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ABSTRACT. Let A be a set of integers and let h > 2. For every integer n, let 74,1 (n)
denote the number of representations of n in the form n = a1 +- - - +ap, where a; € A
for1 <i< h,and a; <--- < ap. The function r 4 5 : Z — N, where N = NU {0, oo},
is the representation function of order h for A.

We prove that every function f :Z — N satisfying liminf},,| f(n) > g is the
representation function of order h for a sequence A of integers, and that A can be
constructed so that it increases “almost” as slowly as any given Bj[g] sequence. In
particular, given h > 2, for every £ > 0 and for any function f : Z — N satisfying
lim inf|,,) oo f(n) > g = g(h,e€) there exists a sequence A satisfying r 4,5, = f and
A(z) > (/M)

Roughly speaking we prove that the problem of finding a dense set of integers
with prescribed representation function f of order h with liminf|,|_, fn) > gis
“equivalent” to the classical problem of finding a dense By [g] sequences of positive

integers.

1. INTRODUCTION

Let A be a set of integers and let h > 2. For every integer n, let r4 ,(n) denote the

number of representations of n in the form
n =aj + - _|_ ap

where a; < --- < ap and a; € A for 1 < i < h. The function 745 : Z — N is the
representation function of order h for A, where N = N U {0, co}.
Nathanson proved [7] that any function f : Z — N satisfying liminfy, ., f(n) > 11is

the representation function of order h of a set of integers A such that
(1) A(z) > ¢t/ @h=1)

where A(z) counts the number of positive elements a € A no greater than x and f(x) >

g(x) means that there exists a constant C' > 0 such that f(z) > Cg(x) for = large enough.
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It is an open problem to determine how dense the sets A can be. In this paper we study
the connection between this problem and the problem of finding dense By [g] sequences.

We recall that a set B of nonnegative integers is called a Bj[g] sequence if

ren(n) <g
for every nonnegative integer n. It is usual to write Bj, to denote Bp[1] sequences.

Luczak and Schoen proved that any B}, sequence satisfying an additional kind of Sidon
property (see [6] for the definition of this property, which they call the Sj, property) can
be enlarged to obtain a sequence with any prescribed representation function f satisfying
lim inf ;| o f(2) > 1. In particular, since they prove that there exists a By sequence A

satisfying the S, property with A(z) > 2/(?»=1) they recover Nathanson’s result.

In this paper we prove that any By[g] sequence, without any additional property, can
be modified slightly to have any prescribed representation function f of order h satisfying

liminf ;| o f(2) > g. Our main theorem is the following.

Theorem 1.1. Let f : Z — N be any function such that iminf|,|_ f(n) > g and let
B be any Bplg] sequence. Then, for any decreasing function e(x) — 0 as © — oo, there

exists a sequence A of integers such that
ran(n)=f(n) forall neZ and A(z) > B(ze(x)).

Roughly speaking, theorem above says that the problem of finding dense sets of integers
with prescribed representation functions with liminf,,| . f(n) > g is “equivalent” to the

classical problem of finding dense Bj[g] sequences of positive integers.

It is a difficult problem to construct dense By [g] sequences. A trivial counting argument
gives B(r) < x1/" for these sequences. On the other hand, the greedy algorithm shows

that there exists a By, sequence B such that
(2) B(x) > /1),

For Bs sequences, also called Sidon sets, Ruzsa proved [9] that there exists a Sidon set B
such that

3) B(x) 3> 227 1Hel,
This result and Theorem 1.1 give the following corollary.

Corollary 1. Let f : Z — N any function such that liminf), . f(n) > 1. Then there

exists a sequence of integers A such that

ra2(n)=f(n) forall neZ and A(z) > V2o,
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This result gives an affirmative answer to the third open problem in [1], which was also
posed previously in [8]. Unfortunately, nothing better than (2) is known for B}, sequences
for h > 3.

Erdé&s and Renyi [3] proved however that, for any € > 0, there exists a positive integer
g and a Bs[g] sequence B such that B(x) > x/27¢. They claimed that the same method
could be extended to Bp[g] sequences, but a serious problem with non-independent events
appears when h > 3. As an application of a more general theory, Vu [11] overcame this
problem. He proved that for any € > 0, there exist an integer g = g(h,€) and a Bylg]

sequence B such that
B(x) > z/he,

This result and Theorem 1.1 imply the next corollary

Corollary 2. Given h > 2, for any € > 0, there exists g = g(h,€) such that, for any
function f : Z — N satisfying liminf|,| o f(n) > g, there exists a sequence A of integers

such that
ran(n)=f(n) foral neZ and A(x) > .

The construction in [7] for the set A satisfying the growth condition (14) was based
on the greedy algorithm. In this paper we construct the set A by adjoining a very sparse
sequence U = {uy} to a suitable Bj[g] sequence B. This idea was used in [2], but in
a simpler way, to construct dense perfect difference sets, which are sets such that every
nonzero integer has a unique representation as a difference of two elements of A. The
proof of the main theorem in [2] can be adapted easily to our problem in the simplest

case h = 2.

Theorem 1.2. Let f:Z — N be a function such that liminf|,,|_ f(n) > g, and let B

be a Ba[g] sequence. Then there exists a sequence of integers A such that
raz2(n)=f(n) forall neZ and A(z) > B(z/3).

We omit the proof because it is very close to the proof of the main theorem in [2].
Unfortunately, that proof cannot be adapted to the case h > 3. We need another definition
of a “suitable” By[g] set. In section §2 we shall show how to modify a Bj[g] sequence B so
that it becomes “suitable.” We do this by applying the “Inserting Zeros Transformation”

to an arbitrary Bp[g] set. This is the main ingredient in the proof of Theorem 1.1.

Chen [1] has proved that for any € > 0 there exists a unique representation basis A (that
is, a set A with r42(k) = 1 for all k € Z) such that limsup,_,.. A(z)/z?/?7¢ > 1. J. Lee
[5] has improved this result by proving that for any increasing function w tending to infin-

ity there exists a unique representation basis A such that limsup,_, . A(z)w(x)//z > 0.
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Theorem 1.2 and the classical constructions of Erdés [10] and Kriickeberg [4] of infinite
Sidon sets B such that limsup,_, . B(x)/+/z > 0 provide a unique representation basis .A
such that limsup,_,  A(z)/v/z > 0. Indeed, we can easily adapt the proof of Theorem
1.3 in [2] to the case of the additive representation function r(n) (instead of the subtractive
representation function d(n) = #{n =a —d/, a,a’ € A}).

Theorem 1.3. There exists a unique representation basis A such that
A(z) 1
limsup — > —.
sl VE SR
Again we omit the proof because it is very close to the proof of Theorem 1.3 in [2].

Theorem above answers affirmatively the first open problem in [1]. Note also that if

A is an infinite Sidon set of integers, then the set
A ={4a:a>0}U{-4da+1:a<0}

is also a Sidon set and, in this case, liminf AN (—z,z)|/v/z = liminf A'(4z)//z. A well
known result of Erdds states that liminf B(x)/\/z = 0 for any Sidon set B. Then the

above limit is zero, so it answers negatively the second open problem in [1].

It is easy to prove that for any function w tending to infinity there exists a Bj se-
quence such that limsup, _,  B(z)w(x)/z'/" > 1. We can construct the set B as follows:

1/h and

Let x1,...,xg,... be a sequence of positive integers such that w(zy) > (hxk—1)
consider, for each k, a By, sequence By, C [1,zx/(hay_1)] with |Bg| > (x5 /(hag_1))Y/".
The set B = Uy (hxi_1) * By, satisfies the conditions, where we use the notation ¢ x A =
{ta, a € A}.

The construction above and Theorem 1.1 yield the following Corollary, which extends

the main theorem in [1] in several ways.

Corollary 3. Let f : Z — N any function such that liminf),|_ f(n) > 1. For any
increasing function w tending to infinity there exists a set A such that r 4 ,(n) = f(n) for

all integers n, and
lim sup A(z)w(z) /z'/" > 0.

r—00

2. THE INSERTING ZEROS TRANSFORMATION

Consider the binary expansion of the elements of a set B of positive integers. We will
modify these integers by inserting strings of zeros at fixed places. We will see that this
transformation of the set B preserves certain additive properties.

In this paper we denote by 7 any strictly increasing function v : Ng — Ny with v(0) = 0.

For every positive integer r, we define the “Inserting Zeros Transformation” T2 by

y(k+1)—1

(4) T[> et | =D 2 Y g2n

i>0 k>0 i= (k)
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In other words, if gge1€5 ... is the binary expansion of b, then

T’::(b) =¢€g-- .5,\/(1)71 0-- .Og’y(l) .. .57(2)*1 0-- 'OE"/(Z) .. 'E’y(k:)fl 0--- Ogv(k_) .
2r 2r 2r

Note that if b < V', then 77 (b) < T7(b'). We define the set
(5) T7(B) = {T7(b) : b € B}.
The next proposition proves that the function 77 preserves some Sidon properties.
Proposition 2.1. Let 2r > log, h. If by, ..., by, 0}, .., b}, are positive integers such that
T5(by) + -+ + Ty (bn) = Ty(¥)) + -+ + T (by),

then
bi+--+bp =0 4+ b,
In particular, if B is a By[g] set and 2r > log, h, then T7(B) is also a By [g] set.

Proof. We write

y(k+1)-1 ‘ y(k+1)—1 ‘
(6) by = Z Ei(bl)Ql + -+ Z Ei(bh)Ql.
i=7(k) i=v(k)

For any k > 1 we define the integer
(7) my = 227‘k+’Y(k)_

It follows from (4), (6) and (7) that

k-1
Tr(by) + -+ Ty (bn) = Y 2%7t;  (mod my).
§=0
Since T2 (b1) + -+ + T3 (bp) = T5(by) + - - + 17 (b}, ), we have
k—1 k=1
Z 2%rit; = Z 22”t; (mod my).
=0 7=0
Notice that
k—1 k—1 v(k)—1
0< Z 22rjtj < 22r(k71) th < 22r(k71)h Z 9t < 22r(k71)22r2’y(k) = mg,
j=0 j=0 i=0

and the same inequality works for Z;:é 2 t’.. Then

k—1 k—1
22 = 2
j=0 §=0

It follows that t;, = t}, for all k > 0, and so

byt -dby=3 ti=> ti =0+ +b.

k>0 k>0

This completes the proof. O
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Definition 2.2. For all integers m > 2 and z, let
[#]|m = min{ly|, =y (mod m)}.

Note that ||z1+z2||m < ||21]lm+||22]/m for all integers x1 and 5. Also, if |||, # ||2/||m

for some m, then x # 2’ (mod m) and so z # z’.

Proposition 2.3. For k£ > 1 and for any positive integer b
1T (0) [, < 272",
where my, is defined in (7).

Proof. Let b = epeqe2 ... be the binary expansion of b. Then

k—1 G-
T7(b) = Z 22ri Z ;2" (mod my)
i=0 i=7(3)
and
k-1 ~(G+1)—1 2 (k—1) (k) —1
0<> 27 Y g2 < > 2l < mp27%.
3=0 i=0) 1=0
This completes the proof. O

3. PROOF OF THEOREM 1.1

3.1. Two auxiliary sequences. Consider the sequence {z;}32; defined by

(8) zj == Wil(Vil+1).
For every positive integer j there is a unique positive integer s such that s? < j < (s+1)2.
Then j = s + s + i for some i € [—s,s] and z; = i. It follows that for every integer i
there are infinitely many positive integers j such that z; = i. Moreover, |z;| < s < \/j for
all j > 1.

Let f : Z — N any function such that liminf, . f(n) > g. Let ng be the least
positive integer such that f(n) > g for all [n| > ng. Choose an integer 7 > 1+log,(h?+ng).
Then

(9) h* <2771 and ng < 2"

Let v : Ng — Ng be a strictly increasing function such that v(0) = 0.
We consider the sequence U = {u;}5°, defined by

{UZkl = —mp277,

(10)
Uk = (h — 1)mk2_7" + 2k
where my, = 22rk+t7(k)  We write

(11) Uy = {ugk—1,u2k} and U = U Us.
s<k
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Note that for all j < k we have
(12) 2] < VE < 28 < 270) < 92r(h=DA(k) — py 9=2r,

3.2. The recursive construction. For any Bj[g]-sequence B we consider the set I (B)
defined in (5). Let f : Z — N be a function such that f(n) > g for |n| > ng. We construct

an increasing sequence {Ax}%2, of sets of integers as follows:
(13) Ao ={a € T}(B) : a > no}

and, for k > 1,
A — { AUl if TAk,l,h(Zk) < f(zk)
B =

Ap_1 otherwise

where z;, and Uy, are defined in (8) and (11).
We shall prove that the set

(14) A= A
k=0
satisfies 74 ,(n) = f(n) for all integers n as consequence of propositions 3.1 and 3.2.

Proposition 3.1. The sequence A defined in (14) satisfies 74 n(n) > f(n) for all integers

n.

Proof. Since

Ugk—1 + -+ + Ugk—1 +U2k = 2k

h—1
it follows that if r4, | n(2zk) < f(2x), then Ay = Ap_1 Ul and

T Ak (26) = 7oAy n(2k) + 1.

Since the sequence (z) takes all the integers infinitely many times, then r.4, ,(n) > f(n)

for some k (if f(n) < 0o0) or limyes 74, 1 (n) = 0o (if f(n) = 00). O
Lemmas 3.1, 3.2 and 3.3 will allow us to give a clean proof of proposition 3.2.
Lemma 3.1. Let k > 1. For nonnegative integers s and t with s +t < h, let
A,(:’t) =(h—s—1t)Ag_1+ sugr—1 + tugy.
The sets A,:’t) are pairwise disjoint, except possibly the sets A;ﬁo,o) and A,ih_l’l).
Proof. If n € .A,(:’t) then

n o =ay+-+ap_s—¢ + Suop_1 + tugg
=a1+ - Fap—s—t+ (t(h—1) — s)mp2™" + tzy,

with ay,...,ap_s—¢ € A1 C Ag Ul.
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If a; € Ao, then ||ai||m, < mir2~2" by Proposition 2.3. If a; € U<, we use (10) and

(12) to obtain

laillm, <lail < (h—1)mgp_127" + Mp_1272" < hm27 2",

We use again (12) to obtain

lar + -+ an—s—t +t2ellm, < laallmg + -+ lan—s—tllmy + [t28]lm,

(15)

IN

(h — 5 — t)ymph2™2" + tmy2™2"

< thk2_2r.

Now suppose that n € A,(Csl’t/) for some (s',t') # (s, ).
T {(s,1), (', )} # {(0,0), (h — 1, 1)}, then t(h — 1) — s # '(h — 1) — &' and

mk2_r S

IN

IN

It follows that

[((t(h—1) = s) = (#'(h = 1) = 8)) mx2™" [[m,

1(t(h — 1) = s)my2™" = ('(h — 1) = 8" )mp2 7" ||m,

[ (n—(t(h—1)—s)mu2™") — (n— (t'(h = 1) = " )my27") [|m,
llar 4+ -+ an—s—t + tzpllm, + llay + - 4 af_g_p + 2k,

2h2mk2_2r.

h? > 27=1 which contradicts (9). This completes the proof. O

Lemma 3.2. Ifn € Agj’t) for some k > 1 and (s,t) ¢ {(0,0), (h —1,1)}, then |n| > ng.

Proof. If n € A,(Cs

and
|

’t), then

n=a+ -+ ap—s—t+ E(h—1) — s)mp2™" 4tz

2 [l

=llar 4+ Fan—s—t +tzr + ((h — )t — $)mp27" ||,

> [[((h = 1)t — $)mi27 " |y, — llar + - + an—s—t + t2k||ms
> |((h— 1)t — 8)mp27"| — h?my2=2"

> mp2 " — h2mp2 2 > m2 "1 > 92rg-r—1

> or—1 > no,

We have used that if |((h — 1)t — s)mg2™"| < my/2, then

1((h = 1)t = $)ms2 ", = [((h = 1)t = s)my277] > my27".

Also we have used (h—1)t—s # 0 and the inequalities (9) and (15) in the last inequalities.

O

Lemma 3.3. For any k > 0, for any b/ < h and for any integer m we have that

T A (m) < g
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Proof. By induction on k. Proposition 2.1 implies that 77 (B) and consequently Aq are
By [g]-sequences. In particular, Ay is a By/[g] sequence. Then 74, (m) < g for any
integer m.
Suppose that it is true that for any A’ < h, and for any integer m we have that
T Ay n(m) < g.
Consider m € h' Aj,.
o Suppose m & (' —s — t)Ap_1 + Suax—1 + tugy for any (s,t) # (0,0). Then
T A, (M) =74, , n(m) < g by the induction hypothesis.
e Suppose that m € (A’ — s — t)Ag_1 + sugr_1 + tugg for some (s,t) # (0,0).

Consider an element a € Ay. Then
m+ (h—h)a € A,(:’t) €(h—s—1t)Ak_1 + sugg_1 + tugg.
Since (s,t) # (h —1,1) (because h’ < h) we can apply lemma 3.1 and we have
Tag.h (M) <ra, n(m+ (h—h)a) =ra_, hs—t(m~+ (h—h)a— sugp_1 — tusg).

We can the apply the induction hypothesis because h — s —t < h.
|

Proposition 3.2. The sequence A defined in (14) satisfies 7 4 5 (n) < f(n) for all integers

n.

Proof. Next we show that, for every integer k, the sequence Ay, satisfies r 4, 1 (n) < f(n)
for all n. The proof is by induction on k.

Let k = 0. Since Ag is a Bp[g]-sequences, we have 74, 5(n) < g < f(n) for n > ng. If
n < ng, then r4, n(n) =0 < f(n).

Now, suppose that it is true for k—1. In particular r 4, , n(zr) < f(zk). ra, , n(zk) =
f(zx) there is nothing to prove because in that case Ay = Agp_1. But if 74, _, n(zx) <
f(zx) — 1, then Ay = Ap—1 UUx = A—1 U {uar—1} U {ugr}. We will assume that until
the end of the proof.

If n & hAg then ra, 5, (n) =0 < f(n).

If n € hAyg, since Ay = Ai_1 NU;, we can write

h
hA, = U ((h -8 — t)Akfl + Sugk—1 + tUQk) .
:«%’»tt:S[;l
Then
(16) n=ay+- -+ ap_s_t + Susp_1 + tusg
for some s, t, satisfying 0 < s,t, s+t < h and for some a1,...,ap_s_¢ € Ax_1.

For short we write 7, .(n) for the number of solutions of (16).
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o If n€ (h—s—1t)Ak_1 + Sugk_1 + tugy for some (s,t) # (0,0), (s,t) #(h—1,1)
then, due to lemma 3.1, we have that r 4, (n) = rs(n).
— For 0 < n < ng we have that 75 ;(n) =0 < f(n) (due to lemma 3.2).
— For n > ng we apply lemma 3.3 in the first inequality below with b’ = h—s—t

and m =n — Sugk_1 — tusk,
To,t(n) = T4,y h—s—t(n — Sugr_1 — tugy) < g < f(n)

o If n ¢ (h—s—t)Ak_1+ Suak—1 + tug for any (s,t) # (0,0), (s,t) # (h—1,1),
then 74, n(n) = ro,0(n) + rp—1,1(n). Notice that roo(n) = ra, , »(n) and that
rh—1,1(n) =1if n = 2z, and r,_1.1(n) = 0 otherwise.

— If n # 2, then ra, p(n) =74, , n(n) < f(n) by the induction hypothesis.
= Ifn =z, then 74, n(n) = ra,_, n(zk) +rr-11(21) < (f(2) = 1) +1= f(n).
(]

3.3. The density of A. Recall that v : Ny — Nj is a strictly increasing function with
v(0) = 0. Let R>¢o = {z € R : z > 0}. We extend ~ to a strictly increasing function
v : Rso — Rxg. (For example, define v(z) = v(k + 1)(z — k) + v(k)(k + 1 — z) for
k<z<k+1)
We have
Alz) = Ao(z) = T3 (B)(x) — no-

Thus, to find a lower bound for A(z) it suffices to find a lower bound for the density of
15 (B).

Lemma 3.4. T;(B)(:r) > B(x2—2r771(108;2 w))'

Proof. Let b be a positive integer such that

b < 292 (logs 2).

Let ¢ be such that 27®) < b < 27¢+D) Then we can write

¢ y(k+1)—1

(17) b= > &2

It follows from the definition (4) of the Zeros Inserting Transformation that

r Y r k+1)—1 i
TI(b) = Yh_ 22t I a2
< 22'r'fb
< 9277 ' (logz by
< 92r(7 " (loga b) =y~ ! (logy 2)) 5,

<z
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Recall that € is a decreasing positive function defined on [1, 00) such that lim,_,~ e(x) =
0. We complete the proof of Theorem 1 by choosing a function ~ that satisfies the in-
equality
272rfy’1(log2 z) > 6(1‘)

It suffices to take v(z) > logy(e~1(272r%)).
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