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Abstract. We study the probability that a random polygon of k vertices in

the lattice {1, . . . , n}s does not contain more lattice points than the k vertices

of the polygon. Then we introduce the chromatic zeta function of a graph to
generalize this problem to other configurations induced by a given graph H.

1. Introduction

Two distinct points X,Y of the s-dimensional integer lattice are said to be mu-
tually visible if the line segment joining them contains no other lattice point. We
denote this situation by X � Y . It is well known [1] that if X,Y are lattice points
taken at random uniformly in [1, n]s then P(X � Y ) ∼ ζ−1(s) as n → ∞, where
ζ(s) is the classical Riemann zeta function. Since X �Y and Y �Z are independent
events, then P(X �Y �Z) ∼ ζ−2(s). What about P(X �Y �Z �X)? In other words,
what is the probability that the three edges of a random triangle X,Y, Z contains
no other lattice points than their vertices?

At first sight, we could expect that P(X � Y � Z �X) ∼ ζ−3(s) since apparently
the three events, X � Y, Y � Z, Z �X, are independent events. We prove that this
intuition is not correct. In fact we obtain a more general result.

Theorem 1.1. Let s, k ≥ 2 positive integers. If X1, . . . , Xk are lattice points taken
uniformly at random in [1, n]s, we have

lim
n→∞

P(X1 �X2 � · · · �Xk �X1) = ζ−k(s)
∏
p

(
1 +

(−1)k

(ps − 1)k−1

)
.

The repetition of vertices Xi is allowed in Theorem 1.1. However, the probability
of these degenerate cases tends to zero as n → ∞, so we could have formulated
Theorem 1.1 saying that X1, . . . , Xk are distinct lattice points.

It is interesting to note that the value of the limit in Theorem 1.1 is smaller
than ζ−k(s) when k is odd and greater than ζ−k(s) when k is even. We do not
understand the reason of this phenomenom.

The following version of Theorem 1.1 can be more illustrative. Take a lattice
point X1 at random. Then take a random lattice point X2 visible from X1, then
take a random lattice point X3 visible from X2 and so on. What is the probability
that Xk is visible from X1? Corollary 1.1, which is a trivial consequence of Theorem
1.1, answers this question.
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Corollary 1.1. Let s, k ≥ 2 positive integers. If X1, . . . , Xk are lattice points taken
uniformly at random in [1, n]s we have

lim
n→∞

P(Xk �X1/X1 �X2 � · · · �Xk) = ζ−1(s)
∏
p

(
1 +

(−1)k

(ps − 1)k−1

)
.

Again, we see that P(Xk �X1/X1 �X2 � · · · �Xk) is smaller than P(Xk �X1)
when k is odd and greater when k is even. Theorem 1.1 can be extended to more
general configurations.

Definition 1. Given a graph H of order k we say that that a sequence of lattice
points (X1, . . . , Xk) is H-visible if Xi �Xj whenever {i, j} ∈ E(H).

Our main Theorem is the following.

Theorem 1.2. Let s, k ≥ 2 positive integers and H a graph of order k. If X1, . . . , Xk

are lattice points taken uniformly at random in [1, n]s then we have

lim
n→∞

P((X1, · · · , Xk) is H-visible) = ζ−1H (s),

where ζH(s) is the chromatic zeta function of H defined by

ζH(s) =
∏
p

(
PH(ps)

pks

)−1
where PH is the chromatic polynomial of H.

If we consider the linear graph H = Lk, with chromatic polynomial PLk
(x) =

x(x− 1)k−1, we have that ζH(s) = ζk−1(s) and we recover the classic result [1]:

lim
n→∞

P(X1 � · · · �Xk : Xi ∈ [1, n]s) = ζ−(k−1)(s).

Theorem 1.1 follows from Theorem 1.2 by taking the cycle of k vertices, H = Ck,
and observing that PCk

(x) = (x− 1)k + (−1)k(x− 1) :

ζ−1Ck
(s) =

∏
p

(
(ps − 1)k + (−1)k(ps − 1)

pks

)
=
∏
p

(
1− 1

ps

)k∏
p

(
1 +

(−1)k

(ps − 1)k−1

)
.

David Rearick [2] considered a related problem. Given a set Sm = {X1, . . . , Xm}
of m mutually visible lattice points, he studied the probability that a random lattice
point in [1, n]s is visible from all the lattice points of Sm. He proved that

(1.1) lim
n→∞

P(X ∈ [1, n]2 : X �Xi, i = 1, . . . ,m) =
∏
p

(
1− m

ps

)
if m < 2s and 0 if m ≥ 2s. In particular (1.1) implies that if m < 2s and
X1, . . . , Xm+1 are taken uniformily at random in [1, n]s, then

lim
n→∞

P(X1, . . . , Xm+1 is Km+1-visible/X1, . . . , Xm is Km-visible) =
∏
p

(
1− m

ps

)
.

This result can be obtained easily from Theorem 1.2 considering the chromatic
polynomials of the complete graphs, PKm+1(x) = x(x− 1) · · · (x−m), PKm(x) =
x(x− 1) · · · (x−m+ 1), and observing that

ζ−1Km+1
(s)

ζ−1Km
(s)

=
∏
p

PKm+1
(ps)

p(m+1)s

∏
p

pms

PKm
(ps)

=
∏
p

ps −m
ps

=
∏
p

(
1− m

ps

)
.
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2. Proof of Theorem 1.2

Given two lattice points Xi = (xi1, . . . , x
i
s) and Xj = (xj1, . . . , x

j
s) we write Xi ≡

Xj (mod p) if xir ≡ xjr (mod p) for all r = 1, . . . , s. We write Xi 6≡ Xj (mod p)
otherwise.

Given a prime p, we say that (X1, . . . , Xk) is Hp-visible if Xi 6≡ Xj (mod p)
whenever {i, j} ∈ E(H). The first observation is that
(2.1)

(X1, . . . , Xk) is H-visible ⇐⇒ (X1, . . . , Xk) is Hp-visible for any prime p.

For any positive integer M and n > M we have

|{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , x
k) is Hp-visible for any p}|(2.2)

= |{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is Hp-visible for any p ≤M}|+O(|R|),

where

R = {X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is not Hp-visible for some p > M}.

We split R in two sets: R = R1 ∪R2. The set R1 contains those (X1, . . . , Xk) with
Xi = Xj for some i 6= j and R2 contains those with all Xi distinct.

Clearly,

(2.3) |R1| ≤
(
k

2

)
ns(k−1).

On the other hand we observe that if Xi 6= Xj then Xi 6≡ Xj (mod p) for p ≥ n,
so (X1, . . . , Xk) is always Hp-visible when p ≥ n for those (X1, . . . , Xk) counted in

R2. Indeed, for a fixed Xi = (xi1, . . . , x
i
s) the number of Xj = (xj1, . . . , x

j
s) ∈ [1, n]s

such that Xj ≡ Xi (mod p) is (n/p+O(1))s � ns/ps for p < n. Thus,

|R2| ≤
∑

M<p<n

|{distinct X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is not Hp-visible }|

≤
∑

M<p<n

|{distinct X1, . . . , Xk ∈ [1, n]s : Xi ≡ Xj (mod p) for some i 6= j}}|

≤
∑

M<p<n

(
k

2

)
|{distinct X1, . . . , Xk ∈ [1, n]s : X1 ≡ X2 (mod p)}}|

�
∑

M<p<n

nks

ps

and we get the upper bound

(2.4) |R2| � nksM1−s.

By (2.2), (2.3) and (2.4) we have

|{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is H-visible }|(2.5)

= |{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is Hp-visible for any p ≤M}|
+O(ns(k−1)) +O(nksM1−s).

The next step is to estimate the quantity

(2.6) |{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is Hp-visible for any p ≤M}|.

A good coloration of a labeled graph H is an assigment of colours to the vertices
such that two adjacents vertices do not share the same colour. The polynomal
chromatic PH(x) counts the number of good colorations of H using x colours.
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For each p we assign to each vertex X = (x1, . . . , xs) the p-colour cp(X) defined
as the only vector cp(X) ∈ [0, p− 1]s such that cp(X) ≡ X (mod p).

We observe that (X1 . . . , Xk) is Hp-visible if and only if there exists a good
p-coloration Cp = (c1p, . . . , c

k
p) of H such that (cp(X1), . . . , cp(Xk)) = Cp.

Thus, (X1 . . . , Xk) is Hp-visible for any p ≤ M if and only if there exists a
sequence of good colorations (Cp)p≤M such that (cp(X1), . . . , cp(Xk)) = Cp for all
p ≤M .

Since for each prime p there are ps colours, the number of good p-colorations of
H is PH(ps), where PH is the chromatic polynomial of H. Therefore, the number
of sequences of good colorations (Cp)p≤M is

(2.7)
∏
p≤M

PH(ps).

Thus we have

|{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is Hp-visible for any p ≤M}|(2.8)

=

∗∑
|{X1, . . . , Xk ∈ [1, n]s : (cp(X1), . . . , cp(Xk)) = Cp, p ≤M}|

where the sum
∑∗

is extended over all sequences of good colorations (Cp)p≤M of
the graph H.

Given a sequence of colorations (Cp)p≤M = (c1p, . . . , c
k
p)p≤M we have that

|{X1, . . . , Xk ∈ [1, n]s : cp(Xi) = cip, i = 1, . . . , k, for all p ≤M}|(2.9)

=

k∏
i=1

|{X ∈ [1, n]s : cp(X) = cip, for all p ≤M}|.

Given the vectors cip = (cip1, . . . , c
i
ps), p ≤M , the lattice points X = (x1, . . . , xs)

with cp(X) = cip for all p ≤ M will be those such that the congruences xr ≡ cipr
(mod p), p ≤ M hold for any r = 1, . . . , s. By the Chinese Remainder Theorem
these congruences are equivalent, for each r = 1, . . . , s, to the congruence xr ≡ ar
(mod

∏
p≤M p) for some ar. The number of xr ≤ n satisfying each congruence is

n∏
p≤M p +O(1), so the number of X ∈ [1, n]s with cp(X) = cip for all p ≤M is(

n∏
p≤M p

+O(1)

)s

.

Since this estimate does not depend on the values of cip we have

(2.10)

k∏
i=1

|{X ∈ [1, n]s : cp(X) = cip for all p ≤M}| =

(
n∏

p≤M p
+O(1)

)sk

.

Summing up, as consequence of (2.8), (2.9), (2.10) and (2.7) we obtain

|{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is Hp-visible for any p ≤M}|

=

(
n∏

p≤M p
+O(1)

)sk

× |{sequences of good colorations (c1p, . . . , c
k
p), p ≤M}|

=

(
n∏

p≤M p
+O(1)

)sk ∏
p≤M

PH(ps) = nsk

∏
p≤M

PH(ps)

psk

(1 +O

(∏
p≤M p

n

))sk

.
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In terms of probability we have proved that

P
(
{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is Hp-visible for any p ≤M}

)
=

∏
p≤M

PH(ps)

psk

(1 +O

(∏
p≤M p

n

))sk

.

Using (2.5) we have that

P
(
{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is H-visible }

)
=

∏
p≤M

PH(ps)

psk

(1 +O

(∏
p≤M p

n

))sk

+O(n−s) +O(M1−s).

Taking the limit as n→∞ we get

lim
n→∞

P
(
{X1, . . . , Xk ∈ [1, n]s : ()X1, . . . , Xk) is H-visible }

)
=
∏
p≤M

PH(ps)

psk
+O(M1−s).

Finally, taking the limit as M →∞ we have

lim
n→∞

P
(
{X1, . . . , Xk ∈ [1, n]s : (X1, . . . , Xk) is H-visible }

)
=
∏
p

PH(ps)

psk
= ζ−1H (s).
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