VISIBLE LATTICE POINTS AND THE CHROMATIC ZETA FUNCTION OF A GRAPH

JAVIER CILLERUELO

ABSTRACT. We study the probability that a random polygon of k vertices in the lattice $\{1, \ldots, n\}^s$ does not contain more lattice points than the k vertices of the polygon. Then we introduce the chromatic zeta function of a graph to generalize this problem to other configurations induced by a given graph \mathcal{H} .

1. INTRODUCTION

Two distinct points X, Y of the s-dimensional integer lattice are said to be mutually visible if the line segment joining them contains no other lattice point. We denote this situation by $X \diamond Y$. It is well known [1] that if X, Y are lattice points taken at random uniformly in $[1, n]^s$ then $\mathbb{P}(X \diamond Y) \sim \zeta^{-1}(s)$ as $n \to \infty$, where $\zeta(s)$ is the classical Riemann zeta function. Since $X \diamond Y$ and $Y \diamond Z$ are independent events, then $\mathbb{P}(X \diamond Y \diamond Z) \sim \zeta^{-2}(s)$. What about $\mathbb{P}(X \diamond Y \diamond Z \diamond X)$? In other words, what is the probability that the three edges of a random triangle X, Y, Z contains no other lattice points than their vertices?

At first sight, we could expect that $\mathbb{P}(X \diamond Y \diamond Z \diamond X) \sim \zeta^{-3}(s)$ since apparently the three events, $X \diamond Y$, $Y \diamond Z$, $Z \diamond X$, are independent events. We prove that this intuition is not correct. In fact we obtain a more general result.

Theorem 1.1. Let $s, k \ge 2$ positive integers. If X^1, \ldots, X^k are lattice points taken uniformly at random in $[1, n]^s$, we have

$$\lim_{n \to \infty} \mathbb{P}(X^1 \diamond X^2 \diamond \dots \diamond X^k \diamond X^1) = \zeta^{-k}(s) \prod_p \left(1 + \frac{(-1)^k}{(p^s - 1)^{k-1}} \right).$$

The repetition of vertices X^i is allowed in Theorem 1.1. However, the probability of these degenerate cases tends to zero as $n \to \infty$, so we could have formulated Theorem 1.1 saying that X^1, \ldots, X^k are distinct lattice points.

It is interesting to note that the value of the limit in Theorem 1.1 is smaller than $\zeta^{-k}(s)$ when k is odd and greater than $\zeta^{-k}(s)$ when k is even. We do not understand the reason of this phenomenom.

The following version of Theorem 1.1 can be more illustrative. Take a lattice point X^1 at random. Then take a random lattice point X^2 visible from X^1 , then take a random lattice point X^3 visible from X^2 and so on. What is the probability that X^k is visible from X^1 ? Corollary 1.1, which is a trivial consequence of Theorem 1.1, answers this question.

¹⁹⁹¹ Mathematics Subject Classification. 2000 Mathematics Subject Classification: 05C31. Key words and phrases. visible lattice points, chromatic polinomial, zeta function.

This work has been supported by MINECO project MTM2014-56350-P and ICMAT Severo Ochoa project SEV-2011-0087.

Corollary 1.1. Let $s, k \ge 2$ positive integers. If X^1, \ldots, X^k are lattice points taken uniformly at random in $[1, n]^s$ we have

$$\lim_{n \to \infty} \mathbb{P}(X^k \diamond X^1 / X^1 \diamond X^2 \diamond \dots \diamond X^k) = \zeta^{-1}(s) \prod_p \left(1 + \frac{(-1)^k}{(p^s - 1)^{k-1}} \right).$$

Again, we see that $\mathbb{P}(X^k \diamond X^1/X^1 \diamond X^2 \diamond \cdots \diamond X^k)$ is smaller than $\mathbb{P}(X^k \diamond X^1)$ when k is odd and greater when k is even. Theorem 1.1 can be extended to more general configurations.

Definition 1. Given a graph \mathcal{H} of order k we say that that a sequence of lattice points (X^1, \ldots, X^k) is \mathcal{H} -visible if $X^i \diamond X^j$ whenever $\{i, j\} \in E(\mathcal{H})$.

Our main Theorem is the following.

Theorem 1.2. Let $s, k \ge 2$ positive integers and \mathcal{H} a graph of order k. If X^1, \ldots, X^k are lattice points taken uniformly at random in $[1, n]^s$ then we have

$$\lim_{n \to \infty} \mathbb{P}((X^1, \cdots, X^k) \text{ is } \mathcal{H}\text{-visible}) = \zeta_{\mathcal{H}}^{-1}(s),$$

where $\zeta_{\mathcal{H}}(s)$ is the chromatic zeta function of \mathcal{H} defined by

$$\zeta_{\mathcal{H}}(s) = \prod_{p} \left(\frac{P_{\mathcal{H}}(p^s)}{p^{ks}}\right)^{-1}$$

where $P_{\mathcal{H}}$ is the chromatic polynomial of \mathcal{H} .

If we consider the linear graph $\mathcal{H} = L_k$, with chromatic polynomial $P_{L_k}(x) = x(x-1)^{k-1}$, we have that $\zeta_{\mathcal{H}}(s) = \zeta^{k-1}(s)$ and we recover the classic result [1]:

$$\lim_{n \to \infty} \mathbb{P}(X^1 \diamond \cdots \diamond X^k : X^i \in [1, n]^s) = \zeta^{-(k-1)}(s).$$

Theorem 1.1 follows from Theorem 1.2 by taking the cycle of k vertices, $\mathcal{H} = C_k$, and observing that $P_{C_k}(x) = (x-1)^k + (-1)^k (x-1)$:

$$\zeta_{C_k}^{-1}(s) = \prod_p \left(\frac{(p^s - 1)^k + (-1)^k (p^s - 1)}{p^{ks}} \right) = \prod_p \left(1 - \frac{1}{p^s} \right)^k \prod_p \left(1 + \frac{(-1)^k}{(p^s - 1)^{k-1}} \right)$$

David Rearick [2] considered a related problem. Given a set $S_m = \{X^1, \ldots, X^m\}$ of *m* mutually visible lattice points, he studied the probability that a random lattice point in $[1, n]^s$ is visible from all the lattice points of S_m . He proved that

(1.1)
$$\lim_{n \to \infty} \mathbb{P}(X \in [1, n]^2 : X \diamond X^i, \ i = 1, \dots, m) = \prod_p \left(1 - \frac{m}{p^s}\right)$$

if $m < 2^s$ and 0 if $m \ge 2^s$. In particular (1.1) implies that if $m < 2^s$ and X^1, \ldots, X^{m+1} are taken uniformily at random in $[1, n]^s$, then

$$\lim_{n \to \infty} \mathbb{P}(X^1, \dots, X^{m+1} \text{ is } K_{m+1} \text{-visible}/X^1, \dots, X^m \text{ is } K_m \text{-visible}) = \prod_p \left(1 - \frac{m}{p^s}\right)$$

This result can be obtained easily from Theorem 1.2 considering the chromatic polynomials of the complete graphs, $P_{K_{m+1}}(x) = x(x-1)\cdots(x-m)$, $P_{K_m}(x) = x(x-1)\cdots(x-m+1)$, and observing that

$$\frac{\zeta_{K_{m+1}}^{-1}(s)}{\zeta_{K_m}^{-1}(s)} = \prod_p \frac{P_{K_{m+1}}(p^s)}{p^{(m+1)s}} \prod_p \frac{p^{ms}}{P_{K_m}(p^s)} = \prod_p \frac{p^s - m}{p^s} = \prod_p \left(1 - \frac{m}{p^s}\right).$$

2. Proof of Theorem 1.2

Given two lattice points $X^i = (x_1^i, \ldots, x_s^i)$ and $X^j = (x_1^j, \ldots, x_s^j)$ we write $X^i \equiv X^j \pmod{p}$ if $x_r^i \equiv x_r^j \pmod{p}$ for all $r = 1, \ldots, s$. We write $X^i \not\equiv X^j \pmod{p}$ otherwise.

Given a prime p, we say that (X^1, \ldots, X^k) is \mathcal{H}_p -visible if $X^i \not\equiv X^j \pmod{p}$ whenever $\{i, j\} \in E(\mathcal{H})$. The first observation is that (2.1)

$$(X^1,\ldots,X^k)$$
 is \mathcal{H} -visible $\iff (X^1,\ldots,X^k)$ is \mathcal{H}_p -visible for any prime p .

For any positive integer M and n > M we have

$$(2.2)|\{X^{1}, \dots, X^{k} \in [1, n]^{s} : (X_{1}, \dots, x^{k}) \text{ is } \mathcal{H}_{p}\text{-visible for any } p\}| \\ = |\{X^{1}, \dots, X^{k} \in [1, n]^{s} : (X^{1}, \dots, X^{k}) \text{ is } \mathcal{H}_{p}\text{-visible for any } p \leq M\}| + O(|R|),$$

where

$$R = \{X^1, \dots, X^k \in [1, n]^s : (X^1, \dots, X^k) \text{ is not } \mathcal{H}_p \text{-visible for some } p > M\}.$$

We split R in two sets: $R = R_1 \cup R_2$. The set R_1 contains those (X^1, \ldots, X^k) with $X^i = X^j$ for some $i \neq j$ and R_2 contains those with all X^i distinct.

Clearly,

(2.3)
$$|R_1| \le \binom{k}{2} n^{s(k-1)}.$$

On the other hand we observe that if $X^i \neq X^j$ then $X^i \not\equiv X^j \pmod{p}$ for $p \ge n$, so (X^1, \ldots, X^k) is always \mathcal{H}_p -visible when $p \ge n$ for those (X^1, \ldots, X^k) counted in R_2 . Indeed, for a fixed $X^i = (x_1^i, \ldots, x_s^i)$ the number of $X^j = (x_1^j, \ldots, x_s^j) \in [1, n]^s$ such that $X^j \equiv X^i \pmod{p}$ is $(n/p + O(1))^s \ll n^s/p^s$ for p < n. Thus,

$$\begin{aligned} |R_2| &\leq \sum_{M$$

and we get the upper bound

(2.4)
$$|R_2| \ll n^{ks} M^{1-s}.$$

By (2.2), (2.3) and (2.4) we have

(2.5)
$$|\{X^1, \dots, X^k \in [1, n]^s : (X^1, \dots, X^k) \text{ is } \mathcal{H}\text{-visible }\}|$$

= $|\{X^1, \dots, X^k \in [1, n]^s : (X^1, \dots, X^k) \text{ is } \mathcal{H}_p\text{-visible for any } p \leq M\}|$
+ $O(n^{s(k-1)}) + O(n^{ks}M^{1-s}).$

The next step is to estimate the quantity

(2.6)
$$|\{X^1,\ldots,X^k\in[1,n]^s: (X^1,\ldots,X^k) \text{ is } \mathcal{H}_p\text{-visible for any } p\leq M\}|.$$

A good coloration of a labeled graph \mathcal{H} is an assignment of colours to the vertices such that two adjacents vertices do not share the same colour. The polynomial chromatic $P_{\mathcal{H}}(x)$ counts the number of good colorations of \mathcal{H} using x colours. For each p we assign to each vertex $X = (x_1, \ldots, x_s)$ the p-colour $c_p(X)$ defined as the only vector $c_p(X) \in [0, p-1]^s$ such that $c_p(X) \equiv X \pmod{p}$.

We observe that $(X^1 \dots, X^k)$ is \mathcal{H}_p -visible if and only if there exists a good p-coloration $C_p = (c_p^1, \dots, c_p^k)$ of \mathcal{H} such that $(c_p(X^1), \dots, c_p(X^k)) = C_p$.

Thus, $(X^1 \ldots, X^k)$ is \mathcal{H}_p -visible for any $p \leq M$ if and only if there exists a sequence of good colorations $(C_p)_{p \leq M}$ such that $(c_p(X^1), \ldots, c_p(X^k)) = C_p$ for all $p \leq M$.

Since for each prime p there are p^s colours, the number of good p-colorations of \mathcal{H} is $P_{\mathcal{H}}(p^s)$, where $P_{\mathcal{H}}$ is the chromatic polynomial of \mathcal{H} . Therefore, the number of sequences of good colorations $(C_p)_{p \leq M}$ is

(2.7)
$$\prod_{p \le M} P_{\mathcal{H}}(p^s).$$

Thus we have

(2.8)
$$|\{X^1, \dots, X^k \in [1, n]^s : (X^1, \dots, X^k) \text{ is } \mathcal{H}_p\text{-visible for any } p \le M\}|$$

= $\sum_{k=1}^{k} |\{X^1, \dots, X^k \in [1, n]^s : (c_p(X^1), \dots, c_p(X^k)) = C_p, p \le M\}|$

where the sum \sum^* is extended over all sequences of good colorations $(C_p)_{p \leq M}$ of the graph \mathcal{H} .

Given a sequence of colorations $(C_p)_{p \leq M} = (c_p^1, \ldots, c_p^k)_{p \leq M}$ we have that

(2.9)
$$|\{X^1, \dots, X^k \in [1, n]^s : c_p(X^i) = c_p^i, i = 1, \dots, k, \text{ for all } p \le M\}$$
$$= \prod_{i=1}^k |\{X \in [1, n]^s : c_p(X) = c_p^i, \text{ for all } p \le M\}|.$$

Given the vectors $c_p^i = (c_{p1}^i, \ldots, c_{ps}^i)$, $p \leq M$, the lattice points $X = (x_1, \ldots, x_s)$ with $c_p(X) = c_p^i$ for all $p \leq M$ will be those such that the congruences $x_r \equiv c_{pr}^i$ (mod p), $p \leq M$ hold for any $r = 1, \ldots, s$. By the Chinese Remainder Theorem these congruences are equivalent, for each $r = 1, \ldots, s$, to the congruence $x_r \equiv a_r$ (mod $\prod_{p \leq M} p$) for some a_r . The number of $x_r \leq n$ satisfying each congruence is $\frac{n}{\prod_{p \leq M} p} + O(1)$, so the number of $X \in [1, n]^s$ with $c_p(X) = c_p^i$ for all $p \leq M$ is

$$\left(\frac{n}{\prod_{p \le M} p} + O(1)\right)^s$$

Since this estimate does not depend on the values of c_p^i we have

(2.10)
$$\prod_{i=1}^{k} |\{X \in [1,n]^s : c_p(X) = c_p^i \text{ for all } p \le M\}| = \left(\frac{n}{\prod_{p \le M} p} + O(1)\right)^{sk}.$$

Summing up, as consequence of (2.8), (2.9), (2.10) and (2.7) we obtain

$$\begin{aligned} &|\{X^1, \dots, X^k \in [1, n]^s : \ (X^1, \dots, X^k) \text{ is } \mathcal{H}_p\text{-visible for any } p \le M\}| \\ &= \left(\frac{n}{\prod_{p \le M} p} + O(1)\right)^{sk} \times |\{\text{sequences of good colorations } (c_p^1, \dots, c_p^k), \ p \le M\}| \\ &= \left(\frac{n}{\prod_{p \le M} p} + O(1)\right)^{sk} \prod_{p \le M} P_{\mathcal{H}}(p^s) = n^{sk} \left(\prod_{p \le M} \frac{P_{\mathcal{H}}(p^s)}{p^{sk}}\right) \left(1 + O\left(\frac{\prod_{p \le M} p}{n}\right)\right)^{sk} \end{aligned}$$

In terms of probability we have proved that

$$\mathbb{P}\left(\{X^1, \dots, X^k \in [1, n]^s : (X^1, \dots, X^k) \text{ is } \mathcal{H}_p\text{-visible for any } p \le M\}\right)$$
$$= \left(\prod_{p \le M} \frac{P_{\mathcal{H}}(p^s)}{p^{sk}}\right) \left(1 + O\left(\frac{\prod_{p \le M} p}{n}\right)\right)^{sk}.$$

Using (2.5) we have that

$$\mathbb{P}\left(\{X^1, \dots, X^k \in [1, n]^s : (X^1, \dots, X^k) \text{ is } \mathcal{H}\text{-visible }\}\right)$$
$$= \left(\prod_{p \le M} \frac{P_{\mathcal{H}}(p^s)}{p^{sk}}\right) \left(1 + O\left(\frac{\prod_{p \le M} p}{n}\right)\right)^{sk} + O(n^{-s}) + O(M^{1-s}).$$

Taking the limit as $n \to \infty$ we get

$$\lim_{n \to \infty} \mathbb{P}\left(\{X^1, \dots, X^k \in [1, n]^s : ()X^1, \dots, X^k\right) \text{ is } \mathcal{H}\text{-visible }\}\right) = \prod_{p \le M} \frac{P_{\mathcal{H}}(p^s)}{p^{sk}} + O(M^{1-s}).$$

Finally, taking the limit as $M \to \infty$ we have

$$\lim_{n \to \infty} \mathbb{P}\left(\{X^1, \dots, X^k \in [1, n]^s : (X^1, \dots, X^k) \text{ is } \mathcal{H}\text{-visible }\}\right) = \prod_p \frac{P_{\mathcal{H}}(p^s)}{p^{sk}} = \zeta_{\mathcal{H}}^{-1}(s).$$

References

- [1] J. Christopher, The asymptotic of some k-dimensional sets. Amer. Math. Monthly 63 (1956), 399–401.
- [2] D. F. Rearick, Mutually visible lattice points. Norske Vid. Selsk. Forh. (Trondheim) 39 (1966) 41-45.

INSTITUTO DE CIENCIAS MATEMÁTICAS (ICMAT) AND DEPARTAMENTO DE MATEMÁTICAS, UNI-VERSIDAD AUTÓNOMA DE MADRID, 28049 MADRID, SPAIN