LEAST TOTIENTS IN ARITHMETIC PROGRESSIONS

JAVIER CILLERUELO AND MOUBARIZ Z. GARAEV

Abstract

Let $N(a, m)$ be the least integer n (if exists) such that $\varphi(n) \equiv a(\bmod m)$. Friedlander and Shparlinski proved that for any $\varepsilon>0$ there exists $A=A(\varepsilon)>0$ such that for any positive integer m which has no prime divisors $p<(\log m)^{A}$ and any integer a with $\operatorname{gcd}(a, m)=1$, we have the bound $N(a, m) \ll m^{3+\varepsilon}$. In the present paper we improve this bound to $N(a, m) \ll m^{2+\varepsilon}$.

1. Introduction

The distribution properties of the values of Euler's function $\varphi(n)$ in arithmetic progressions have been studied in a series of papers, see for example [1]-[5]. Friedlander and Shparlinski investigated the size of the least integer n, to be denoted by $N(a, m)$, such that

$$
\begin{equation*}
\varphi(n) \equiv a \quad(\bmod m) . \tag{1}
\end{equation*}
$$

They proved that if $m=q$ is a prime number, then $N(a, q) \ll q^{5 / 2+\varepsilon}$, which afterwards was improved by Garaev to $N(a, q) \ll q^{2+\varepsilon}$. In the case of composite modulo m Friedlander and Shparlinski established that for some $A=A(\varepsilon)>0$ if $(a, m)=1$ and if m has no prime divisors $p<(\log m)^{A(\varepsilon)}$, then $N(a, m) \ll m^{3+\varepsilon}$. The aim of the present paper is to improve this bound further to $N(a, m) \ll m^{2+\varepsilon}$, which at the same time extends Garaev's bound to this class of composite modulo m.

Theorem 1. For any $\varepsilon>0$ there exists $A=A(\varepsilon)>0$ such that, uniformly for integers $m \geq 1$ which have no prime divisors $p<(\log m)^{A}$ and a with $(a, m)=1$, we have the bound

$$
N(a, m) \ll m^{2+\varepsilon}
$$

In the opposite direction, the result of Friedlander and Luca [3] implies that there exists a sequence of arithmetical progressions $a_{k}\left(\bmod m_{k}\right)$ with $m_{k} \rightarrow \infty$ as $k \rightarrow \infty$ such that $N\left(a_{k}, m_{k}\right)$ exists and

$$
\frac{\log N\left(a_{k}, m_{k}\right)}{\log m_{k}} \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty .
$$

[^0]
2. The proof

As in the paper of Friedlander and Shparlinski, we look for a solution of the congruence in question in the form $n=p_{1} p_{2} p_{3}$, where p_{j} are prime numbers that run through prime numbers of certain disjoint intervals.

Let $k \geq 2$ be a fixed positive integer constant. Let I_{1}, I_{2}, I_{3} be sets of primes defined as follows:

$$
\begin{aligned}
& I_{1}=\left\{p: 0.5 m^{1+1 / k}<p \leq m^{1+1 / k},(p-1, m)=1\right\}, \\
& I_{2}=\{p: 0.5 m<p \leq m,(p-1, m)=1\}, \\
& I_{3}=\left\{p: 0.5 m^{1 / k}<p \leq m^{1 / k},(p-1, m)=1\right\}
\end{aligned}
$$

The sets I_{1}, I_{2}, I_{3} are pairwise disjoint for any sufficiently large integer m. We will prove that if m is a large integer with no prime divisors less than $(\log m)^{2(k+3)^{2}}$ and if $(a, m)=1$, then the congruence

$$
\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right) \equiv a \quad(\bmod m), \quad p_{j} \in I_{j}, j=1,2,3
$$

has solutions. The number J of solutions of this congruence is equal to

$$
J=\frac{1}{\varphi(m)} \sum_{\chi} \sum_{p_{1}, p_{2}, p_{3}} \chi\left(\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{2}-1\right)\right) \bar{\chi}(a)
$$

where χ runs through all multiplicative character modulo m and the primes p_{1}, p_{2}, p_{3} run the sets I_{1}, I_{2}, I_{3} respectively. Thus

$$
\begin{equation*}
J=\frac{\left|I_{1}\right|\left|I_{2}\right|\left|I_{3}\right|}{\varphi(m)}+\frac{\theta}{\varphi(m)} \sum_{\chi \neq \chi_{0}}\left|S_{1}(\chi)\right|\left|S_{2}(\chi)\right|\left|S_{3}(\chi)\right| ; \quad|\theta| \leq 1, \tag{2}
\end{equation*}
$$

where

$$
S_{j}(\chi)=\sum_{p \in I_{j}} \chi(p-1), j=1,2,3
$$

To prove that $J>0$ it is enough to prove that $\sum_{\chi \neq \chi_{0}}\left|S_{1}(\chi)\right|\left|S_{2}(\chi)\right|\left|S_{3}(\chi)\right|<\left|I_{1}\right|\left|I_{2}\right|\left|I_{3}\right|$.

2.1. Preliminary lemmas.

Lemma 2. The following bounds hold:

$$
\left|I_{1}\right| \gg \frac{m^{1 / k} \varphi(m)}{\log m}, \quad\left|I_{2}\right| \gg \frac{\varphi(m)}{\log m}, \quad\left|I_{3}\right| \gg \frac{m^{1 / k}}{\log m} \frac{\varphi(m)}{m} .
$$

Proof. It follows easily from [4, Lemma 4].
Lemma 3. The following bounds hold:

$$
\begin{align*}
\sum_{\chi}\left|S_{j}(\chi)\right|^{2} & \ll(\log m)\left|I_{j}\right|^{2}, j=1,2 \tag{3}\\
\sum_{\chi}\left|S_{3}(\chi)\right|^{2 k} & \ll \phi(m) m(\log m)^{k^{2}-1} \tag{4}
\end{align*}
$$

Proof. We easily check that

$$
\sum_{\chi}\left|S_{j}(\chi)\right|^{2}=\varphi(m) J_{j}, \quad j=1,2
$$

where J_{j} is the number of pairs $\left(p, p^{\prime}\right), p, p^{\prime} \in I_{j}$ such that $p \equiv p^{\prime}(\bmod m)$.
In case of $j=2$, since $\left|p-p^{\prime}\right|<m$ it implies that $p^{\prime}=p$ for that pairs, so the number of pairs is exactly $\left|I_{2}\right|$. Lemma 2 gives

$$
\sum_{\chi}\left|S_{2}(\chi)\right|^{2}=\varphi(m) J_{2}=\varphi(m)\left|I_{2}\right|=\frac{\varphi(m)}{\left|I_{2}\right|}\left|I_{2}\right|^{2} \ll(\log m)\left|I_{2}\right|^{2}
$$

In case of $j=1$, since $\left|p-p^{\prime}\right|<m^{1+1 / k}$, for each p, the number of primes p^{\prime} with $p^{\prime} \equiv p$ $(\bmod m)$ is at most $m^{1 / k}$. Thus $J_{1} \ll m^{1 / k}\left|I_{1}\right|$ and again by Lemma 2

$$
\sum_{\chi}\left|S_{1}(\chi)\right|^{2} \ll \varphi(m) m^{1 / k}\left|I_{1}\right| \leq \frac{\varphi(m) m^{1 / k}}{\left|I_{1}\right|}\left|I_{1}\right|^{2} \ll(\log m)\left|I_{1}\right|^{2}
$$

To prove (4) we observe that

$$
\begin{equation*}
\sum_{\chi}\left|S_{3}(\chi)\right|^{2 k}=\varphi(m) J_{3} \tag{5}
\end{equation*}
$$

where J_{3} is the number of $\left(p_{1}, \ldots, p_{k}, p_{1}^{\prime}, \ldots, p_{k}^{\prime}\right)$ with $p_{i}, p_{i}^{\prime} \in I_{3}$ such that

$$
\left(p_{1}-1\right) \cdots\left(p_{k}-1\right) \equiv\left(p_{1}^{\prime}-1\right) \cdots\left(p_{k}^{\prime}-1\right) \quad(\bmod m)
$$

Since both products are less than m, the number of solutions of this congruence is bounded by

$$
\begin{equation*}
J_{3} \leq \sum_{n \leq m} \tau_{k}^{2}(m) \tag{6}
\end{equation*}
$$

where

$$
\tau_{k}(n)=\#\left\{\left(n_{1}, \ldots, n_{k}\right): n_{1} \cdots n_{k}=n\right\}
$$

is the generalized divisor function. Now combining the well known inequality

$$
\sum_{n \leq m} \tau_{k}^{2}(n) \ll m(\log m)^{k^{2}-1}
$$

with inequalities (5) and (6), we obtain (4).
Lemma 4. If $\chi \neq \chi_{0}$, then

$$
\left|S_{1}(\chi)\right| \ll(\log m)^{-k^{2}-6 k-3}(\log \log m)\left|I_{1}\right| .
$$

Proof. We can write

$$
S_{1}(\chi)=\sum_{p \in I_{1}} \chi(p-1)=\sum_{0.5 m^{1+1 / k}<p \leq m^{1+1 / k}} \chi(p-1),
$$

since $\chi(p-1)=0$ when $(p-1, m)>1$. Then

$$
\begin{aligned}
\left|S_{1}(\chi)\right| & =\left|\sum_{p \leq m^{1+1 / k}} \chi(p-1)-\sum_{p \leq 0.5 m^{1+1 / k}} \chi(p-1)\right| \\
& \leq\left|\sum_{p \leq m^{1+1 / k}} \chi(p-1)\right|+\left|\sum_{p \leq 0.5 m^{1+1 / k}} \chi(p-1)\right| .
\end{aligned}
$$

From Rakhmonov's work [6] it is known that if $\chi \neq \chi_{0}$ is a multiplicative character modulo m and $(l, m)=1$, then

$$
\left|\sum_{p \leq x} \chi(p-l)\right| \leq x(\log x)^{5} \tau(q)\left(\sqrt{1 / q+q \tau^{2}\left(q_{1}\right) / x}+x^{-1 / 6} \tau\left(q_{1}\right)\right)
$$

where q is the modulo of the conductor of $\chi, q_{1}=\prod_{p \mid m, p \nmid q} p$ and τ is the divisor function.
For $x=m^{1+1 / k}$ or $x=0.5 m^{1+1 / k}$ it gives

$$
\begin{aligned}
\left|\sum_{p \leq x} \chi(p-l)\right| & \ll m^{1+1 / k}(\log m)^{5} \frac{\tau(q)}{\sqrt{q}} \\
& +m^{1 / 2+1 /(2 k)}(\log m)^{5} q^{1 / 2} \tau\left(q_{1}\right) \tau(q) \\
& +m^{(1+1 / k) 5 / 6}(\log m)^{5} \tau\left(q_{1}\right) \tau(q)
\end{aligned}
$$

Since $q \leq m, k \geq 2$ and $\tau\left(q_{1}\right) \tau(q) \leq \tau(m) \ll m^{1 /(4 k)}$ we obtain

$$
\left|\sum_{p \leq x} \chi(p-l)\right| \ll m^{1+1 / k}(\log m)^{5} \frac{\tau(q)}{\sqrt{q}}+m^{1+3 /(4 k)}(\log m)^{5} .
$$

The maximum value of $\frac{\tau(q)}{\sqrt{q}}$ holds when q is the least prime divisor of m, which is greater than $(\log m)^{2(k+3)^{2}}$. Thus

$$
\begin{aligned}
\left|\sum_{p \leq x} \chi(p-l)\right| & \ll m^{1+1 / k}(\log m)^{5-(k+3)^{2}}+m^{1+3 /(4 k)}(\log m)^{5} \\
& \ll \frac{m}{\varphi(m)}(\log m)^{6-(k+3)^{2}}\left|I_{1}\right| .
\end{aligned}
$$

Finally we use the known estimate, $\frac{m}{\varphi(m)} \ll \log \log m$.
2.2. End of the Proof. Following the idea of [5], we split the set of nonprincipal characters into two subsets:

$$
\begin{aligned}
& \mathcal{A}=\left\{\chi \neq \chi_{0}:\left|S_{3}(\chi)\right| \leq\left|I_{3}\right|(\log m)^{-2}\right\} \\
& \mathcal{B}=\left\{\chi \neq \chi_{0}:\left|S_{3}(\chi)\right|>\left|I_{3}\right|(\log m)^{-2}\right\} .
\end{aligned}
$$

Thus, from (2) we have

$$
\begin{equation*}
J=\frac{\left|I_{1}\right|\left|I_{2}\right|\left|I_{3}\right|}{\varphi(m)}+\frac{\theta}{\varphi(m)} \sum_{\mathcal{A}}+\frac{\theta}{\varphi(m)} \sum_{\mathcal{B}} ; \quad|\theta| \leq 1, \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sum_{\mathcal{A}}=\sum_{\chi \neq \chi_{0}}\left|S_{1}(\chi)\right|\left|S_{2}(\chi)\right|\left|S_{3}(\chi)\right|, \\
& \sum_{\mathcal{B}}=\sum_{\chi \in \mathcal{B}}\left|S_{1}(\chi)\right|\left|S_{2}(\chi)\right|\left|S_{3}(\chi)\right| .
\end{aligned}
$$

To estimate $\sum_{\mathcal{A}}$ we observe that

$$
\sum_{\mathcal{A}} \leq\left|I_{3}\right|(\log m)^{-2}\left(\sum_{\chi}\left|S_{1}(\chi)\right|^{2}\right)^{1 / 2}\left(\sum_{\chi}\left|S_{2}(\chi)\right|^{2}\right)^{1 / 2} .
$$

Using Lemma 3 we get that

$$
\begin{equation*}
\sum_{\mathcal{A}} \ll(\log m)^{-1}\left|I_{1}\right|\left|I_{2}\right|\left|I_{3}\right| . \tag{8}
\end{equation*}
$$

To estimate $\sum_{\mathcal{B}}$, we first note that

$$
\sum_{\mathcal{B}} \leq|\mathcal{B}|\left(\max _{\chi \neq \chi_{0}}\left|S_{1}(\chi)\right|\right)\left|I_{2}\right|\left|I_{3}\right| .
$$

Next we estimate $|\mathcal{B}|$ using Lemma 3:

$$
\left|\mathcal{B} \| I_{3}\right|^{2 k}(\log m)^{-4 k} \leq \sum_{\chi}\left|S_{3}\right|^{2 k} \ll \varphi(m) m(\log m)^{k^{2}-1} .
$$

Thus

$$
|\mathcal{B}| \ll(\log m)^{k^{2}+4 k-1} \varphi(m) m\left(\frac{m^{1 / k}}{\log m} \frac{\varphi(m)}{m}\right)^{-2 k} \ll(\log m)^{k^{2}+6 k-1}\left(\frac{m}{\varphi(m)}\right)^{2 k-1} .
$$

We use again that $\frac{m}{\varphi(m)} \ll \log \log m$ and Lemma 4 to obtain

$$
\begin{aligned}
\sum_{\mathcal{B}} & \ll|\mathcal{B}|(\log m)^{-k^{2}-6 k-3}(\log \log m)\left|I_{1}\right|\left|I_{2}\right|\left|I_{3}\right| \\
& \ll(\log m)^{-4}(\log \log m)^{2 k}\left|I_{1}\right|\left|I_{2}\right|\left|I_{3}\right| .
\end{aligned}
$$

Inserting this estimate together with (8) into (7), we get that

$$
J=\frac{\left|I_{1}\right|\left|I_{2}\right|\left|I_{3}\right|}{\varphi(m)}\left(1+O\left((\log m)^{-1}\right)\right) .
$$

Thus, we have proved that for m large enough the congruence

$$
\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right) \equiv a \quad(\bmod m)
$$

has some solution $p_{1} \in I_{1}, p_{2} \in I_{2}, p_{3} \in I_{3}$. Since, $\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right) \leq m^{2+2 / k}$, we finish the proof of our Theorem.

References

[1] T. Dence and C. Pomerance, Eulers function in residue classes, The Ramanujan J. 2 (1998), 720.
[2] K. Ford, S. Konyagin and C. Pomerance, Residue classes free of values of the Euler function, in Number Theory in Progress, K. Gyory, H. Iwaniec, and J. Urbanowicz, eds., vol. 2, de Gruyter, Berlin and New York, 1999, 805-812.
[3] J. Friedlander and F. Luca, Residue Classes Having Tardy Totients, arXiv: math.NT/0709.3056v1.
[4] J. Friedlander and I. Shparlinski, Least totient in residue class, Bull. London Math. Soc. 39 (2007) 425432. Corrigendum in: Least totient in residue class, Bull. London Math. Soc. (2008) doi:10.1112/blms/bdn037.
[5] M. Garaev, A note on the least totient of a residue class, The Quaterly Journal of Mathematics, doi:10.1093/qmath/han005.
[6] Z. Kh. Rakhmonov, On the distribution of values of Dirichlet characters and their applications, Proc. Steklov Inst. Math. 207 (1995) 263-272.

Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid-28049, Spain
E-mail address: franciscojavier.cilleruelo@uam.es

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 61-3 (Xangari), C.P. 58089, Morelia, Michoacán, México

E-mail address: garaev@matmor.unam.mx

[^0]: 1991 Mathematics Subject Classification. 2000 Mathematics Subject Classification:11B50, 11L40, 11N64.

 During the preparation of this paper, J. C. was supported by Grant MTM 2005-04730 of MYCIT.

