VISIBLE LATTICE POINTS AND THE CHROMATIC ZETA FUNCTION OF A GRAPH

JAVIER CILLERUELO

Abstract

We study the probability that a random polygon of k vertices in the lattice $\{1, \ldots, n\}^{s}$ does not contain more lattice points than the k vertices of the polygon. Then we introduce the chromatic zeta function of a graph to generalize this problem to other configurations induced by a given graph \mathcal{H}

1. Introduction

Two distinct points X, Y of the s-dimensional integer lattice are said to be mutually visible if the line segment joining them contains no other lattice point. We denote this situation by $X \diamond Y$. It is well known [1] that if X, Y are lattice points taken at random uniformly in $[1, n]^{s}$ then $\mathbb{P}(X \diamond Y) \sim \zeta^{-1}(s)$ as $n \rightarrow \infty$, where $\zeta(s)$ is the classical Riemann zeta function. Since $X \diamond Y$ and $Y \diamond Z$ are independent events, then $\mathbb{P}(X \diamond Y \diamond Z) \sim \zeta^{-2}(s)$. What about $\mathbb{P}(X \diamond Y \diamond Z \diamond X)$? In other words, what is the probability that the three edges of a random triangle X, Y, Z contains no other lattice points than their vertices?

At first sight, we could expect that $\mathbb{P}(X \diamond Y \diamond Z \diamond X) \sim \zeta^{-3}(s)$ since apparently the three events, $X \diamond Y, Y \diamond Z, Z \diamond X$, are independent events. We prove that this intuition is not correct. In fact we obtain a more general result.

Theorem 1.1. Let $s, k \geq 2$ positive integers. If X^{1}, \ldots, X^{k} are lattice points taken uniformly at random in $[1, n]^{s}$, we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X^{1} \diamond X^{2} \diamond \cdots \diamond X^{k} \diamond X^{1}\right)=\zeta^{-k}(s) \prod_{p}\left(1+\frac{(-1)^{k}}{\left(p^{s}-1\right)^{k-1}}\right)
$$

The repetition of vertices X^{i} is allowed in Theorem 1.1. However, the probability of these degenerate cases tends to zero as $n \rightarrow \infty$, so we could have formulated Theorem 1.1 saying that X^{1}, \ldots, X^{k} are distinct lattice points.

It is interesting to note that the value of the limit in Theorem 1.1 is smaller than $\zeta^{-k}(s)$ when k is odd and greater than $\zeta^{-k}(s)$ when k is even. We do not understand the reason of this phenomenom.

The following version of Theorem 1.1 can be more illustrative. Take a lattice point X^{1} at random. Then take a random lattice point X^{2} visible from X^{1}, then take a random lattice point X^{3} visible from X^{2} and so on. What is the probability that X^{k} is visible from X^{1} ? Corollary 1.1, which is a trivial consequence of Theorem 1.1, answers this question.

[^0]Corollary 1.1. Let $s, k \geq 2$ positive integers. If X^{1}, \ldots, X^{k} are lattice points taken uniformly at random in $[1, n]^{s}$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X^{k} \diamond X^{1} / X^{1} \diamond X^{2} \diamond \cdots \diamond X^{k}\right)=\zeta^{-1}(s) \prod_{p}\left(1+\frac{(-1)^{k}}{\left(p^{s}-1\right)^{k-1}}\right)
$$

Again, we see that $\mathbb{P}\left(X^{k} \diamond X^{1} / X^{1} \diamond X^{2} \diamond \cdots \diamond X^{k}\right)$ is smaller than $\mathbb{P}\left(X^{k} \diamond X^{1}\right)$ when k is odd and greater when k is even. Theorem 1.1 can be extended to more general configurations.

Definition 1. Given a graph \mathcal{H} of order k we say that that a sequence of lattice points $\left(X^{1}, \ldots, X^{k}\right)$ is \mathcal{H}-visible if $X^{i} \diamond X^{j}$ whenever $\{i, j\} \in E(\mathcal{H})$.

Our main Theorem is the following.
Theorem 1.2. Let $s, k \geq 2$ positive integers and \mathcal{H} a graph of order k. If X^{1}, \ldots, X^{k} are lattice points taken uniformly at random in $[1, n]^{s}$ then we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left(X^{1}, \cdots, X^{k}\right) \text { is } \mathcal{H} \text {-visible }\right)=\zeta_{\mathcal{H}}^{-1}(s),
$$

where $\zeta_{\mathcal{H}}(s)$ is the chromatic zeta function of \mathcal{H} defined by

$$
\zeta_{\mathcal{H}}(s)=\prod_{p}\left(\frac{P_{\mathcal{H}}\left(p^{s}\right)}{p^{k s}}\right)^{-1}
$$

where $P_{\mathcal{H}}$ is the chromatic polynomial of \mathcal{H}.
If we consider the linear graph $\mathcal{H}=L_{k}$, with chromatic polynomial $P_{L_{k}}(x)=$ $x(x-1)^{k-1}$, we have that $\zeta_{\mathcal{H}}(s)=\zeta^{k-1}(s)$ and we recover the classic result [1]:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X^{1} \diamond \cdots \diamond X^{k}: X^{i} \in[1, n]^{s}\right)=\zeta^{-(k-1)}(s)
$$

Theorem 1.1 follows from Theorem 1.2 by taking the cycle of k vertices, $\mathcal{H}=C_{k}$, and observing that $P_{C_{k}}(x)=(x-1)^{k}+(-1)^{k}(x-1)$:
$\zeta_{C_{k}}^{-1}(s)=\prod_{p}\left(\frac{\left(p^{s}-1\right)^{k}+(-1)^{k}\left(p^{s}-1\right)}{p^{k s}}\right)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{k} \prod_{p}\left(1+\frac{(-1)^{k}}{\left(p^{s}-1\right)^{k-1}}\right)$.
David Rearick [2] considered a related problem. Given a set $S_{m}=\left\{X^{1}, \ldots, X^{m}\right\}$ of m mutually visible lattice points, he studied the probability that a random lattice point in $[1, n]^{s}$ is visible from all the lattice points of S_{m}. He proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(X \in[1, n]^{2}: X \diamond X^{i}, i=1, \ldots, m\right)=\prod_{p}\left(1-\frac{m}{p^{s}}\right) \tag{1.1}
\end{equation*}
$$

if $m<2^{s}$ and 0 if $m \geq 2^{s}$. In particular (1.1) implies that if $m<2^{s}$ and X^{1}, \ldots, X^{m+1} are taken uniformily at random in $[1, n]^{s}$, then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X^{1}, \ldots, X^{m+1} \text { is } K_{m+1} \text {-visible } / X^{1}, \ldots, X^{m} \text { is } K_{m} \text {-visible }\right)=\prod_{p}\left(1-\frac{m}{p^{s}}\right) .
$$

This result can be obtained easily from Theorem 1.2 considering the chromatic polynomials of the complete graphs, $P_{K_{m+1}}(x)=x(x-1) \cdots(x-m), \quad P_{K_{m}}(x)=$ $x(x-1) \cdots(x-m+1)$, and observing that

$$
\frac{\zeta_{K_{m+1}}^{-1}(s)}{\zeta_{K_{m}}^{-1}(s)}=\prod_{p} \frac{P_{K_{m+1}}\left(p^{s}\right)}{p^{(m+1) s}} \prod_{p} \frac{p^{m s}}{P_{K_{m}}\left(p^{s}\right)}=\prod_{p} \frac{p^{s}-m}{p^{s}}=\prod_{p}\left(1-\frac{m}{p^{s}}\right) .
$$

2. Proof of Theorem 1.2

Given two lattice points $X^{i}=\left(x_{1}^{i}, \ldots, x_{s}^{i}\right)$ and $X^{j}=\left(x_{1}^{j}, \ldots, x_{s}^{j}\right)$ we write $X^{i} \equiv$ $X^{j}(\bmod p)$ if $x_{r}^{i} \equiv x_{r}^{j}(\bmod p)$ for all $r=1, \ldots, s$. We write $X^{i} \not \equiv X^{j}(\bmod p)$ otherwise.

Given a prime p, we say that $\left(X^{1}, \ldots, X^{k}\right)$ is \mathcal{H}_{p}-visible if $X^{i} \not \equiv X^{j}(\bmod p)$ whenever $\{i, j\} \in E(\mathcal{H})$. The first observation is that
$\left(X^{1}, \ldots, X^{k}\right)$ is \mathcal{H}-visible $\Longleftrightarrow\left(X^{1}, \ldots, X^{k}\right)$ is \mathcal{H}_{p}-visible for any prime p.
For any positive integer M and $n>M$ we have

$$
\begin{aligned}
& \text { (2.2) } \mid\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X_{1}, \ldots, x^{k}\right) \text { is } \mathcal{H}_{p} \text {-visible for any } p\right\} \mid \\
& =\mid\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is } \mathcal{H}_{p} \text {-visible for any } p \leq M\right\} \mid+O(|R|),
\end{aligned}
$$

where
$R=\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right)\right.$ is not \mathcal{H}_{p}-visible for some $\left.p>M\right\}$.
We split R in two sets: $R=R_{1} \cup R_{2}$. The set R_{1} contains those (X^{1}, \ldots, X^{k}) with $X^{i}=X^{j}$ for some $i \neq j$ and R_{2} contains those with all X^{i} distinct.

Clearly,

$$
\begin{equation*}
\left|R_{1}\right| \leq\binom{ k}{2} n^{s(k-1)} \tag{2.3}
\end{equation*}
$$

On the other hand we observe that if $X^{i} \neq X^{j}$ then $X^{i} \not \equiv X^{j}(\bmod p)$ for $p \geq n$, so $\left(X^{1}, \ldots, X^{k}\right)$ is always \mathcal{H}_{p}-visible when $p \geq n$ for those $\left(X^{1}, \ldots, X^{k}\right)$ counted in R_{2}. Indeed, for a fixed $X^{i}=\left(x_{1}^{i}, \ldots, x_{s}^{i}\right)$ the number of $X^{j}=\left(x_{1}^{j}, \ldots, x_{s}^{j}\right) \in[1, n]^{s}$ such that $X^{j} \equiv X^{i}(\bmod p)$ is $(n / p+O(1))^{s} \ll n^{s} / p^{s}$ for $p<n$. Thus,

$$
\begin{aligned}
\left|R_{2}\right| & \leq \sum_{M<p<n} \mid\left\{\operatorname{distinct} X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is not } \mathcal{H}_{p} \text {-visible }\right\} \mid \\
& \left.\leq \sum_{M<p<n} \mid\left\{\operatorname{distinct} X^{1}, \ldots, X^{k} \in[1, n]^{s}: X^{i} \equiv X^{j} \quad(\bmod p) \text { for some } i \neq j\right\}\right\} \mid \\
& \left.\left.\leq \sum_{M<p<n}\binom{k}{2} \right\rvert\,\left\{\operatorname{distinct} X^{1}, \ldots, X^{k} \in[1, n]^{s}: X^{1} \equiv X^{2} \quad(\bmod p)\right\}\right\} \mid \\
& \ll \sum_{M<p<n} \frac{n^{k s}}{p^{s}}
\end{aligned}
$$

and we get the upper bound

$$
\begin{equation*}
\left|R_{2}\right| \ll n^{k s} M^{1-s} . \tag{2.4}
\end{equation*}
$$

By (2.2), (2.3) and (2.4) we have

$$
\begin{align*}
& \mid\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is } \mathcal{H} \text {-visible }\right\} \mid \tag{2.5}\\
= & \mid\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is } \mathcal{H}_{p} \text {-visible for any } p \leq M\right\} \mid \\
& +O\left(n^{s(k-1)}\right)+O\left(n^{k s} M^{1-s}\right) .
\end{align*}
$$

The next step is to estimate the quantity

$$
\begin{equation*}
\mid\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is } \mathcal{H}_{p^{-}} \text {-visible for any } p \leq M\right\} \mid \tag{2.6}
\end{equation*}
$$

A good coloration of a labeled graph \mathcal{H} is an assigment of colours to the vertices such that two adjacents vertices do not share the same colour. The polynomal chromatic $P_{\mathcal{H}}(x)$ counts the number of good colorations of \mathcal{H} using x colours.

For each p we assign to each vertex $X=\left(x_{1}, \ldots, x_{s}\right)$ the p-colour $c_{p}(X)$ defined as the only vector $c_{p}(X) \in[0, p-1]^{s}$ such that $c_{p}(X) \equiv X(\bmod p)$.

We observe that $\left(X^{1} \ldots, X^{k}\right)$ is \mathcal{H}_{p}-visible if and only if there exists a good p-coloration $C_{p}=\left(c_{p}^{1}, \ldots, c_{p}^{k}\right)$ of \mathcal{H} such that $\left(c_{p}\left(X^{1}\right), \ldots, c_{p}\left(X^{k}\right)\right)=C_{p}$.

Thus, $\left(X^{1} \ldots, X^{k}\right)$ is \mathcal{H}_{p}-visible for any $p \leq M$ if and only if there exists a sequence of good colorations $\left(C_{p}\right)_{p \leq M}$ such that $\left(c_{p}\left(X^{1}\right), \ldots, c_{p}\left(X^{k}\right)\right)=C_{p}$ for all $p \leq M$.

Since for each prime p there are p^{s} colours, the number of good p-colorations of \mathcal{H} is $P_{\mathcal{H}}\left(p^{s}\right)$, where $P_{\mathcal{H}}$ is the chromatic polynomial of \mathcal{H}. Therefore, the number of sequences of good colorations $\left(C_{p}\right)_{p \leq M}$ is

$$
\begin{equation*}
\prod_{p \leq M} P_{\mathcal{H}}\left(p^{s}\right) . \tag{2.7}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
& \mid\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is } \mathcal{H}_{p} \text {-visible for any } p \leq M\right\} \mid \tag{2.8}\\
= & \sum^{*}\left|\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(c_{p}\left(X^{1}\right), \ldots, c_{p}\left(X^{k}\right)\right)=C_{p}, p \leq M\right\}\right|
\end{align*}
$$

where the sum \sum^{*} is extended over all sequences of good colorations $\left(C_{p}\right)_{p \leq M}$ of the graph \mathcal{H}.

Given a sequence of colorations $\left(C_{p}\right)_{p \leq M}=\left(c_{p}^{1}, \ldots, c_{p}^{k}\right)_{p \leq M}$ we have that

$$
\begin{align*}
& \mid\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}: c_{p}\left(X^{i}\right)=c_{p}^{i}, i=1, \ldots, k, \text { for all } p \leq M\right\} \mid \tag{2.9}\\
= & \prod_{i=1}^{k} \mid\left\{X \in[1, n]^{s}: c_{p}(X)=c_{p}^{i}, \text { for all } p \leq M\right\} \mid .
\end{align*}
$$

Given the vectors $c_{p}^{i}=\left(c_{p 1}^{i}, \ldots, c_{p s}^{i}\right), p \leq M$, the lattice points $X=\left(x_{1}, \ldots, x_{s}\right)$ with $c_{p}(X)=c_{p}^{i}$ for all $p \leq M$ will be those such that the congruences $x_{r} \equiv c_{p r}^{i}$ $(\bmod p), p \leq M$ hold for any $r=1, \ldots, s$. By the Chinese Remainder Theorem these congruences are equivalent, for each $r=1, \ldots, s$, to the congruence $x_{r} \equiv a_{r}$ $\left(\bmod \prod_{p \leq M} p\right)$ for some a_{r}. The number of $x_{r} \leq n$ satisfying each congruence is $\frac{n}{\Pi_{p \leq M} p}+O(1)$, so the number of $X \in[1, n]^{s}$ with $c_{p}(X)=c_{p}^{i}$ for all $p \leq M$ is

$$
\left(\frac{n}{\prod_{p \leq M} p}+O(1)\right)^{s}
$$

Since this estimate does not depend on the values of c_{p}^{i} we have

$$
\begin{equation*}
\prod_{i=1}^{k} \mid\left\{X \in[1, n]^{s}: c_{p}(X)=c_{p}^{i} \text { for all } p \leq M\right\} \left\lvert\,=\left(\frac{n}{\prod_{p \leq M} p}+O(1)\right)^{s k}\right. \tag{2.10}
\end{equation*}
$$

Summing up, as consequence of $(2.8),(2.9),(2.10)$ and (2.7) we obtain

$$
\begin{aligned}
& \mid\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is } \mathcal{H}_{p} \text {-visible for any } p \leq M\right\} \mid \\
= & \left.\left(\frac{n}{\prod_{p \leq M} p}+O(1)\right)^{s k} \times \mid\left\{\text { sequences of good colorations }\left(c_{p}^{1}, \ldots, c_{p}^{k}\right), p \leq M\right\} \right\rvert\, \\
= & \left(\frac{n}{\prod_{p \leq M} p}+O(1)\right)^{s k} \prod_{p \leq M} P_{\mathcal{H}}\left(p^{s}\right)=n^{s k}\left(\prod_{p \leq M} \frac{P_{\mathcal{H}}\left(p^{s}\right)}{p^{s k}}\right)\left(1+O\left(\frac{\prod_{p \leq M} p}{n}\right)\right)^{s k} .
\end{aligned}
$$

In terms of probability we have proved that

$$
\begin{aligned}
& \mathbb{P}\left(\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is } \mathcal{H}_{p} \text {-visible for any } p \leq M\right\}\right) \\
= & \left(\prod_{p \leq M} \frac{P_{\mathcal{H}}\left(p^{s}\right)}{p^{s k}}\right)\left(1+O\left(\frac{\prod_{p \leq M} p}{n}\right)\right)^{s k} .
\end{aligned}
$$

Using (2.5) we have that

$$
\begin{aligned}
& \mathbb{P}\left(\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right) \text { is } \mathcal{H} \text {-visible }\right\}\right) \\
= & \left(\prod_{p \leq M} \frac{P_{\mathcal{H}}\left(p^{s}\right)}{p^{s k}}\right)\left(1+O\left(\frac{\prod_{p \leq M} p}{n}\right)\right)^{s k}+O\left(n^{-s}\right)+O\left(M^{1-s}\right) .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ we get
$\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:() X^{1}, \ldots, X^{k}\right)\right.$ is \mathcal{H}-visible $\left.\}\right)=\prod_{p \leq M} \frac{P_{\mathcal{H}}\left(p^{s}\right)}{p^{s k}}+O\left(M^{1-s}\right)$.
Finally, taking the limit as $M \rightarrow \infty$ we have
$\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\{X^{1}, \ldots, X^{k} \in[1, n]^{s}:\left(X^{1}, \ldots, X^{k}\right)\right.\right.$ is \mathcal{H}-visible $\left.\}\right)=\prod_{p} \frac{P_{\mathcal{H}}\left(p^{s}\right)}{p^{s k}}=\zeta_{\mathcal{H}}^{-1}(s)$.

References

[1] J. Christopher, The asymptotic of some k-dimensional sets. Amer. Math. Monthly 63 (1956), 399-401.
[2] D. F. Rearick, Mutually visible lattice points. Norske Vid. Selsk. Forh. (Trondheim) 39 (1966) 41-45.

Instituto de Ciencias Matemáticas (ICMAT) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

[^0]: 1991 Mathematics Subject Classification. 2000 Mathematics Subject Classification: 05C31.
 Key words and phrases. visible lattice points, chromatic polinomial, zeta function.
 This work has been supported by MINECO project MTM2014-56350-P and ICMAT Severo Ochoa project SEV-2011-0087.

