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Abstract. We obtain a new lower bound for F (g, n), the largest
cardinality of a B2[g] set in {1, . . . , n}. More precisely we prove that

lim infn→∞ F (g,n)√
gn

≥ 2√
π
− εg where εg → 0 when g → ∞. We

also relate this problem to a kind of continuous version introduced by
Schinzel and Schmidt

1. Introduction

A set of integers A is called a B2[g] set if every integer n has at most g
representations n = a + a′, with a ≤ a′ and a, a′ ∈ A. We write rA(n) for
the number of such representations.

A major problem in additive number theory is the study of the behaviour
of F (g, n), the largest cardinality of a B2[g] set in {1, . . . , n}.

It is a well known result on Sidon sets that F (1, n) ∼ n1/2, but the
asymptotic behavior of F (g, n) is an open problem for g ≥ 2. The trivial
counting argument gives F (g, n) ≤ 2

√
gn and it is not too difficult to show

(see section 2) that F (g, n) & √
gn.

Then, we define

β(g) = lim inf
n→∞

F (g, n)√
gn

≤ lim sup
n→∞

F (g, n)√
gn

= α(g).

In the last years some progress has been done, improving the easier esti-
mates 1 ≤ β(g) ≤ α(g) ≤ 2. We list below the successive results obtained
by several authors including the improvement obtained in this work.

This work was developed during the Doccourse in Additive Combinatorics held in the
Centre de Recerca Matemàtica from January to March 2007. Both authors are extremely
grateful for their hospitality.

Both authors are supported by Grants CCG07-UAM/ESP-1814 and DGICYT MTM
2005-04730 (Spain) .
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α(g) ≤ 2 (trivial)
≤ 1.864 (J. Cilleruelo - I. Ruzsa - C. Trujillo, [1])
≤ 1.844 (B. Green, [2])
≤ 1.839 (G. Martin - K. O’Bryant, [5])
≤ 1.789 (G. Yu, [9])

β(g) ≥ 1 (M. Kolountzakis, [3])
& 1.060 (J. Cilleruelo - I. Ruzsa - C. Trujillo, [1])
& 1.122 (G. Martin - K. O’Bryant, [4])
& 2/

√
π = 1.128... (Theorem 1.2)

The aim of this work is not only to provide an improvement on the lower
bound for β(g) but also to relate this problem with the one posed by Schinzel
and Schmidt [7] which can be seen as the continuous version of this problem.

We define the Schinzel-Schmidt’s constant S as the number

(1) S = sup
f∈F

1
|f ∗ f |∞

where f ∗ f(x) =
∫

f(t)f(x − t) dt and F = {f : f ≥ 0, sop(f) ⊆
[0, 1], |f |1 = 1}. We use the notation |g|1 =

∫ 1

0
g(x) dx and |g|∞ =

supx g(x).

Remark 1.1. In fact they define S = supf∈F̃ |f |21/|f ∗ f |∞ with F̃ = {f :
f ≥ 0, f 6≡ 0, sop(f) ⊆ [0, 1], f ∈ L1[0, 1]}, but we can assume that
|f |1 = 1 because |f |21/|f ∗ f |∞ is invariant under dilates of f .

It is easy to see that 1 ≤ S ≤ 2 but Schinzel and Schmidt proved in [7]
that 4/π ≤ S ≤ 1.7373. The witness for the lower found is the function
f(x) = 1

2
√

x
∈ F . Indeed they conjecture that S = 4/π. Our main theorem

relate α(g) and β(g) to S.

Theorem 1.
√

S ≤ lim infg→∞ β(g) ≤ lim supg→∞ α(g) ≤ √
2S.

Corollary 1.2. β(g) ≥ 2/
√

π − εg, where εg → 0 when g →∞.

We conjecture that limg→∞ β(g) = limg→∞ α(g) = 2/
√

π.

2. Constructions for the lower bounds

It is convenient to introduce the following definitions:

Definition 1. We say that A is a B∗
2 [g] set if any integer n has at most g

representations n = a + a′ with a, a′ ∈ A. We write r∗A(n) for the number
of such representations.
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Definition 2. We say that A is a Sidon set (mod m) if a + a′ ≡ a′′ + a′′′

(mod m) =⇒ {a, a′} = {a′′, a′′′}.
All the lower bounds for β(g) are obtained from the next lemma (see [1]).

Lemma 1. If A = {0 = a1 < . . . < ak} is a B∗
2 [g] set and C ⊆ [1,m] is a

Sidon set (mod m), then B = ∪k
i=1(C+mai) is a B2[g] set in [1,m(ak +1)]

with k|C| elements.

Remark 2.1. The lemma says that the way of obtaining B2[g] sets is “past-
ing properly” (with a dilation of a B∗

2 [g] set) copies of a Sidon set (mod m).

Proof. To prove that B is a B2[g] set, suppose that we have

(2) b1,1 + b2,1 = · · · = b1,g+1 + b2,g+1

for some b1,j , b2,j ∈ B. We can write each bi,j = ci,j + mai,j in only one
way with ci,j ∈ C and ai,j ∈ A. Let us order the elements bi,j of each sum
in such a way that for any i, j we have c1,j ≤ c2,j , and when c1,j = c2,j we
order them so a1,j ≤ a2,j .

To see that B ∈ B2[g] we have to see that there exist j and j′ such that
b1,j = b1,j′ , b2,j = b2,j′ .

Considering the equalities (2) (mod m) and because C is a Sidon set
(mod m) we obtain that {c1,1, c2,1} = {c1,j , c2,j} for every 1 ≤ j ≤ g + 1.
Moreover, since we ordered the elements of the equalities in that way, we
have c1,1 = c1,j and c2,1 = c2,j for every j.

Then, the equalities (2) imply these other equalities

(3) a1,1 + a2,1 = a1,2 + a2,2 = · · · = a1,g+1 + a2,g+1.

And since A satisfies the B∗
2 [g] condition there exist j and j′ such that

a1,j = a1,j′ and a2,j = a2,j′ .
Then, for these j and j′ we have that b1,j = b1,j′ and b2,j = b2,j′ . This

proves that B ∈ B2[g].
Finally, it is clear that B ⊂ [1, . . . , (ak + 1)m] and |B| = k|C|. ¤

In order to apply lemma above in an efficient way, we have to take dense
Sidon sets (mod m). For example, for each prime p we consider Cp the
Sidon set (mod m) with p − 1 elements and m = p(p − 1) discovered by
Ruzsa (see [6]).

Given N , we write (ak + 1)pn(pn − 1) < N ≤ (ak + 1)pn+1(pn+1 − 1) for
suitable consecutive primes pn, pn+1. Clearly

F (g, N)√
gN

≥ |Cpn |k√
g(ak + 1)pn+1(pn+1 − 1)

≥ k√
g(ak + 1)

· pn − 1
pn+1

.
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Thus

β(g) = lim inf
N→∞

F (g,N)√
gN

≥ k√
g(ak + 1)

lim inf
n→∞

pn − 1
pn+1

.

Since lim infn→∞
pn

pn+1
= 1 as a consequence of the prime number theorem,

we get

(4) β(g) ≥ k√
g(ak + 1)

.

So, in order to improve the lower bound for β(g), we are looking for
A = {0 = a1 < . . . < ak} which satisfies the B∗

2 [g] condition and maximizes
the quotient k√

g(ak+1)
.

The sets
(a) A = {0, 1, . . . , g − 1}
(b) A = {0, 1, . . . , g − 1} ∪ {g + 1, g + 3, . . . , g − 1 + 2bg/2c}
(c) A = [0, bg/3c) ∪ (g − bg/3c+ 2 · [0, bg/6c))

∪ [g, g + bg/3c) ∪ (2g − bg/3c , 3g − bg/3c]
provide, respectively, the lower bounds
(a) β(g) ≥ 1

(b) β(g) ≥ g+bg/2c√
g2+2gbg/2c ≥

√
9
8 − εg = 1.060 . . .− εg

(c) β(g) ≥ g+2b g
3 c+b g

6 c√
3g2−gb g

3 c+g
≥

√
121
96 − εg = 1.122 . . .− εg,

cited in the introduction.
In the next section we will find a denser set A.

3. Schinzel’s conjecture

The convolution f ∗ f in the Schinzel-Schmidt’s problem can be thought
as the continuous version of the function r∗A(n) and |f ∗f |∞ as the analogous
of the maximum of r∗A(n).

The idea is to take a function f ∈ F such that 1/|f ∗ f |∞ is close to S
(see definition in formula (1)) and use f as a model to construct our set A.
We will do it using the probabilistic method.

An interesting result in [7] relates the constant S with the coefficients of
squares of polynomials. We state that result in a more convenient way for
our purposes.

Theorem 2. For any ε > 0, for any n > n(ε), there exists a sequence of
non negative real numbers c0, . . . , cn−1 such that

i)
∑n−1

j=0 cj =
√

n.
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ii) cj ≤ n−1/6(1 + ε) for all j = 0, . . . , n− 1.
iii)

∑
j<m/2 cjcm−j ≤ 1

2S (1 + ε) for any m = 0, . . . , n− 1.

Proof. We follow the ideas of the proof of assertion (iii) of theorem 1 in [7].
Let f ∈ F with |f ∗ f |∞ close to 1/S, say |f ∗ f |∞ ≤ 1/S + 1/n, and define
for j = 0, . . . , n− 1,

aj =
n

2t

∫ (j+1/2+t)/n

(j+1/2−t)/n

f(x) dx

where t = d2n1/3e. We have the following estimate

(∫ s

r

f(x) dx

)2

≤
∫∫

2r≤x+y≤2s

f(x)f(y) dxdy

=
∫ 2s

2r

(∫
f(x)f(z − x) dx

)
dz

=
∫ 2s

2r

f ∗ f(z) dz ≤ 2(s− r)(1/S + 1/n) ≤ 4(s− r),

where in the last inequality we have used the fact that S ≥ 1 and n ≥ 1.
In particular, we can deduce aj ≤ (2n/t)1/2. The core of the proof of

theorem 1 (iii) in [7] consists of showing that
∑n−1

j=0 aj ≥ n + o(n) and∑m
j=0 ajam−j ≤ (1/S)(n + o(n)) for all m. The details can be checked

there.
Now we define cj = ajρ with ρ =

√
n∑n−1

j=0 aj
. Clearly ρ ≤ (1/

√
n)(1+o(1)),

so cj ≤ n−1/6(1 + o(1)),
∑n−1

j=0 cj =
√

n and
∑m

j=0 cjcm−j ≤ (1/S)(1 +
o(1)). ¤

4. The proof

We will use in the proof an special case of Chernoff’s inequality (see
corollary 1.9 in [8]):

Proposition 4.1. (Chernoff’s inequality) Let X = t1 + · · ·+ tn where the
ti are independent boolean random variables. Then for any δ > 0

P(|X − E(X)| ≥ δE(X)) ≤ 2e−min(δ2/4,δ/2)E(X).(5)

Given ε > 0 and the cj ’s defined in theorem 2, we consider the probability
space of all the subsets A ⊆ {0, 1, 2, . . . , n− 1} defined by P(j ∈ A) = λncj ,
where λn = bn1/6/(1 + ε)c (observe that cjλn ≤ 1 for n large enough).
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Lemma 2. With the conditions above, given ε > 0, there exists n0 such
that for all n ≥ n0

P
(|A| ≥ λn

√
n(1− ε)

)
> 0.9.

Proof. Since |A| is a sum of independent boolean variables and E(|A|) =∑n−1
j=0 P(j ∈ A) = λn

√
n we can apply Chernoff’s lemma to deduce that

P
(
|A| < λn

√
n(1− ε)

)
≤ 2e−min(ε2/4,ε/2)λn

√
n < 0.1

for n large enough. ¤

Lemma 3. Again with the same conditions, given 0 < ε < 1, there exists
n1 such that for all n ≥ n1

r∗A(m) ≤ λ2
n

S
(1 + ε)3 for all m

with probability > 0.9.

Proof. Since r∗A(m) =
∑m

j=0 I(j ∈ A)I(m − j ∈ A) is a sum of boolean
variables which are not independent, its convenient to define a new variable
r∗A

′(m) = 1
2r∗A(m) − 1

2 I(m/2 ∈ A) =
∑

j<m/2 I(j ∈ A)I(m − j ∈ A). Now
we can apply Chernoff’s inequality to this variable.

We write µm for the expected value of r∗A
′(m). We observe that, from

the independence of the indicator functions, E
(
I(j ∈ A)I(m − j ∈ A)

)
=

P(j ∈ A)P(m− j ∈ A) = λ2
ncjcm−j for every j < m/2 and so

µm =
∑

j<m/2

E
(
I(j ∈ A)I(m− j ∈ A)

)
=

∑

j<m/2

λ2
ncjcm−j ≤ λ2

n

2S
(1 + ε),

by theorem 2 iii).

• If µm ≥ λ2
n

6S
(1 + ε), we apply proposition 4.1 (observe that ε < 2

implies that ε2/4 ≤ ε/2) to obtain

P
(

r∗A
′(m) ≥ λ2

n

2S
(1 + ε)2

)
≤ P

(
r∗A

′(m) ≥ µm(1 + ε)
)

≤ 2 exp
(
−µmε2

4

)

≤ 2 exp
(
− λ2

n

24S
(1 + ε)ε2

)
.

• If µm = 0 then r∗A
′(m) = 0.
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• If 0 < µm <
λ2

n

6S
(1 + ε), for δ =

λ2
n

µm2S
(1 + ε)2 − 1 ≥ 2 (now

δ/2 ≤ δ2/4) we obtain

P
(

r∗A
′(m) ≥ λ2

n

2S
(1 + ε)2

)
= P

(
r∗A

′(m) ≥ µm(1 + δ)
)

≤ 2 exp(−δµm/2)

≤ 2 exp
(
−λ2

n

4S
(1 + ε)2 +

µm

2

)

≤ 2 exp
(
−λ2

n

4S
(1 + ε)2 +

λ2
n

12S
(1 + ε)

)

≤ 2 exp
(
−λ2

n

6S
(1 + ε)2

)
.

Then

P
(

r∗A
′(m) ≥ λ2

n

2S
(1 + ε)2 for some m

)

≤ 2n

(
exp

(
− λ2

n

24S
(1 + ε)ε2

)
+ exp

(
−λ2

n

6S
(1 + ε)2

))
< 0.1

for n large enough.
Because of the way we defined r∗A

′(m), this means

P
(

r∗A(m) ≥ λ2
n

S
(1 + ε)2 + I(m/2 ∈ A) for some m

)
< 0.1.

So, finally,

P
(

r∗A(m) ≥ λ2
n

S
(1 + ε)3 for some m

)
< 0.1

for n large enough.
¤

Lemmas 1 and 2 imply that for any 0 < ε < 1, for n ≥ n(ε) = max(n0, n1)
the probability that |A| ≥ λn

√
n(1− ε) and r∗A(m) ≤ λ2

n

S (1+ ε)3 for all m is
greater than 0.8. Finally we will consider any of these setsA ⊂ {0, . . . , n−1}
for a suitable n.

Write gε = bλ2
n(ε)

S (1 + ε)3c. For any g ≥ gε we take n such that g =

bλ2
n

S (1 + ε)3c (this is possible because λ2
n

S (1 + ε)3 grows slower than n).
Thus, for g ≥ gε,

β(g) ≥ |A|
g1/2n1/2

≥ λn
√

n(1− ε)
(λn/

√
S)(1 + ε)3/2n1/2

=
√

S
1− ε

(1 + ε)3/2
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which completes the proof of the left inequality of theorem 1 since we can
take ε arbitrary small.

For the right inequality of theorem 1, we can use the next theorem (as-
sertion (ii) of theorem 1 in [7]):

Theorem 3. Let S be the Schinzel-Schmidt’s constant and Q = {Q : Q ∈
R≥0[x], Q 6≡ 0, deg(Q) < n}. Then

1
n

sup
Q∈Q

|Q2(x)|1
|Q2(x)|∞ ≤ S,

where |P |1 is the sum and |P |∞ the maximum of the coefficients of a poly-
nomial, P .

Given a B2[g] set, A ⊆ {0, . . . , n−1}, we define the polynomial QA(x) =∑
a∈A xa, so Q2

A(x) =
∑

n r∗A(n)xn. The theorem says that, in particular,

S ≥ 1
n

sup
A⊆{0,...,n−1}

|A|2
2g

=
F 2(g, n)

2gn
,

and so
F (g, n)√

gn
≤ √

2S.
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