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Abstract. We study the sumset A + k ·A for the first non trivial case, k = 3, where k ·A =

{k · a, a ∈ A}. We prove that |A + 3 · A| ≥ 4|A| − 4 and that the equality holds only for

A = {0, 1, 3}, A = {0, 1, 4}, A = 3 ·{0, . . . , n}∪(3 ·{0, . . . , n}+1) and all the affine transforms

of these sets.

1. Introduction

Throughout this paper, the sets considered have integer elements, unless the contrary is said.

We address here the question of how large is the sumset A + k ·A where k ·A = {k · a, a ∈ A} and A

is finite. It is well known that |A + A| ≥ 2|A| − 1 and that equality only holds when A is an arithmetic

progression. Nathanson proved in [1] that |A + 2 · A| ≥ 3|A| − 2 for any set A. It is easy to check that

for any arithmetic progression with k or more elements, we have |A + k ·A| = (k +1)|A| − k, so it might

be expected that arithmetic progressions are extremal cases for this problem, as when k = 1. Indeed

this is the case for k = 2 as we will prove in section §2.

Theorem 1.1. For any set A we have |A + 2 · A| ≥ 3|A| − 2. Furthermore, if |A + 2 · A| = 3|A| − 2,

then A is an arithmetic progression or a singleton.

Then, what for k = 3? In a recent paper, Bukh [2] has proved that |A + 3 · A| ≥ 4|A| − O(1) for

any set A. Our main theorem gives, using a different argument, a sharp lower bound and a complete

description of the extremal sets. We observe that these sets are not arithmetic progressions, as in cases

k = 1, 2.

Theorem 1.2. For any set A we have |A + 3 ·A| ≥ 4|A| − 4. Furthermore if |A + 3 ·A| = 4|A| − 4 then

A = 3 · {0, . . . , n} ∪ (3 · {0, . . . , n} + 1) or A = {0, 1, 3} or A = {0, 1, 4} or A is an affine transform of

one of these sets.

The general sums of dilated sets, λ1 · A + · · · + λk · A, have been studied by Bukh in [2]. The main

theorem there says that for coprime integers λ1, . . . , λk,

|λ1 ·A + · · ·+ λk ·A| ≥ (|λ1|+ · · ·+ |λk|)|A| − o(|A|).
In particular it gives |A+k ·A| ≥ (k+1)|A|−o(|A|). As we will prove in section §5, there exist arbitrarily

large sets A such that |A + k ·A| = (k + 1)|A| −
⌈

k2+2k
4

⌉
. We conjecture that this lower bound is sharp

for large |A|.

2. Case k = 2 and preliminary lemmas

The next lemma is folklore, and we give it without proof.

Lemma 1. For arbitrary non-empty sets A, B we have

i) |A + B| ≥ |A|+ |B| − 1.

ii) Furthermore, if equality holds, then A and B are arithmetic progressions with the same differ-

ence unless one of them is a singleton.
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We generalize this lemma for any k. For that, it is natural to divide A into residue classes (mod k).

We define Â as the projection of A into Z/kZ.

Lemma 2. For arbitrary non-empty sets B and A =
⋃

i∈Â(k ·Ai + i) we have

i) |A + k ·B| = ∑
i∈Â |Ai + B|

ii) |A + k ·B| ≥ |A|+ |Â|(|B| − 1).

iii) Furthermore, if equality holds in ii), then either |B| = 1 or |Ai| = 1 for all i ∈ Â or B and all

the sets Ai with more than one element are arithmetic progressions with the same difference.

Proof. For i) |A + k · B| = | ∪i∈Â (k · Ai + i + k · B)| =
∑

i∈Â |k · (Ai + B) + i| =
∑

i∈Â |Ai + B|. To

prove ii) we use i) and Lemma 1-i). To prove iii) we observe that Lemma 1-ii) implies that Ai and B

are arithmetic progressions with the same difference except for the degenerate cases. ¤

Next we prove theorem 1.1 as a direct application of Lemma 2.

Proof. Proof of theorem 1.1 If |A| = 1 then |A + 2 · A| = 3|A| − 2, and these sets are described in

Theorem 1.1, so the inverse part is also proved.

So we assume |A| ≥ 2. If |Â| = 1 then we can write A = 2 · Ai + i for some i ∈ {0, 1} and

|A + 2 · A| = |2 · Ai + i + 4 · Ai + 2i| = |Ai + 2 · Ai|. Now, if |Âi| = 1, we can repeat this process and

it’s clear that finally we will reach a set A′ with |Â′| = 2, that only differs from A on a translation and

a dilation, and so, such that |A + 2 ·A| = |A′ + 2 ·A′|.
Then we can also assume that |Â| = 2 and Lemma 2-ii) implies that |A + 2 ·A| ≥ |A|+ 2(|A| − 1) =

3|A| − 2. For the inverse part, if the equality holds, Lemma 2-iii) implies that either |A| = 1 or

|A0| = |A1| = 1 or A is an arithmetic progression. We finish by observing that |A| = 1 is impossible

since we assumed |A| ≥ 2 and |A0| = |A1| = 1 implies that |A| = 2, so it is an arithmetic progression. ¤

For the case k = 3 we will need some preliminary lemmas.

Lemma 3. If A = 3 ·A0 ∪ (3 ·A1 + 1), then

i) |A + 3 ·A| ≥ |A0 + 3 ·A0|+ |A1 + 3 ·A1|+ 2.

ii) |A + 3 ·A| ≥ |A0 + 3 ·A1|+ |A1 + 3 ·A0|+ 2.

Proof. To prove i) we write

|A + 3 ·A| = |A0 + A|+ |A1 + A|
= |(A0 + 3 ·A0) ∪ (A0 + 3 ·A1 + 1)|+ |(A1 + 3 ·A0) ∪ (A1 + 3 ·A1 + 1)|
= |A0 + 3 ·A0|+ |A1 + 3 ·A1 + 1|
+ |(A0 + 3 ·A1 + 1) \ (A0 + 3 ·A0)|+ |(A1 + 3 ·A0) \ (A1 + 3 ·A1 + 1)|

Then we only need to check that the last line above is at least 2. If |A0| = 1 and |A1| = 1, we write

A0 = {a0} and A1 = {a1}. Then a0 + 3a1 + 1 6= a0 + 3a0 and a1 + 3a0 6= a1 + 3a1 + 1 because they

are different modulo 3, so we have two extra elements. If not, let mi and Mi be the minimum and the

maximum of Ai, i = 0, 1, and we know that for at least one i, mi 6= Mi.

If M0 ≤ M1 then M0 + 3M1 + 1 ∈ (A0 + 3 · A1 + 1) \ (A0 + 3 · A0) because M0 + 3M1 + 1 is

greater than M0 + 3M0, which is the maximum of A0 + 3 · A0. On the other hand, if M0 > M1, then

M1 + 3M0 ∈ (A1 + 3 ·A0) \ (A1 + 3 ·A1 + 1).

If m0 ≤ m1 then m1 + 3m0 ∈ (A1 + 3 ·A0) \ (A1 + 3 ·A1 + 1) and if m0 > m1 then m0 + 3m1 + 1 ∈
(A0 + 3 ·A1 + 1) \ (A0 + 3 ·A0).

We obtain one extra element in each case. To see that they are distinct, observe that if M0+3M1+1 =

m0 + 3m1 + 1, then we must have M0 = m0 and M1 = m1, a contradiction. The same thing happens if

M1 + 3M0 = m1 + 3m0. The proof of ii) is similar. ¤

Lemma 4. If A = 3 ·A0 ∪ (3 ·A1 + 1), then

i) If |Â0| = 2, we have |A0 + A| ≥ 2|A| − 2.

ii) • If |Â0| ≤ 2 and |A0 + 3 ·A0| ≥ 4|A0| − 4, we have |A0 + A| ≥ 4|A0|+ |A1| − 4.
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• If |Â1| ≤ 2 and |A1 + 3 ·A1| ≥ 4|A1| − 4, we have |A1 + A| ≥ 4|A1|+ |A0| − 4.

Proof. For i), let Â0 = {u, u+1}. We can write A0 = Au
0 ∪Au+1

0 , where Au
0 = {x ∈ A0, x ≡ u (mod 3)}.

Then

|A0 + A| = |(A0 + 3 ·A0) ∪ (A0 + 3 ·A1 + 1)|
= |(Au

0 + 3 ·A0) ∪ (Au+1
0 + 3 ·A0) ∪ (Au

0 + 3 ·A1 + 1) ∪ (Au+1
0 + 3 ·A1 + 1)|

≥ |Au
0 + 3 ·A0|+ |Au

0 + 3 ·A1 + 1|+ |Au+1
0 + 3 ·A1 + 1|

≥ |Au
0 |+ |A0| − 1 + |A1|+ |Au+1

0 |+ |A1| − 1 = 2|A| − 2,

where we have twice used Lemma 1-i).

For part ii), we again write A0 = Au
0 ∪Au+1

0 if |Â0| = 2, or A0 = Au+1
0 if |Â0| = 1. Then

|A0 + A| = |(A0 + 3 ·A0) ∪ (A0 + 3 ·A1 + 1)| ≥ |(A0 + 3 ·A0) ∪ (Au+1
0 + 3 ·A1 + 1)|

= |A0 + 3 ·A0|+ |Au+1
0 + 3 ·A1 + 1| ≥ 4|A0| − 4 + |A1|.

The same argument works for A1 instead of A0. ¤

Lemma 5.

i) If |A| = 2 then |A + 3 ·A| = 4|A| − 4 = 4.

ii) If |A| = 3 then |A + 3 · A| ≥ 4|A| − 4. Furthermore, if |A| = 3 and |A + 3 · A| = 4|A| − 4 then

A is an affine transform of {0, 1, 3} or {0, 1, 4}.
Proof. i) Since affine transforms don’t affect the size of |A + 3 · A|, we can write A = {0, 1}. Then

A + 3 ·A = {0, 1, 3, 4}.
ii) Now, we know that A′ = {0, 1, a}, where a > 1 is a real number, is a dilation of A and we have

that

A′ + 3 ·A′ = {0, 1, a, 3, 4, 3 + a, 3a, 3a + 1, 4a}.
If A′ + 3 · A′ has 8 or less elements then there is some repeated element in the sumset. The possible

repetitions come from a = 3, a = 4, 4 = 3a, 3 + a = 3a which provide the sets {0, 1, 3}, {0, 1, 4},
{0, 3, 4}, {0, 2, 3}. ¤

3. Proof of Theorem 1.2: the inequality

We will prove first the lower bound for |A+3 ·A| and next the inverse problem which is more involved.

We distinguish three cases according to the different values of |Â|.
If |Â| = 3 then (by Lemma 2-ii)) we have that |A + 3 ·A| ≥ 4|A| − 3, a better lower bound than that

we want to prove in Theorem 1.2.

If |Â| = 1 then we have that A = 3 ·A′+ i and then |A+3 ·A| = |A′+3 ·A′|. If |A| > 1 we repeat the

process until we obtain a set A′ with |Â′| > 1. If |A| = 1 then 4|A| − 4 = 0 and the theorem is trivial.

So we can now assume that |Â| = 2, A = (3 · Ai + i) ∪ (3 · Ai+1 + i + 1). We can assume that

|Âi| ≤ |Âi+1|. If not the set B = −A could be written as B = (3 · Bj + j) ∪ (3 · Bj+1 + j + 1) where

Bj = −Ai+1 − 1, Bj+1 = −Ai − 1, j = 2− i, and in this case we would have |B̂j | ≤ |B̂j+1|. Finally, by

translation we can assume

• A = 3 ·A0 ∪ (3 ·A1 + 1)

• min A0 = 0

• |Â0| ≤ |Â1|.
Assuming all this, we prove |A+3 ·A| ≥ 4|A|−4 by induction on |A|. It is clear for |A| = 1. Suppose

we have proved it for any set with fewer elements than A, in particular for A0 and A1. We distinguishing

three cases:

Case |Â0| = |Â1| = 3. We use Lemma 3-i) and Lemma 2-ii) to obtain

|A + 3 ·A| ≥ |A0 + 3 ·A0|+ |A1 + 3 ·A1|+ 2 ≥ 4|A0| − 3 + 4|A1| − 3 + 2 = 4|A| − 4.
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Case |Â1| = 3, |Â0| < 3. We apply Lemma 4-ii) (using the induction hypothesis) and Lemma 2-ii)

to obtain

|A + 3 ·A| = |A0 + A|+ |A1 + A| ≥ |A0 + A|+ |A1 + 3 ·A1| ≥
4|A0|+ |A1| − 4 + 4|A1| − 3 = 4|A| − 4 + |A1| − 3 ≥ 4|A| − 4.

In the last inequality we have used that |A1| ≥ |Â1| = 3.

Case |Â1| < 3. We apply Lemma 4-ii) to A0 and A1 (again, using the induction hypothesis) to

obtain

|A + 3 ·A| = |A0 + A|+ |A1 + A| ≥ 4|A0|+ |A1| − 4 + 4|A1|+ |A0| − 4 = 4|A| − 4 + |A| − 4.

If |A| ≥ 4 this gives the bound. If not, we use Lemma 5. This completes the proof.

4. Proof of Theorem 1.2: the cases of equality

As in the previous section we can assume A = 3 ·A0 ∪ (3 ·A1 + 1), |Â0| ≤ |Â1| and min A0 = 0.

Case |Â0| = |Â1| = 3. We use Lemma 3-i) and 3-ii) and Lemma 2-ii) to obtain

4|A| − 4 = |A + 3 ·A| ≥ |A0 + 3 ·A0|+ |A1 + 3 ·A1|+ 2

≥ |A0|+ 3|A0| − 3 + |A1|+ 3|A1| − 3 + 2 = 4|A| − 4.

and

4|A| − 4 = |A + 3 ·A| ≥ |A0 + 3 ·A1|+ |A1 + 3 ·A0|+ 2

≥ |A0|+ 3|A1| − 3 + |A1|+ 3|A0| − 3 + 2 = 4|A| − 4.

Then, the inequalities are, indeed, equalities. So |A0 + 3 · A0| = |A0| + 3|A0| − 3, |A1 + 3 · A1| =

|A1| + 3|A1| − 3, |A0 + 3 · A1| = |A0| + 3|A1| − 3 and |A1 + 3 · A0| = |A1| + 3|A0| − 3. Now we apply

Lemma 2-iii) to conclude that (since |A0| ≥ |Â0| = 3 and |A1| ≥ |Â1| = 3)

a) either A0 = {x0, x1, x2} and A1 = {y0, y1, y2} with xi, yi ≡ i (mod 3)

b) or A0 and A1 are arithmetic progressions with the same difference, d.

a) In this subcase, |A| = 6 and 4|A| − 4 = 20, and we know by Lemma 2-i) that 20 = |A + 3 ·A| =
|A0 + A| + |A1 + A|. Then, |A0 + A| ≤ 10 or |A1 + A| ≤ 10. We suppose that |A0 + A| ≤ 10

(the other case is identical) and, because A0 = {x0, x1, x2} with xi ≡ i (mod 3), we have

10 ≥ |(A0 + 3 ·A0) ∪ (A0 + 3 ·A1 + 1)|
= |(x0 + 3 ·A0) ∪ (x2 + 3 ·A1 + 1)|
+ |(x1 + 3 ·A0) ∪ (x0 + 3 ·A1 + 1)|
+ |(x2 + 3 ·A0) ∪ (x1 + 3 ·A1 + 1)|

=

∣∣∣∣A0 ∪
(

A1 +
x2 − x0 + 1

3

)∣∣∣∣

+

∣∣∣∣A0 ∪
(

A1 +
x0 − x1 + 1

3

)∣∣∣∣

+

∣∣∣∣A0 ∪
(

A1 +
x1 − x2 + 1

3

)∣∣∣∣
and we can observe that each addend give us at least 4 elements unless the two members of the

union are equal (in this case we have only 3). But because the sum of the three is less or equal

than 10, we must have at least two equalities, like for example:

A0 = A1 +
x2 − x0 + 1

3
and A0 = A1 +

x0 − x1 + 1

3
.

Then, we have x2−x0 = x0−x1, so A0 is an arithmetic progression and also A1 is an arithmetic

progression with the same difference, since it is a translation of A0. The other possibilities are

identical.
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b) So A0 and A1 are arithmetic progressions with difference d, and because 0 = min A0 we can write

A0 = d·[0, n0−1], A1 = d·[0, n1−1]+e. Since n0, n1 ≥ 3, we have that [0, ni−1]+3·[0, nj−1] =

[0, 3nj + ni − 4] for any i, j ∈ {0, 1}. Thus

|A + 3 ·A| = |A0 + A|+ |A1 + A|
= |d · ([0, n0 − 1] + 3 · [0, n0 − 1]) ∪ d · ([0, n0 − 1] + 3 · [0, n1 − 1]) + 3e + 1|
+|(d · ([0, n1 − 1] + 3 · [0, n0 − 1]) + e) ∪ (d · ([0, n1 − 1] + 3 · [0, n1 − 1]) + 4e + 1)|
= |d · [0, 4n0 − 4] ∪ (d · [0, 3n1 + n0 − 4] + 3e + 1)|
+|d · [0, 4n1 − 4] ∪ (d · [0, 3n0 + n1 − 4]− 3e− 1)|.

If n1 > n0 then

|A + 3 ·A| ≥ 3n1 + n0 − 3 + 4n1 − 3 = 4(n0 + n1) + 3(n1 − n0)− 6 ≥ 4|A| − 3,

which is a contradiction. So n1 ≤ n0. For the same reason (interchanging n0 and n1) we have

that n0 ≤ n1 and then n0 = n1. Now we can write

|A + 3 ·A| = |d · [0, 4n0 − 4] ∪ (d · [0, 4n0 − 4] + 3e + 1)|
+ |d · [0, 4n0 − 4] ∪ (d · [0, 4n0 − 4]− 3e− 1)|.

If 3e + 1 6≡ 0 (mod d) then the unions are disjoint and we have 4|A| − 4 = |A + 3 · A| =

2(4n0 − 3) + 2(4n0 − 3) = 8|A| − 12. That implies that |A| = 2 and this is impossible since

|A| = |A0|+ |A1| ≥ |Â0|+ |Â1| = 6. If 3e + 1 ≡ 0 (mod d) we write 3e + 1 = de′ and then

|A + 3 ·A| = |[0, 4n0 − 4] ∪ ([0, 4n0 − 4] + e′)|
+ |[0, 4n0 − 4] ∪ ([0, 4n0 − 4]− e′)|.

If |e′| ≥ 2 then the cardinality of each union is greater than or equal to 4n0 − 1, and |A +

3 · A| ≥ 4n0 − 1 + 4n0 − 1 = 4|A| − 2. So, since e′ 6= 0 then e′ = ±1, so 3e + 1 = ±d and

A = 3 · A0 ∪ 3 · A1 + 1 = d · (3 · [0, n0 − 1] ∪ 3 · [0, n0 − 1] ± 1). These sets are contained in

Theorem 1.2.

Case |Â0| = 2, |Â1| = 3. We write

|A1 + A| = |(A1 + 3 ·A0) ∪ (A1 + 3 ·A1 + 1)| = |A1 + 3 ·A1|+ |(A1 + 3 ·A0) \ (A1 + 3 ·A1 + 1)|.
Lemma 2-i), Lemma 4-ii) and the equality above imply that

|A + 3 ·A| = |A0 + A|+ |A1 + A|
≥ 4|A0|+ |A1| − 4 + 4|A1| − 3 + (|A1 + 3 ·A1| − 4|A1|+ 3)

+ |(A1 + 3 ·A0) \ (A1 + 3 ·A1 + 1)|.
Then

4|A| − 4 ≥ 4|A| − 4 + (|A1| − 3) + (|A1 + 3 ·A1| − 4|A1|+ 3) + |(A1 + 3 ·A0) \ (A1 + 3 ·A1 + 1)|.
Using that |A1| ≥ |Â1| = 3 and Lemma 2-ii) we see that the three last addends are non negative. But

the inequality implies that all of them are indeed 0. Then,

i) |A1| = 3.

ii) By Lemma 2-iii),

a) either A1 = {y0, y1, y2} with yi ≡ i (mod 3)

b) or A1 is an arithmetic progression, say A1 = d · [0, 2] + e.

iii) 3 ·A0 ⊂ A1 −A1 + 3 ·A1 + 1 (because A1 + 3 ·A0 ⊂ A1 + 3 ·A1 + 1).

Now we claim that also |A0| = 3. To see that we will obtain a lower and upper bound.
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To prove |A0| ≤ 3 we use Lemma 2-i), Lemma 4-ii), Lemma 2-ii) and the fact that |A1| = 3 to have

|A + 3 ·A| = |A0 + A|+ |A1 + A| ≥ |A0 + A|+ |A1 + 3 ·A0| ≥
4|A0|+ |A1| − 4 + |A1|+ 3(|A0| − 1) = 4|A| − 4 + 3|A0| − 9.

Since we have assumed that |A + 3 ·A| = 4|A| − 4 then |A0| ≤ 3.

To prove |A0| ≥ 3 we use Lemma 2-i), Lemma 4-i) and Lemma 5-ii) (for a set A of three elements

that covers the three classes modulo 3 we must have |A + 3 ·A| = 9) to obtain

4|A| − 4 = |A + 3 ·A| = |A0 + A|+ |A1 + A| ≥ 2|A| − 2 + |A1 + 3 ·A1| = 2|A| − 2 + 9,

so |A| ≥ 11/2. And since |A1| = 3 we have that |A0| ≥ 5/2, so |A0| ≥ 3.

So we have proved that |A| = 6.

Next we will see that if we are in case ii)-a), that is if A1 = {y0, y1, y2} with yi ≡ i (mod 3), then A1

is an arithmetic progression. As in a) of the case |Â0| = |Â1| = 3 we have, 20 = 4|A| − 4 = |A + 3 ·A| =
|A0 + A| + |A1 + A|. Again, one of them is less or equal than 10. If |A1 + A| ≤ 10 then we proceed

exactly as we did in that case and we have that A1 is an arithmetic progression. If |A0 + A| ≤ 10 then

A0 = {x0, y0, x1} or A0 = {x0, y0, x2} where xi ≡ yi ≡ i (mod 3) except for translations. In the first

case 10 ≥ |A0 + A| = |(A0 + 3 ·A0) ∪ (A0 + 3 ·A1 + 1)| ≥ |(x0 + 3 ·A0) ∪ (y0 + 3 ·A0)|+ |(x0 + 3 ·A1 +

1) ∪ (y0 + 3 ·A1 + 1)|+ |x1 + 3 ·A1 + 1| ≥ 4 + 4 + 3 = 11, which is a contradiction. The second case is

similar.

Thus, the only possibility is ii)-b), that is, A1 is an arithmetic progression, say A1 = d · [0, 2]+ e, and

then A1 + 3 ·A1 + 1−A1 = d · [−2, 8] + 3e + 1, so by iii) we have that

(4.1) 3 ·A0 ⊂ d · [−2, 8] + 3e + 1.

Inclusion (4.1) implies that (d, 3) = 1.

Suppose d ≡ 1 (mod 3). Then 3·A0 ⊂ d·{−1, 2, 5, 8}+3e+1. In this case A = d·(S ∪ {0, 3, 6})+3e+1,

where S = {−1, 2, 8} or S = {−1, 5, 8}. Observe that these sets are the only subsets of three elements of

{−1, 2, 5, 8} satisfying that | ̂1
3
(S + 1)| = 2. Since the problem is invariant by translations and dilations

we only have to check the sets A = {−1, 0, 2, 3, 6, 8} and A = {−1, 0, 3, 5, 6, 8}.
If d ≡ 2 (mod 3) the sets we have to check are A = {−2, 0, 1, 3, 6, 7} and A = {−2, 0, 3, 4, 6, 7}. The

four sets described satisfy |A + 3 ·A| = 24 6= 4|A| − 4.

Case |Â0| = 1, |Â1| = 3. Since |Â0| = 1 we have |A0 + A| = |(A0 + 3 · A0) ∪ (A0 + 3 · A1 + 1)| =

|A0 + 3 · A0| + |A0 + 3 · A1| ≥ 4|A0| − 4 + |A0| + |A1| − 1 = 5|A0| + |A1| − 5. Also we have that

|A1 + A| ≥ |A1 + 3 ·A1| ≥ 4|A1| − 3. Then

4|A| − 4 = |A + 3 ·A| = |A0 + A|+ |A1 + A| ≥ 5|A0|+ |A1| − 5 + 4|A1| − 3 = 5|A| − 8,

thus |A| ≤ 4. But since |Â0| = 1 and |Â1| = 3 we have that |A0| = 1 and |A1| = 3. In this case we get

|A0 + A| = |A0 + 3 ·A0|+ |A0 + 3 ·A1| = 1 + |A1| = 4. Then

12 = 4|A| − 4 = |A + 3 ·A| = |A0 + A|+ |A1 + A| ≥ 4 + 4|A1| − 3 = 13

and we get a contradiction.

Case |Â0| = 2, |Â1| = 2. We can write, as in the proof of Lemma 4, A0 = Au
0 ∪ Au+1

0 and

A1 = Av
1 ∪Av+1

1 , where Aj
i = {x ∈ Ai, x ≡ j (mod 3)}.

|A0 + A| ≥ |A0 + 3 ·A0|+ |Au+1
0 + 3 ·A1 + 1| ≥ 4|A0| − 4 + |A1|.

Similary |A1 + A| ≥ 4|A1| − 4 + |A0|. Then 4|A| − 4 = |A + 3 · A| = |A0 + A|+ |A1 + A| ≥ 4|A0| − 4 +

|A1|+ 4|A1| − 4 + |A0| = 5|A| − 8 and thus |A| ≤ 4. Since |Â0| = |Â1| = 2 we have that |A0| = |A1| = 2.
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Then we write A0 = {a0, b0}, A1 = {a1, b1} with bi ≡ ai + 1 (mod 3), i = 0, 1, and then

|A0 + A| = |a0 + 3 ·A0|+ |(b0 + 3 ·A0) ∪ (a0 + 1 + 3 ·A1)|+ |b0 + 1 + 3 ·A1|
≥ 4 + |3 ·A0 ∪ (a0 − b0 + 1 + 3 ·A1)|,

|A1 + A| = |a1 + 3 ·A0|+ |(b1 + 3 ·A0) ∪ (a1 + 1 + 3 ·A1)|+ |b1 + 1 + 3 ·A1|
≥ 4 + |3 ·A0 ∪ (a1 − b1 + 1 + 3 ·A1)|.

Then

12 = 4|A| − 4 = |A + 3 ·A| = |A0 + A|+ |A1 + A|
≥ 8 + |3 ·A0 ∪ (a0 − b0 + 1 + 3 ·A1)|+ |3 ·A0 ∪ (a1 − b1 + 1 + 3 ·A1)|.

We claim that 3 ·A0 = a1−b1+1+3 ·A1. If not we would obtain more than 2 elements in the last sum

and we get a contradiction. Then 3·A0 = {3a1+a1−b1+1, 3b1+a1−b1+1} = {4a1−b1+1, a1+2b1+1},
so we obtain a set A like those described in Theorem 1.2,

A = 3 ·A0 ∪ (3 ·A1 + 1) = {4a1 − b1, a1 + 2b1, 3a1, 3b1}+ 1

= 3b1 + 1 + (a1 − b1) · {0, 1, 3, 4}.

Case |Â0| = 1, |Â1| = 2. In this case we have

|A0 + A| = |A0 + 3 ·A0|+ |A0 + 3 ·A1| ≥ 4|A0| − 4 + |A0|+ |A1| − 1 = 5|A0|+ |A1| − 5

and we apply Lemma 4-ii) to obtain |A1 + A| ≥ 4|A1|+ |A0| − 4. Then

4(|A0|+ |A1|)− 4 = |A + 3 ·A| = |A0 + A|+ |A1 + A| ≥ 5|A0|+ |A1| − 5 + 4|A1|+ |A0| − 4,

so 5 ≥ 2|A0|+ |A1|. Since |Â1| = 2 then |A1| ≥ 2 and |A0| ≤ 3/2; so |A0| = 1. But in this case we have

that |A0 + A| = |A| and |A1 + A| ≥ 4|A1| − 3. Then 4|A1| = 4|A| − 4 ≥ |A| + 4|A1| − 3, so |A| ≤ 3.

Indeed, since |Â1| = 2 and |Â0| = 1 we have that |A| = 3. These cases are analyzed in Lemma 5.

Case |Â0| = 1, |Â1| = 1. As above we have |A0 + A| ≥ 5|A0| + |A1| − 5 and also we have

|A1 + A| ≥ 5|A1|+ |A0| − 5. Then 4|A| − 4 = |A + 3 ·A| = |A0 + A|+ |A1 + A| ≥ 6|A| − 10, so |A| ≤ 3

and again Lemma 5 makes the work for us.

5. Small sumsets A + k ·A
Now we show some constructions that give a small sumset, A + k ·A, for general k ∈ N.

Proposition 5.1. For any k ∈ Z>0

i) there exist arbitrarily large sets A such that

|A + k ·A| = (k + 1)|A| −
⌈

k2 + 2k

4

⌉

ii) there exists a set A such that

|A + k ·A| = (k + 1)|A| − k3 + 6k2 + 9k + δk

27

where

δk =





3k + 8 if k ≡ 1 (mod 3)

4 if k ≡ 2 (mod 3)

0 if k ≡ 0 (mod 3)

.

Note: We conjecture that, for a fixed k, the constructions given in i) are the best possible, in the

sense that for a large set A we always have |A + k · A| ≥ (k + 1)|A| −
⌈

k2+2k
4

⌉
. But the construction

given in ii) says that there are small sets that make the lower bound smaller.
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Proof. Following the examples we obtained in the inverse problem for k=3, we consider sets that are

unions of arithmetic progressions of difference k. We write

A =
⋃
i∈I

(k · [0, m− 1] + i)

where I is an interval, I = [0, |I| − 1] ⊆ [0, k − 1]. Then |A| = |I|m. As in Lemma 2, we have (with

Ai = [0, m− 1] for all i)

|A + k ·A| =
∑
i∈I

|Ai + A|.

and

Ai + A = [0, m− 1] +
⋃
i∈I

(k · [0, m− 1] + i) = [0, m− 1] + k · [0, m− 1] + I.

Now, we try to find the sets of this shape that give us the smallest sumset, A + k ·A.

i) If m ≥ k

Ai + A = [0, (k + 1)(m− 1) + |I| − 1]

so

|A + k ·A| = |I|((k + 1)(m− 1) + |I|) = (k + 1)|A| − |I|(k + 1− |I|).
We want to maximize |I|(k + 1− |I|) in order to get an A with small sumset. If we think on |I|
as a real number we can look at the derivative to see that this happens when |I| = k+1

2
. If k is

odd everything works and if k is even we take |I| = k
2

or |I| = k+2
2

and in any case we have the

formula of the proposition.

ii) If m < k (we are thinking that k > 1 and m > 0 but if k = 1 we know we can take for example

any A with |A| = 1 and |A+A| = 2|A|− 1 as the formula of ii) says). Then Ai +A is the union

of m intervals of lenght m + |I| − 1 starting on 0, k, 2k, . . . and (m− 1)k. If we don’t want this

intervals to overlap, then we must impose m + |I| − 1 ≤ k, i. e. |I| ≤ k + 1−m. Then

|Ai + A| = (m + |I| − 1)m

and

|A + k ·A| = |I|m(m + |I| − 1) = (k + 1)|A| −m|I|(k + 2−m− |I|).
We want to maximize m|I|(k + 2 −m− |I|). If we think on m and |I| as real numbers, we

can look at the gradient to conclude that the maximum occurs for m = |I| = k+2
3

. If k ≡ 1 (3),

everything works and we have |A + k · A| = (k + 1)|A| − (
k+2
3

)3
as in ii) of the theorem. If

k ≡ 2 (3), we can take m = |I| = k+1
3

or one of them equal to k+1
3

and the other to k+4
3

and

we have |A + k · A| = (k + 1)|A| − (
k+1
3

)2 (
k+4
3

)
. Finally, if k ≡ 0 (3), we take m = |I| = k+3

3

or one equal to k+3
3

and the other to k
3

and we have |A+ k ·A| = (k +1)|A| − (
k+3
3

)2 (
k
3

)
. This

proves ii).

¤
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