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Abstract. Let N(a, m) be the least integer n (if exists) such that ϕ(n) ≡ a (mod m).
Friedlander and Shparlinski proved that for any ε > 0 there exists A = A(ε) > 0 such
that for any positive integer m which has no prime divisors p < (log m)A and any integer
a with gcd(a,m) = 1, we have the bound N(a,m) ¿ m3+ε. In the present paper we
improve this bound to N(a,m) ¿ m2+ε.

1. Introduction

The distribution properties of the values of Euler’s function ϕ(n) in arithmetic pro-
gressions have been studied in a series of papers, see for example [1]–[5]. Friedlander and
Shparlinski investigated the size of the least integer n, to be denoted by N(a, m), such
that

(1) ϕ(n) ≡ a (mod m).

They proved that if m = q is a prime number, then N(a, q) ¿ q5/2+ε, which afterwards was
improved by Garaev to N(a, q) ¿ q2+ε. In the case of composite modulo m Friedlander
and Shparlinski established that for some A = A(ε) > 0 if (a,m) = 1 and if m has no
prime divisors p < (log m)A(ε), then N(a,m) ¿ m3+ε. The aim of the present paper is to
improve this bound further to N(a,m) ¿ m2+ε, which at the same time extends Garaev’s
bound to this class of composite modulo m.

Theorem 1. For any ε > 0 there exists A = A(ε) > 0 such that, uniformly for integers
m ≥ 1 which have no prime divisors p < (log m)A and a with (a,m) = 1, we have the
bound

N(a,m) ¿ m2+ε.

In the opposite direction, the result of Friedlander and Luca [3] implies that there exists
a sequence of arithmetical progressions ak (mod mk) with mk →∞ as k →∞ such that
N(ak,mk) exists and

log N(ak,mk)

log mk

→∞ as k →∞.
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2. The proof

As in the paper of Friedlander and Shparlinski, we look for a solution of the congruence
in question in the form n = p1p2p3, where pj are prime numbers that run through prime
numbers of certain disjoint intervals.

Let k ≥ 2 be a fixed positive integer constant. Let I1, I2, I3 be sets of primes defined
as follows:

I1 = {p : 0.5m1+1/k < p ≤ m1+1/k, (p− 1,m) = 1},
I2 = {p : 0.5m < p ≤ m, (p− 1,m) = 1},
I3 = {p : 0.5m1/k < p ≤ m1/k, (p− 1,m) = 1}.

The sets I1, I2, I3 are pairwise disjoint for any sufficiently large integer m. We will prove
that if m is a large integer with no prime divisors less than (log m)2(k+3)2 and if (a,m) = 1,
then the congruence

(p1 − 1)(p2 − 1)(p3 − 1) ≡ a (mod m), pj ∈ Ij, j = 1, 2, 3

has solutions. The number J of solutions of this congruence is equal to

J =
1

ϕ(m)

∑
χ

∑
p1,p2,p3

χ ((p1 − 1)(p2 − 1)(p2 − 1)) χ(a)

where χ runs through all multiplicative character modulo m and the primes p1, p2, p3 run
the sets I1, I2, I3 respectively. Thus

(2) J =
|I1||I2||I3|

ϕ(m)
+

θ

ϕ(m)

∑

χ6=χ0

|S1(χ)||S2(χ)||S3(χ)|; |θ| ≤ 1,

where
Sj(χ) =

∑
p∈Ij

χ(p− 1), j = 1, 2, 3.

To prove that J > 0 it is enough to prove that
∑

χ 6=χ0
|S1(χ)||S2(χ)||S3(χ)| < |I1||I2||I3|.

2.1. Preliminary lemmas.

Lemma 2. The following bounds hold:

|I1| À m1/kϕ(m)

log m
, |I2| À ϕ(m)

log m
, |I3| À m1/k

log m

ϕ(m)

m
.

Proof. It follows easily from [4, Lemma 4]. ¤
Lemma 3. The following bounds hold:∑

χ

|Sj(χ)|2 ¿ (log m)|Ij|2, j = 1, 2(3)

∑
χ

|S3(χ)|2k ¿ φ(m)m(log m)k2−1.(4)
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Proof. We easily check that
∑

χ

|Sj(χ)|2 = ϕ(m)Jj, j = 1, 2,

where Jj is the number of pairs (p, p′), p, p′ ∈ Ij such that p ≡ p′ (mod m).

In case of j = 2, since |p− p′| < m it implies that p′ = p for that pairs, so the number
of pairs is exactly |I2|. Lemma 2 gives

∑
χ

|S2(χ)|2 = ϕ(m)J2 = ϕ(m)|I2| = ϕ(m)

|I2| |I2|2 ¿ (log m)|I2|2.

In case of j = 1, since |p− p′| < m1+1/k, for each p, the number of primes p′ with p′ ≡ p
(mod m) is at most m1/k. Thus J1 ¿ m1/k|I1| and again by Lemma 2

∑
χ

|S1(χ)|2 ¿ ϕ(m)m1/k|I1| ≤ ϕ(m)m1/k

|I1| |I1|2 ¿ (log m)|I1|2.

To prove (4) we observe that

(5)
∑

χ

|S3(χ)|2k = ϕ(m)J3,

where J3 is the number of (p1, . . . , pk, p
′
1, . . . , p

′
k) with pi, p

′
i ∈ I3 such that

(p1 − 1) · · · (pk − 1) ≡ (p′1 − 1) · · · (p′k − 1) (mod m).

Since both products are less than m, the number of solutions of this congruence is bounded
by

(6) J3 ≤
∑
n≤m

τ 2
k (m),

where

τk(n) = #{(n1, . . . , nk) : n1 · · ·nk = n}
is the generalized divisor function. Now combining the well known inequality

∑
n≤m

τ 2
k (n) ¿ m(log m)k2−1

with inequalities (5) and (6), we obtain (4). ¤

Lemma 4. If χ 6= χ0, then

|S1(χ)| ¿ (log m)−k2−6k−3(log log m)|I1|.

Proof. We can write

S1(χ) =
∑
p∈I1

χ(p− 1) =
∑

0.5m1+1/k<p≤m1+1/k

χ(p− 1),
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since χ(p− 1) = 0 when (p− 1,m) > 1. Then

|S1(χ)| =

∣∣∣∣∣∣
∑

p≤m1+1/k

χ(p− 1)−
∑

p≤0.5m1+1/k

χ(p− 1)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

p≤m1+1/k

χ(p− 1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

p≤0.5m1+1/k

χ(p− 1)

∣∣∣∣∣∣
.

From Rakhmonov’s work [6] it is known that if χ 6= χ0 is a multiplicative character
modulo m and (l, m) = 1, then

∣∣∣∣∣
∑
p≤x

χ(p− l)

∣∣∣∣∣ ≤ x(log x)5τ(q)
(√

1/q + qτ 2(q1)/x + x−1/6τ(q1)
)

,

where q is the modulo of the conductor of χ, q1 =
∏

p|m,p-q p and τ is the divisor function.

For x = m1+1/k or x = 0.5m1+1/k it gives∣∣∣∣∣
∑
p≤x

χ(p− l)

∣∣∣∣∣ ¿ m1+1/k(log m)5 τ(q)√
q

+ m1/2+1/(2k)(log m)5q1/2τ(q1)τ(q)

+ m(1+1/k)5/6(log m)5τ(q1)τ(q).

Since q ≤ m, k ≥ 2 and τ(q1)τ(q) ≤ τ(m) ¿ m1/(4k) we obtain
∣∣∣∣∣
∑
p≤x

χ(p− l)

∣∣∣∣∣ ¿ m1+1/k(log m)5 τ(q)√
q

+ m1+3/(4k)(log m)5.

The maximum value of τ(q)√
q

holds when q is the least prime divisor of m, which is greater

than (log m)2(k+3)2 . Thus
∣∣∣∣∣
∑
p≤x

χ(p− l)

∣∣∣∣∣ ¿ m1+1/k(log m)5−(k+3)2 + m1+3/(4k)(log m)5

¿ m

ϕ(m)
(log m)6−(k+3)2|I1|.

Finally we use the known estimate, m
ϕ(m)

¿ log log m. ¤

2.2. End of the Proof. Following the idea of [5], we split the set of nonprincipal char-
acters into two subsets:

A = {χ 6= χ0 : |S3(χ)| ≤ |I3|(log m)−2};
B = {χ 6= χ0 : |S3(χ)| > |I3|(log m)−2}.
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Thus, from (2) we have

(7) J =
|I1||I2||I3|

ϕ(m)
+

θ

ϕ(m)

∑
A

+
θ

ϕ(m)

∑
B

; |θ| ≤ 1,

where ∑
A

=
∑

χ 6=χ0

|S1(χ)||S2(χ)||S3(χ)|,
∑
B

=
∑
χ∈B

|S1(χ)||S2(χ)||S3(χ)|.

To estimate
∑

A we observe that

∑
A
≤ |I3|(log m)−2

(∑
χ

|S1(χ)|2
)1/2 (∑

χ

|S2(χ)|2
)1/2

.

Using Lemma 3 we get that

(8)
∑
A
¿ (log m)−1|I1||I2||I3|.

To estimate
∑

B, we first note that

∑
B
≤ |B|

(
max
χ6=χ0

|S1(χ)|
)
|I2||I3|.

Next we estimate |B| using Lemma 3:

|B||I3|2k(log m)−4k ≤
∑

χ

|S3|2k ¿ ϕ(m)m(log m)k2−1.

Thus

|B| ¿ (log m)k2+4k−1ϕ(m)m

(
m1/k

log m

ϕ(m)

m

)−2k

¿ (log m)k2+6k−1

(
m

ϕ(m)

)2k−1

.

We use again that m
ϕ(m)

¿ log log m and Lemma 4 to obtain
∑
B

¿ |B|(log m)−k2−6k−3(log log m)|I1||I2||I3|

¿ (log m)−4(log log m)2k|I1||I2||I3|.
Inserting this estimate together with (8) into (7), we get that

J =
|I1||I2||I3|

ϕ(m)

(
1 + O((log m)−1)

)
.

Thus, we have proved that for m large enough the congruence

(p1 − 1)(p2 − 1)(p3 − 1) ≡ a (mod m)

has some solution p1 ∈ I1, p2 ∈ I2, p3 ∈ I3. Since, (p1 − 1)(p2 − 1)(p3 − 1) ≤ m2+2/k, we
finish the proof of our Theorem.
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