
2r

εγ(k) · · ·

Note that if b < b′, then T r
γ (b) < T r

γ (b′). We define the set

(5) T r
γ (B) = {T r

γ (b) : b ∈ B}.
The next proposition proves that the function T r

γ preserves some Sidon properties.

Proposition 2.1. Let 2r > log2 h. If b1, . . . , bh, b′1, . . . , b
′
h are positive integers such that

T r
γ (b1) + · · ·+ T r

γ (bh) = T r
γ (b′1) + · · ·+ T r

γ (b′h),

then

b1 + · · ·+ bh = b′1 + · · ·+ b′h.

In particular, if B is a Bh[g] set and 2r > log2 h, then T r
γ (B) is also a Bh[g] set.

Proof. We write

(6) tk =
γ(k+1)−1∑

i=γ(k)

εi(b1)2i + · · ·+
γ(k+1)−1∑

i=γ(k)

εi(bh)2i.

For any k ≥ 1 we define the integer

(7) mk = 22rk+γ(k).

It follows from (4), (6) and (7) that

T r
γ (b1) + · · ·+ T r

γ (bh) ≡
k−1∑

j=0

22rjtj (mod mk).

Since T r
γ (b1) + · · ·+ T r

γ (bh) = T r
γ (b′1) + · · ·+ T r

γ (b′h), we have

k−1∑

j=0

22rjtj ≡
k−1∑

j=0

22rjt′j (mod mk).

Notice that

0 ≤
k−1∑

j=0

22rjtj ≤ 22r(k−1)
k−1∑

j=0

tj ≤ 22r(k−1)h

γ(k)−1∑

i=0

2i < 22r(k−1)22r2γ(k) = mk,

and the same inequality works for
∑k−1

j=0 2rjt′j . Then

k−1∑

j=0

22rjtj =
k−1∑

j=0

22rjt′j .

It follows that tk = t′k for all k ≥ 0, and so

b1 + · · ·+ bh =
∑

k≥0

tk =
∑

k≥0

t′k = b′1 + · · ·+ b′h.

This completes the proof. ¤
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Definition 2.2. For all integers m ≥ 2 and x, let

‖x‖m = min{|y|, x ≡ y (mod m)}.

Note that ‖x1+x2‖m ≤ ‖x1‖m+‖x2‖m for all integers x1 and x2. Also, if ‖x‖m 6= ‖x′‖m

for some m, then x 6≡ x′ (mod m) and so x 6= x′.

Proposition 2.3. For k ≥ 1 and for any positive integer b

‖T r
γ (b)‖mk

< mk2−2r,

where mk is defined in (7).

Proof. Let b = ε0ε1ε2 . . . be the binary expansion of b. Then

T r
γ (b) ≡

k−1∑

j=0

22rj

γ(j+1)−1∑

i=γ(j)

εi2i (mod mk)

and

0 ≤
k−1∑

j=0

22rj

γ(j+1)−1∑

i=γ(j)

εi2i ≤
2r(k−1)+γ(k)−1∑

l=0

2l < mk2−2r.

This completes the proof. ¤

3. Proof of Theorem 1.1

3.1. Two auxiliary sequences. Consider the sequence {zj}∞j=1 defined by

(8) zj = j − [
√

j]([
√

j] + 1).

For every positive integer j there is a unique positive integer s such that s2 ≤ j < (s+1)2.

Then j = s2 + s + i for some i ∈ [−s, s] and zj = i. It follows that for every integer i

there are infinitely many positive integers j such that zj = i. Moreover, |zj | ≤ s ≤ √
j for

all j ≥ 1.

Let f : Z → N any function such that lim inf |n|→∞ f(n) ≥ g. Let n0 be the least

positive integer such that f(n) ≥ g for all |n| ≥ n0. Choose an integer r > 1+log2(h2+n0).

Then

(9) h2 < 2r−1 and n0 < 2r−1.

Let γ : N0 → N0 be a strictly increasing function such that γ(0) = 0.

We consider the sequence U = {ui}∞i=1 defined by

(10)

{
u2k−1 = −mk2−r,

u2k = (h− 1)mk2−r + zk

where mk = 22rk+γ(k). We write

(11) Uk = {u2k−1, u2k} and U<k =
⋃

s<k

Us.
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Note that for all j ≤ k we have

(12) |zj | ≤
√

k < 2k ≤ 2γ(k) < 22r(k−1)+γ(k) = mk2−2r.

3.2. The recursive construction. For any Bh[g]-sequence B we consider the set T r
γ (B)

defined in (5). Let f : Z→ N be a function such that f(n) ≥ g for |n| ≥ n0. We construct

an increasing sequence {Ak}∞k=0 of sets of integers as follows:

(13) A0 = {a ∈ T r
γ (B) : a ≥ n0}

and, for k ≥ 1,

Ak =

{
Ak−1 ∪ Uk if rAk−1,h(zk) < f(zk)

Ak−1 otherwise

where zk and Uk are defined in (8) and (11).

We shall prove that the set

(14) A =
∞⋃

k=0

Ak

satisfies rA,h(n) = f(n) for all integers n as consequence of propositions 3.1 and 3.2.

Proposition 3.1. The sequence A defined in (14) satisfies rA,h(n) ≥ f(n) for all integers

n.

Proof. Since

u2k−1 + · · ·+ u2k−1︸ ︷︷ ︸
h−1

+u2k = zk

it follows that if rAk−1,h(zk) < f(zk), then Ak = Ak−1 ∪ Uk and

rAk,h(zk) ≥ rAk−1,h(zk) + 1.

Since the sequence (zk) takes all the integers infinitely many times, then rAk,h(n) ≥ f(n)

for some k (if f(n) < ∞) or limk∞ rAk,h(n) = ∞ (if f(n) = ∞). ¤

Lemmas 3.1, 3.2 and 3.3 will allow us to give a clean proof of proposition 3.2.

Lemma 3.1. Let k ≥ 1. For nonnegative integers s and t with s + t ≤ h, let

A(s,t)
k = (h− s− t)Ak−1 + su2k−1 + tu2k.

The sets A(s,t)
k are pairwise disjoint, except possibly the sets A(0,0)

k and A(h−1,1)
k .

Proof. If n ∈ A(s,t)
k then

n = a1 + · · ·+ ah−s−t + su2k−1 + tu2k

= a1 + · · ·+ ah−s−t + (t(h− 1)− s)mk2−r + tzk,

with a1, . . . , ah−s−t ∈ Ak−1 ⊂ A0 ∪ U<k.
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If ai ∈ A0, then ‖ai‖mk
≤ mk2−2r by Proposition 2.3. If ai ∈ U<k we use (10) and

(12) to obtain

‖ai‖mk
≤ |ai| ≤ (h− 1)mk−12−r + mk−12−2r < hmk2−2r.

We use again (12) to obtain

‖a1 + · · ·+ ah−s−t + tzk‖mk
≤ ‖a1‖mk

+ · · ·+ ‖ah−s−t‖mk
+ ‖tzk‖mk

≤ (h− s− t)mkh2−2r + tmk2−2r

≤ h2mk2−2r.(15)

Now suppose that n ∈ A(s′,t′)
k for some (s′, t′) 6= (s, t).

If {(s, t), (s′, t′)} 6= {(0, 0), (h− 1, 1)}, then t(h− 1)− s 6= t′(h− 1)− s′ and

mk2−r ≤ ‖ ((t(h− 1)− s)− (t′(h− 1)− s′))mk2−r‖mk

= ‖(t(h− 1)− s)mk2−r − (t′(h− 1)− s′)mk2−r‖mk

= ‖ (
n− (t(h− 1)− s)mk2−r

)− (
n− (t′(h− 1)− s′)mk2−r

) ‖mk

≤ ‖a1 + · · ·+ ah−s−t + tzk‖mk
+ ‖a′1 + · · ·+ a′h−s′−t′ + t′zk‖mk

≤ 2h2mk2−2r.

It follows that h2 ≥ 2r−1, which contradicts (9). This completes the proof. ¤

Lemma 3.2. If n ∈ A(s,t)
k for some k ≥ 1 and (s, t) /∈ {(0, 0), (h− 1, 1)}, then |n| > n0.

Proof. If n ∈ A(s,t)
k , then

n = a1 + · · ·+ ah−s−t + (t(h− 1)− s)mk2−r + tzk

and
|n| ≥ ‖n‖mk

= ‖a1 + · · ·+ ah−s−t + tzk + ((h− 1)t− s)mk2−r‖mk

≥ ‖((h− 1)t− s)mk2−r‖mk
− ‖a1 + · · ·+ ah−s−t + tzk‖mk

≥ |((h− 1)t− s)mk2−r| − h2mk2−2r

≥ mk2−r − h2mk2−2r ≥ mk2−r−1 ≥ 22r2−r−1

≥ 2r−1 > n0,

We have used that if |((h− 1)t− s)mk2−r| < mk/2, then

‖((h− 1)t− s)mk2−r‖mk
= |((h− 1)t− s)mk2−r| ≥ mk2−r.

Also we have used (h−1)t−s 6= 0 and the inequalities (9) and (15) in the last inequalities.

¤

Lemma 3.3. For any k ≥ 0, for any h′ < h and for any integer m we have that

rAk,h′(m) ≤ g
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Proof. By induction on k. Proposition 2.1 implies that T r
γ (B) and consequently A0 are

Bh[g]-sequences. In particular, A0 is a Bh′ [g] sequence. Then rA0,h′(m) ≤ g for any

integer m.

Suppose that it is true that for any h′ < h, and for any integer m we have that

rAk−1,h′(m) ≤ g.

Consider m ∈ h′Ak.

• Suppose m 6∈ (h′ − s − t)Ak−1 + su2k−1 + tu2k for any (s, t) 6= (0, 0). Then

rAk,h′(m) = rAk−1,h′(m) ≤ g by the induction hypothesis.

• Suppose that m ∈ (h′ − s − t)Ak−1 + su2k−1 + tu2k for some (s, t) 6= (0, 0).

Consider an element a ∈ A0. Then

m + (h− h′)a ∈ A(s,t)
k ∈ (h− s− t)Ak−1 + su2k−1 + tu2k.

Since (s, t) 6= (h− 1, 1) (because h′ < h) we can apply lemma 3.1 and we have

rAk,h′(m) ≤ rAk,h(m + (h− h′)a) = rAk−1,h−s−t(m + (h− h′)a− su2k−1 − tu2k).

We can the apply the induction hypothesis because h− s− t < h.

¤

Proposition 3.2. The sequence A defined in (14) satisfies rA,h(n) ≤ f(n) for all integers

n.

Proof. Next we show that, for every integer k, the sequence Ak satisfies rAk,h(n) ≤ f(n)

for all n. The proof is by induction on k.

Let k = 0. Since A0 is a Bh[g]-sequences, we have rA0,h(n) ≤ g ≤ f(n) for n ≥ n0. If

n < n0, then rA0,h(n) = 0 ≤ f(n).

Now, suppose that it is true for k−1. In particular rAk−1,h(zk) ≤ f(zk). If rAk−1,h(zk) =

f(zk) there is nothing to prove because in that case Ak = Ak−1. But if rAk−1,h(zk) ≤
f(zk) − 1, then Ak = Ak−1 ∪ Uk = Ak−1 ∪ {u2k−1} ∪ {u2k}. We will assume that until

the end of the proof.

If n 6∈ hAk then rAk,h(n) = 0 ≤ f(n).

If n ∈ hAk, since Ak = Ak−1 ∩ Uk we can write

hAk =
h⋃

s,t=0
s+t≤h

((h− s− t)Ak−1 + su2k−1 + tu2k) .

Then

n = a1 + · · ·+ ah−s−t + su2k−1 + tu2k(16)

for some s, t, satisfying 0 ≤ s, t, s + t ≤ h and for some a1, . . . , ah−s−t ∈ Ak−1.

For short we write rs,t(n) for the number of solutions of (16).
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• If n ∈ (h− s− t)Ak−1 + su2k−1 + tu2k for some (s, t) 6= (0, 0), (s, t) 6= (h− 1, 1)

then, due to lemma 3.1, we have that rAk,h(n) = rs,t(n).

– For 0 ≤ n ≤ n0 we have that rs,t(n) = 0 ≤ f(n) (due to lemma 3.2).

– For n > n0 we apply lemma 3.3 in the first inequality below with h′ = h−s−t

and m = n− su2k−1 − tu2k,

rs,t(n) = rAk−1,h−s−t(n− su2k−1 − tu2k) ≤ g ≤ f(n)

• If n 6∈ (h− s − t)Ak−1 + su2k−1 + tu2k for any (s, t) 6= (0, 0), (s, t) 6= (h − 1, 1),

then rAk,h(n) = r0,0(n) + rh−1,1(n). Notice that r0,0(n) = rAk−1,h(n) and that

rh−1,1(n) = 1 if n = zk and rh−1,1(n) = 0 otherwise.

– If n 6= zk, then rAk,h(n) = rAk−1,h(n) ≤ f(n) by the induction hypothesis.

– If n = zk, then rAk,h(n) = rAk−1,h(zk)+rh−1,1(zk) ≤ (f(zk)−1)+1 = f(n).

¤

3.3. The density of A. Recall that γ : N0 → N0 is a strictly increasing function with

γ(0) = 0. Let R≥0 = {x ∈ R : x ≥ 0}. We extend γ to a strictly increasing function

γ : R≥0 → R≥0. (For example, define γ(x) = γ(k + 1)(x − k) + γ(k)(k + 1 − x) for

k ≤ x ≤ k + 1.)

We have

A(x) ≥ A0(x) ≥ T r
γ (B)(x)− n0.

Thus, to find a lower bound for A(x) it suffices to find a lower bound for the density of

T r
γ (B).

Lemma 3.4. T r
γ (B)(x) > B(x2−2rγ−1(log2 x)).

Proof. Let b be a positive integer such that

b ≤ x2−2rγ−1(log2 x).

Let ` be such that 2γ(`) ≤ b < 2γ(`+1). Then we can write

(17) b =
∑̀

k=0

γ(k+1)−1∑

i=γ(k)

εi2i.

It follows from the definition (4) of the Zeros Inserting Transformation that

T r
γ (b) =

∑`
k=0 22rk

∑γ(k+1)−1
i=γ(k) εi2i

≤ 22r`b

≤ 22rγ−1(log2 b)b

≤ 22r(γ−1(log2 b)−γ−1(log2 x))x

≤ x.

¤
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Recall that ε is a decreasing positive function defined on [1,∞) such that limx→∞ ε(x) =

0. We complete the proof of Theorem 1 by choosing a function γ that satisfies the in-

equality

2−2rγ−1(log2 x) ≥ ε(x).

It suffices to take γ(x) > log2(ε−1(2−2rx)).
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