EVERY POSITIVE INTEGER IS A SUM OF THREE PALINDROMES

JAVIER CILLERUELO AND FLORIAN LUCA

ABSTRACT. For integer g > 5, we prove that any positive integer can be written as a

sum of three palindromes in base g.

1. INTRODUCTION

Let ¢ > 2 be a positive integer. Any nonnegative integer n has a unique base g
representation namely
nzz5jgj, with 0<6; <g—1.
j=0
The numbers §; are called the digits of n in base g. If [ is the number of digits of n, we

use the notation
(1.1) n =01 0o,
where we assume that d;—; # 0.

Definition 1.1. We say that n is a base g palindrome whenever §;_; = §;—1 holds for
alli=1,...,m=|l/2].

There are many problems and results concerning the arithmetic properties of base
g palindromes. For example, in [2] it is shown that almost all base g palindromes are
composite. In [4], it is shown that for every large L, there exist base g palindromes
n with exactly L digits and many prime factors (at least (loglog n)”‘)(l) of them as
L — o0). The average value of the Euler function over binary (that is, with g = 2)
palindromes n with a fixed even number of digits was investigated in [3]. In [7] (see
also [9]), it is shown that the set of numbers n for which F,,, the nth Fibonacci number,
is a base ¢ palindrome has asymptotic density zero as a subset of all positive integers,
while in [6] it was shown that base g palindromes which are perfect powers (of some
integer exponent k > 2) form a thin set as a subset of all base g palindromes. In [10],
the authors found all positive integers n such that 10™ &1 is a base 2 palindrome, result
which was extended in [5].
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Recently, Banks [1] started the investigation of the additive theory of palindromes
by proving that every positive integer can be written as a sum of at most 49 base 10
palindromes. A natural question to ask would be how optimal is the number 49 in the
above result. In this respect, we prove the following results.

Theorem 1.2. Let g > 5. Then any positive integer can be written as a sum of three

base g palindromes.

The case g = 10 of Theorem 1.2 is a folklore conjecture which has been around for
some time. The paper [8] attributes a stronger conjecture to John Hoffman, namely that
every positive integer n can be written in base ¢ = 10 as a sum of three palindromes
where one of them is the maximal palindrome less than or equal to n itself. This was
refuted in [11] which provided infinitely many examples of positive integers n which are

not a sum of two decimal palindromes.

However, we prove that “many” positive integers are a sum of two palindromes.

Theorem 1.3. Let g > 2. There exists a positive constant c1 depending on g such that

c

__°“
{n <x: n=p+ps2, p1, p2 base g palindromes}| > z Vees

for all x > 2.

On the other hand the set of integers which are not sum of two palindromes has
positive density.

Theorem 1.4. For any g > 3 there exists a constant ¢ < 1 such that
{n <z :n=p1+p2, p1,p2 base g palindromes }| < cx

for x large enough.

It makes sense to ask whether the set of positive integers which are sum of two base
g palindromes has positive density.

We set forward the following conjecture.

Conjecture 1.5. The set of positive integers n which are the sum of two base g palin-
dromes has positive density.

It would be interesting to extend Theorem 1.2 to the missing bases g € {2,3,4}.
Throughout this paper, we use the Landau symbols O and o as well as the Vinogradov
symbols < and >> with their usual meaning. These are used only in the proof of Theorem
1.3.
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2. THE ALGORITHMS

The proof of Theorem 1.2 is algorithmic. Indeed one can program the following
proof to input a positive integer n and obtain a representation of n as a sum of three
palindromes in base g > 5. We assume through the proof that g > 5.

For ease of notation, and using a convention introduced by Banks [1], we consider
that 0 is a base g palindrome as well. For any integer a, we write D(a) for that unique
d€{0,...,9— 1} such that d = a (mod g).

As in (1.1), we write the base g representation of n as
n = 55_1 ......... 5150.
As before, §;_1 # 0.

2.1. Small cases. To present a clear algorithm, those integers with less than 7 digits
are considered separately in Section §4.

So, the algorithm starts by counting the number of digits of n. If n has less than
7 digits, then Proposition 4.1 from Section §4 shows how to write n as a sum of three
palindromes. If n has 7 or more digits then we apply the general algorithm that we
present in the next pages.

2.2. The starting point. For those integers with at least 7 digits, the starting point
consists in assigning a type to n according to the following classification. The type will
define the lengths and the first digits (so, also the last) of the three palindromes p1, p2, p3
that we will use to represent n.

Type A:

Al) 6l—2 7& 0, 1, 2, 21 = D((So - 5l_1 - 6[—2 + 1) 75 0.

n | 01 ) %k ok ok ok ok kK k% x % % do
p1 | 0—1 . e O1—1
P2 So—1 . . . . . . . . . . . . -1
p3 Z1 e e e e 21

A2) §-2#0,1,2, D(6—6-1—8-2+1)=0.

n | 01 01—2 x ok k% k% ok x K k% ok do

P1 5171 . . . . . . . . . . . . . (Sl,l
P2 5l—2 -2 . . . . . . . . . . . . 5l—2 -2
p3 1 . . . . . . . . . . . 1
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A3) 5l—2 = 07 17 27 6l—1 7£ 17 1= D((SO - 5l—1 + 2) 7& 0.
n 011 Oj—o % % ok & x ok >k % kx ok *k % do
p1| -1 —1 61— 1
P2 g—1 g—1
D3 21 21
Ad) 62=0,1,2 §-1#1, D(d—3-1+2)=0.
n 011 Oj—g % % ok k% ok x ok k *k ok % do
p1|o—1—1 01— 1
P2 g—2 . g—2
p3 1 1
A5) 01 =1, 02=0, §_3<3, 2 =D(d—d—3)#0.
n |1 0 * * ok % x ok ok %k % ok ok X do
b1 g—1 . g—1
P2 d-3+1 d—3+1
Pp3 21 z1
A6) i1 =1, 0_2=0, §-3<3, D( —d-3)=0.
n |1 0 * * ¥k k& ok x ok kK ok do
b1 g—1 . g—1
D2 5173 +2 . 5173 +2
D3 g—1 g—1
Type B
Bl) 51_1 = 1, 5!—2 < 2, 55_3 > 4, 21 = D(50 - 51_3) 7’5 0.
n |l §_9 * * k% ok ok k% ok ok * x kK do
p1|1 02 Si—o 1
P2 o—3—1 o—3—1
p3 21 21
B.2) 0j.1=1, 6-92<2, §_3>4, D(dy—_3)=0.
n |l §_9 * * ok ok % x ok ok K x k% do
pr| 1 62 81— 1
D2 51—3 -2 . (51_3 -2
p3 1 1
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B3) 6p1=1, &§-2=1,2, 6,_3=0,1, &y =0.
n |1 01_2 Ol—3 % % * % ok x ok k % ok * do
pr|1l G2—1 S_o—1 1
P2 g-2 . g—2
D3 1 1
B4) 0j.1=1, §-2=1,2, 6,_3=2,3, & =0.
n |l d_o 0d_3 * x % ok % ok x ok k% K do
b1 1 6[—2 . 51_2 1
P2 1 1
3 g—2 g—2
B5) 51_1 = 1, 5!—2 = 1,2, 51_3 = O, 1,2, 21 = 50 75 0.
n |1 012 Oj—3 % ok x ok ok ok ok % ok % * do
p1|1 d2—1 oo—1 1
P2 g—1 g—1
p3 21 21
B6) 51_1 = 1, 51_2 = 1,2, 51_3 = 3, 21 = D((SO - 3) 75 0.
n|l 09 3 * x * % *x *x % * x *x * 0
pr|l G2 - o2 1
P2 2 2
p3 21 21
B.7) 0;-1=1, §-2=12, 6_3=3, J=3
n|l d_o 3 *x % %x %x x x x x x *x *x (g
pr|1 62 . Sy 1
P2 .
P3 1

Notice that all the digits appearing in the clasification are valid digits; i.e. 0 < § <
g — 1. We observe also that when n if of type B, the digit of p; below d¢; 3, which will
be denoted by x2, takes the values 0,1,2 or 3.
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2.3. The algorithms. Once we have asssigned the type to n we have to check if n is a

special number or not.

Definition 2.1. We say that n is a special number if the palindrome p; corresponding

to n according the classification in types above has an even number of digits, say [ = 2m,

and at least one of the digits d,,—1 or &, is equal to 0. Otherwise we say that n is a

normal number.

We use five distinct algorithms. We use Algorithms I, IT, IT and IV for normal numbers

and Algorithm V for special numbers.

Algorithm I:

Algorithm II:

Algorithm III:

Algorithm TV:

Algorithm V:

To be applied to integers such that the associated palindromes pi, p2, p3 have
2m + 1, 2m, 2m — 1 digits respectively for some m > 3. In other words, those
of type Al, A2, A3 and A4 when [ = 2m + 1 and those of type A5 and A6 when
[ =2m + 2. The cases m < 2 correspond to the small cases.

To be applied to integers such that the associated palindromes pi, p2, p3 have
2m, 2m — 1, 2m — 2 digits respectively for some m > 3 and such that ,,_1 # 0
and d,, # 0. In other words, those of type Al, A2, A3 and A4 when [ = 2m
and 6,,—1 # 0 and J,, # 0 and those of type A5 and A6 when [ = 2m + 1 and
Odm—1 # 0 and d,, # 0. The cases m < 2 correspond to the small cases.

To be applied to integers such that the associated palindromes pi, p2, p3 have
2m+1,2m —1,2m — 2 digits respectively for some m > 3. In other words, those
of type B with [ = 2m + 1. The cases m < 2 correspond to the small cases.

To be applied to integers such that the associated palindromes pi, p2, p3 have
2m, 2m — 2,2m — 3 digits respectively for some m > 4. In other words, those of
type B with [ = 2m and with d,,, # 0 and §,,_1 # 0. The cases m < 3 correspond
to the small cases.

To be applied to special numbers that are not covered by the small cases.

2.4. Algorithm I. Asssume m > 3. The initial configuration when we apply Algorithm

I is one of the following configurations:

0om  O02m—1 Oom—2 * * % * * % * x * *x 01 Op
X il
Y1 n

Z1 21
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1 dom Oom—1 O2m—2 * * % * * % * * % x 07 Op
Y1 . e e e e e e e e e . Y1
Al . . . . . . . . . . . Al

Algorithm I in either case is the following:

Step 1: We choose x1, y1, 21 according to the configurations described in the starting
point. Define ¢; = (21 4+ y1 + 21)/g, which is the carry of the column 1.

Step 2: Define the digits
vy = D(02m—1 —y1)  if 21 < dom—2 — 1
D(0om—1—11 —1) if 21 > 02m—2;
y2 = D(bam—2— 21 —1);
zg = D(0y —x2 —y2 — c1);
ca = (wa4+ya+22+c1—01)/g (the carry from column 2).
Step i, 3 <i < m: Define the digits

v {1 if zi—1 < O2m—i — 1;
R VI Zi—1 = 02m—i;
yi = D(02m—i—zi-1—1);
zi = D(6i1—m —yi —cic1);
¢ = (xi+vyi+zi+ci-1—0i—1)/g (the carry from column 3).

Step m + 1: Define

Tm+1 = 0.

The diagram below represents the configuration after step i:

Oom—it1 O2m—i Oom—i—1 * * % % * % % x % *x 0;_1
Z5—92 Zi—1 Zq . . . . . . . . . . Z3

A few words to explain what is behind the algorithm:

The digit y; is defined to adjust the digit do,,—; from the left side once we know
the digit z;—1 and assuming a possible carry from the previous column (the —1 in the
definition of y; takes into account this possible carry). The z; is defined to adjust the

digit §;_1 in the right side once we know z;,y; and ¢;_1, the carry from the previous
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column. Now we go again to the left side. If z; > d9,,—;—1 we will get the possible carry
we had assumed and then we define ;11 = 0. If z; < do,—;—1 — 1 we do not get any
carry and then we define x;11 = 1, which has the same effect that the carry we expected.

After the last step the configuration that we obtain is the following:

62m 52m71 62m72 * ok * 5m (Sm,l 5m72 * ok ok ok ok 51 50
T * * Xk Ty 0 Tm, * x k% % ok *x X
Y1 * * ok Ym—1 Ym Ym  Ym—1 * * x ok ok kY

Z1 ko ok * Zm—1 Zm Zm—1 ok % k% * Z1

We call temporary configuration the configuration we get after the last step. We
have drawn a vertical line where both sides of the algorithm collide. It is not true in
general that n is equal to the sum of the three palindromes we obtain in the temporary
configuration.

If A,, is the digit we obtain in column m + 1 when we sum the three palindromes, we
observe that

A =Ym+2Zm-1+Cn =06m +cp—1 (mod g).

If ¢, = 1 then A, = J,, and we obtain the correct digit in column m + 1 and, as
consequence of Proposition 2.2, we obtain the correct digit in all the columns. In this
case n is equal to the sum of the three palindromes of the temporary configuration so

the temporary configuration is also the final configuration.

If ¢, # 1, then we need an extra adjustment.

2.5. The adjustment step. For i =0,...,2m, we denote by A; the digit we obtain in
column 7 + 1 when we sum the three palindromes that we have obtained after the last
step. Of course we want that A; = ¢; for all i, 0 < i < 2m. Unfortunately, this is not
always true but it is almost true. The following proposition shows that we obtain the
correct digits on the left side (thanks to the z;’s) and that we obtain the correct digit
in a column of the right side if the digit we obtain in the previous column is also the

correct digit.

Proposition 2.2. Let g > 5 and m > 3. We have that A; = 9; for all0 <i<m — 1.
Furhthermore, for any 0 <i <m — 1, if Apai = Omai, then Apaiv1 = dmgit1-

Proof. The first statement of the proposition is clear because of the way we have defined
the z;’s. As for the second statement, we prove it separately for i = 0, for 1 <i < m—3,
for i =m — 2 and for i =m — 1.
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i) i = 0. We have
Am—H = Tyt Ym-1+ Zm—2+ Cmt1
= Omt1+Tm+Cmyr1—1 (mod g).

Then we have to prove that x,, + ¢p41 = 1.
a) If x,,, =1 then 2,1 <&, — 1, 80 Yy, = 6y, — Z;m—1 — 1. Since

Ap = Ynt+Zm-1+Cn=0n+cm—1 (mod g),

and we have assumed that A, = d,,, we conclude that ¢,, =1 (mod g), so
cm =1 (because |, — 1] <2 < g). Thus,

Cm+1 = (ym + Zm—1+Cm — 6m)/g = (Cm - 1)/9 =0,

and then x,, + ¢pe1 = 1.
b) If ,,, = 0, then 2,1 > 0, SO Ym = g + Om — 2m—1 — 1. The argument is
similar to the one before except that now we get

Cm+1 = (ym+2’m—1+cm—5m)/9:(9+Cm—1)/9=17

and again z, + cm+1 = 1.
In any case, we have that x,, + ¢;n+1 = 1, and then A1 = dppt1-

ii) 1 <i < m — 3 (these cases are vacuous for m = 3):

Apmtitl = Tm—i+ Ym—i—1 + Zm—i—1-2 + Cmtit1

= Om+it1 + Tm—i t Cmyiy1 — 1  (mod g).

We have to prove that z,,—; + ¢ptir1 = 1.
a) If xp—; =1, then z;—i—1 < dmti — 1, SO Ym—i = Omti — Zm—i—1 — 1. Since

Apti = Tm—itl + Ym—i + Zm—i—1 + Cmyi

= ZTm—it1 T Omti — 1+ cmti  (mod g),
and we have assumed that A,,; = d,,14, we conclude that
Tm—it1 + Cmyi —1 =0 (mod g),
therefore ,,—j+1 + ¢mti — 1 = 0 (because |zy—it1 + cmti — 1| < 2). Thus,

Cm+i+l = (xm—z‘+1 + Ym—i + Zm—i—1 + Cmti — 5m+z’)/g

= (Tm—it1— 1+ Cm+i)/9 =0,

and Ty + cmpit1 = 1.
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b) If xp—y = 0, then 2zp,—j—1 > dm+i, SO Ym—i = g + Om+i — Zm—i—1 — 1. The

argument is similar to one before except that now we get
Cmtit1 = (Tm—it1 + Ym—i+ Zm—i—1 + Cmri — Om+i)/9
= (g+Tm—it1 — 1+ cmi)/g=1,

and again T,—; + cprit1 = 1.
In any case, we have that x,,—; + ¢m+it1 = 1 and then Ay4ip1 = dptit1-
iii) ¢ = m — 2. We have

Aom—1 =22+ Y1 + c2m—1  (mod g).

We distinguish two cases:
a) If 21 < 692 — 1, then y5 = dopp—20 — 21 — 1 and

Aom—1 = 22 + Y1 + Com—1 = dom—1 + C2m—1 (mod g).
Since
Aom—2 =23+ Y2+ 21 + Com—2 = T3+ d2m—2 — 1 + cam—2  (mod g),

and we have assumed that Agy_o = dom—_2, we get 3 — 1 + copp—o = 0
(because |x3 — 1 + com—2| <2 ). Thus,

Com—1 = (T3 + Y2 + 21 + Cam—2 — S2m—2)/g = 0,
and we have Agy—1 = 09m—1-
b) If 21 > o2, then yo = g + d9yp—2 — 21 — 1 and
ANoy1 =22+ Y1+ Com—1 = O2m-1 + Com—1—1 (mod g).
We repeat the same argument as in case a) except that now
Com—1 = (T3 + Y2 + 21 + Com—2 — d2m—2)/9 = 1,

and again Agm_l = 52m—1-
iii) ¢ = m — 1. We can check in the classification in types that if Ag,—1 = dom—1,
then Aoy, = dop,. In other words, that we have co,,, = 0 for the types Al and A2
and we have ¢y, = 1 for the types A3, A4, A5 and A6.

O

Proposition 2.2 shows that if A, = §,, then A; = §; for all # = 0,...,2m and then
the three palindromes we have obtained do the job.

The problem appears when A,, # §,, and this occurs when ¢,, # 1. When this
happens, we need to make an adjustment to our temporary configuration.
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Notice that for m > 3 we have
Ay =0p+cn—1 (mod g),
and that ¢, takes the value 0,1 or 2.

All the possible situations are considered in the cases below:

I.1 ¢, = 1. In this case A, = d,,, and there is nothing to change. The temporary
configuration is simply the final configuration since in all columns the sums of the digits
including the carries yield the digits of n.

1.2 ¢, = 0. In this case we need to increment by one unit the digit we obtain in
the column m + 1. We can do this by changing the value of x,,11 =0 to xp41 = 1.

(Sm 5m,1 5m 5m71
0 * 1 *
—
Ym | Ym Ym | Ym
* Zm * Zm

Notice that we have modified the central digit of the first palindrome, so the new first
row is also a palindrome. Notice also that now we obtain the correct digit in column

m + 1 and also in all remaining columns.
1.3 ¢ = 2. In this case, we have that y,,, # 0 (otherwise ¢, # 2). We distinguish

two cases:

1.31) zm #g — 1.

5m (Smfl 5m 6m71
* * * *
—
Ym Ym Ym — 1| ym —1
* Zm * Zm +1
1.3.i) zpm =g — 1.
5m 5m71 5m 5m71
0 * 1 *
—
Ym Ym Ym — 1| Ym — 1
* | g—1 * 0

Observe that in every adjustment step we have been successful in increasing or de-
creasing the digit that was obtained in the column m + 1 when ¢, = 0 or 2, without
altering the digits from the previous column. Notice also that in every adjustement we
always modify the central digits of the temporary palindromes such that the new ones
are also palindromes. Once we have realized these adjustments, the digit we get in the
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column m + 1 is d,,, the correct digit, and Proposition 2.2 proves that all the digits are

correct.

2.6. The three palindromes and an example. We end this subsection by illustrating
the application of Algorithm I to an example. Let n be the positive integer giving the
first 21 decimal digits of 7

n = 314159265358979323846.

We see that n is of type Al, therefore the configuration after Step 1 is the following :

3141592653589 793 23384°¢6

Thus n is a normal integer and we can apply Algorithm I.
Since z1 > dom—_2, Step 2 starts defining
g = D(0opm-1—y1—1)=D(1-9-1)=1,
y2 = D(bogpm-2—21—1)=D(4—-5-1) =8,
z9 = DO —x2—y2—c1)=DMA—-1-8-1)=4,
c2 = (z2+y2+22+c—061)/10=1,

and the configuration after Step 2 is

31 4159265 35|/89 793 23284°F€6

2 1 1 2

9 8 . 8 9

5 4 4 5

and after Step 3 is

3141592653589 7932328 4¢6

210 . . . . . . .. . . . .01 2

98 6 . . . . . . . . . . . . . 6 89

5 4 1 . . . . . . . . . . . .1 45

Continuing with the algorithm we get to the temporary configuration:

3141592653589 79323384°F€6
210100100101 001001012
986 3992940049299 36829
5419 2 3584|7485 3 291435
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Since ¢,;, = 0, we need to apply Adjustment 1.2 and obtain the final configuration:

n|3 1 415 926353 5|89 793 23384°¢6
pp|2 1 01 0010O011|1 001O0O01O01 2
D2 986 39929 40(04929 936829
D3 5419 2 3 5 8 4|7 4853 291435

3. THE REMAINING CASES

3.1. Algorithm II. The algorithm only differs in the subindices of the §;’s (because
now [ = 2m is even) and in the adjustment step, which is slightly more complicated to
describe because of the many cases to be considered. The cases m < 2 correspond to

the small cases. For m > 3, we proceed in the following steps:

Step 1: We choose x1,y1, 21 according to the configurations described in Section 2.2.
Define ¢; = (z1 + y1 + 21)/g, which is the carry of the column 1.

Step 2: Define the digits

{ D(02m—2 — 11) if 21 < 0am-3 — 15
)

D(02m—2—y1 —1) if 21 2 O2m—3;

y2 = D(02m-3— 21 —1);

7 = D(61—m2—y2—c1);

ca = (wa+ya+22+c1—061)/g (the carry from column 2).

Step i, 3 <i <m — 1 (these steps are vacuos for m = 3): Define the digits

{1 if zi—1 < dom—i—1 — 1;

T Yo it Zi—1 = 02m—i—1;

yvi = D(dm—i1—2i1—1);

zi = D(6i1—m —yi —ci1);

¢i = (ri+vyi+zi+c-1—9-1)/g (the carry from column ).

Step m: Define the digits

Tm = 0.

Ym = D((Sm—l — Zm-1 — Cm—l)-



EVERY POSITIVE INTEGER IS A SUM OF THREE PALINDROMES 14

The temporary configuration is:

0om—1 O02m—2 Om—3 * * * Om | Om_1 Om—2 * * x % x 01 0
T . . . . . 0 0 Tm—1 . . . . . . T
n . - - Ym—1| Ym  Ym-1 - - - - . . Y
21 .. . Zm—1 Zm—1 - =+ - .« . . z1
or
1 52m71 52m72 52m73 * ok ok 5m (Smfl 5m72 ok ok ok % 51 (5()
I . . . . . 0 0 Tm—1 . . . . . . 1
Y1 . . . - Ynm—1 Ym Ym—1 . . . . . . Y1
Z1 . . . . Zm—1 "Am—1 . . . . . . Z1

with d,,—1 # 0 and §,, # 0.

Proposition 3.1. Let g > 5 and m > 3. We have that A; = 9; for all0 <i<m —1.
Furhthermore, for any 0 <i <m — 2, if Apti = Om+i, then Aptiv1 = Omgit1-

Proof. The proof is similar to the proof of Proposition 2.2. We only give the details for
i = 0, which is the only case somewhat different.

Assume that A,, = d,,. In other words, that (y,,—1+ 2m—2+ ¢m —0m)/g is an integer.
We have

A1 =Tyt +Ym—2 + Zm—3 + Cmi1 = Tip—1 + g1 — 1 +cpg1 (mod g).
If £p,—1 =0, then z,;,_9 > 6, and Yp—1 = g + 6y — Zm—2 — 1. Thus,
Cmt1 = (Um—1+ Zm-2+Cm —0m)/g=(9+cm —1)/g=1
because ¢,41 is an integer and |c,,, — 1| <1 < g.
If z,,_1 =1, then z,,_2 < d,, — 1 and y;_1 = s, — 2Zm—_2 — 1. Thus,
Cmt+1 = (Ym—1 + Zm—2 + Cm — 0n)/g = (em —1)/g =0
because ¢, 41 is an integer and |c,, — 1] <1 < g.
In any case, we have that x,,—1 + ¢jpr1 = 1, 80 A1 = dpnr1- O
The above proposition implies that if A, = d,,, then A; = ¢; forall¢ =0,...,2m—1.

Adjustment step: Notice that A,, = 6., + ¢ — 1 (mod g). Thus, we make the
adjustment according this observation.

II.1 ¢ = 1. We do nothing and the temporary configuration becomes the final

one.

II.2 ¢, = 0. We distinguish the following cases:
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I1.2.1) ym # 0.
(5m 5m—1 5m 5m—1
0 0 1 1
—
* Ym * | ym — 1
* * * *
I1.2.ii) ym = 0.
I1.2.ii.8) Ym—1 # 0, Zm—1 # g — 1.
5m 5m71 5m72 5m 6m71 5m72
0 0 * 1 1 *
Ym—1| 0  Ym-1 Ym—1—1| 9—2  yYym-1—1
* Zm—-1 Zm-—1 * Zm-1+1 zm-1+1
I1.2.ii.b) Yym—1 # 0, 2m—1 =g — 1.
5m 5m—l 5m—2 5m 5m—1 5m—2
0 0 * 2 2 *
Yn-1| 0 Ym-1 Ym—1—119—2 ym-1—1
* g—1 g—1 * 0 0

I1.2.ii.c) Ym—1 = 0. In this case, we have that z,,—1 # 0. Otherwise we would have
that d,,—1 = 0 (because ¢,,—1 = 0), which is not allowed.

I1.3

cm = 2. In this case it is clear that z,,—1 = ¥, = g — 1 (otherwise ¢, # 2).

Om | Om—1 Om—2 Om Om—1 Om—2

0 0 * 0 0 *

0 0 0 1 1 1

¥ | Zm—1 Zm—1 * | Zm_1—1 zmo1—1

Note also that if y,,—1 = 0, then ¢,;,_1 # 2 and then ¢,, # 2.

5m 5m—l 5m—2

0 0 *
Ym—1|9—1 Ym-
* g—1 g-—1

5m 5m—1 5m—2
1 1 *
Yn-1—119—2 ym-1—1
* 0 0
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Let us illustrate this algorithm with an example. We consider the positive integer
representing the first 22 decimal digits of e:

n = 2718281828459045235360.

First let us note that since d19 # 0 and d11 # 0, then n is a normal integer. In addition
n is of type Al. Therefore the initial configuration is:

2718 2818 284|559 0452335360
8
1

Applying the algorithm II we get to the temporary configuration:

2
1

o 00|
_ o O
o N O o
S N O
N o O
© o = | o
— N O
o O O Lt
(G2 B I BiNe}
—= oo OO
© s O
N 3 |t
o = Ol
© N =W
ol © O ot
N © OlWw
o © |
—_ 00 MO

2 1
1 1
9 1
2 9

o © O| 0

Observe that the digit in column 12 is not correct (we get a 3 instead of a 4 for the
sum). This is because ¢17 = 0, therefore we have to apply the adjustment step. Since
y11 = 0, y10 # 0 and z19 # 0, the adjustment step is that described in I1.2.ii.a):

n|2 718 2818 28 4|59 045 235 360
p|il 80010100111 1001010081
D2 8 9992174818184 71299 9 8
D3 18259079 1|6 619 7095 281

3.2. Algorithm III. The cases m < 2 correspond to the small cases. For m > 3, we
proceed in the following steps:

Step 1: We choose x1,y1, 21 according to the configurations described in Section 2.2.
Define ¢; = (1 4+ y1 + 21)/g, which is the carry of the column 1.
Step 2: Define the digits
vy = D(02m—2 — y1) if 21 < Oam—3 — 15
D(02mm—2 —y1 — 1) if 21 > Oom—3;
y2 = D(dam-3—21—1);
zo = D(01 —x1 —y2 —c1);
ca = (x14+ys+20+c1—01)/g (the carry from column 2).
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Step i, 3 <i <m — 1: (these steps are vacuos for m = 3). Define the digits
{1 if zi—1 < Oam—i—1 — 1;

Ty, =

0 if 2i—1 2 02m—i—1;
yi = D(d2m—i—1— 2i-1— 1);
zi = D(0i-1— i1 —yi — cim1);
¢i = (xio1+vyi+zi+ci-1—0i—1)/g (the carry from column 7).

Step m: Define the digits
Tm = 0.
Ym = D(5m—l — Zm—-1 — Tm—-1 — Cm—l)‘

The temporary configuration is:

1 (52m—1 (ng_g * * * 5m (5m—1 (5m—2 * ok ok ok ok 51 50
1 I i . . Tm—1 0 Tm—1 Tm—2 . . . . . X1 1
Y1 . . . Ym—1 Ym Ym—1 . . . . . . Y1

Z1 . . . Zm—1 “Am—1 . . . . . . Z1

We omit the proof of the following proposition because it is similar to the Proposition
2.2 of Algorithm 1.

Proposition 3.2. Let g > 5 and m > 3. We have that A; = 9; for all 0 < i < m — 2.
Furthermore, for any —1 <i <m — 2, if At = Omai, then Aptiv1 = Omtit1-

Again, the above proposition gives that if A, = d,,, then A; = 6§; fori =0,...,2m—1.

Adjustment step: Notice that A, = §,, + ¢, — 1 (mod g). According this obser-
vation we distinghish the following cases:

III.1 ¢, = 1. We do nothing and the temporary configuration becomes the final
one.

1.2 ¢, = 0.

5m 5m—1 (5m 5m— 1
0 * 1 *
—
* * *
* * * *

II1.3  ¢—1 = 2. Notice that y,, # 0 (otherwise ¢, # 2). This is clear for m > 4
because x,,_1 takes the values 0 or 1. It also holds for m = 3 because x5 takes the values
0,1,2 or 3 for integers of type B when g > 5 and then zo < g — 2.
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II1.34)  Ym-1#0, zm-1#g—1
(5m 5m71 5m72 6m 6m71 5m72
0 * * 0 * *
Ym—1 Ym Ym—1 Ym—1 — 1 Ym — 1 Ym—1 — 1
* Zm—1 “Zm—1 * Zm-1+1 zm+1
II1.34)  Ym-1#0, zZm—1=9g—1.
5m (5m—1 5m—2 5m (5m—1 5m—2
0 * * 1 * *
Ym—1 Ym Ym—1 Ym—1 — 1 Ym Ym—1 — 1
g—1 g—1 * 0
II1.3.ii1))  Ym—1 = 0, 2m—1 7 g — 1. In this case x,,—1 # 0.
6m+1 6m 5m—1 5m—2 5m+1 6m 5m—1 5m—2
Tm—1 0 Tm—1 * Tm—1 — 1 0 Tm—1 — 1 *
* 0 Um 0 * g—1] ym—1 g—1
* * | Zm_1  Zm—1 * * Zm-1+1 zm_1+1
II1.3.iv)  Ym—1 =0, zm—1 =g — 1. In this case x,,,—1 # 0.
5m+1 5m 5m71 6m72 5m+1 5m 5mfl (5m72
Tm—1 Tm—1 * Tm_1 — 1 1 Tm_1— 1 *
* Um 0 * g—1 Um, g—1
* g—1 g—1 * * 0 0

Example: Let us illustrate this algorithm with an example. We consider the positive

integer representing the first 21 decimal digits of ((3):

n = 120205690315959428539.

First let us note that n is a normal integer because the number of digits is odd. In

addition n is of type B3. Therefore the initial configuration is:

120 2056 9031

595 9 4 2 8 5 3

1

1

1

© © =|©
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Applying the algorithm III we get to the temporary configuration. Since c¢ij9p = 1 we do
not need any adjustment step and the temporary configuration is also the final configu-

ration.
nlil 2 02 05 6 903 1|/595 94 2 85 39
ppl/1 1 001 O01O0O0T1O01 0OO01O0T1O0O0T1T1
P2 92 00 7 405 05050470029
P3 9948 49 7 0(9 9 07 948499

3.3. Algorithm IV. The cases m < 3 correspond to the small cases. For m > 4, we
proceed in the following steps:

Step 1: We choose x1, y1, 21 according to the configurations described in Section 2.2.
Define ¢; = (1 4 y1 + 21)/g, which is the carry of the column 1.

Step 2: Define the digits

D(02m—3 —y1) if 21 < Ogm—a — 1;
D

T (d2m—3—y1 —1) if 21 2 Oam—4;

y2 = D(bam—s—21—1);

7 = D(61—m1—y2—c1);

co = (r14+y2+22+c1—01)/g (the carry from column 2).

Step i, 3 <i < m — 2: Define the digits

o {1 if zi—1 < dom—i—2 — 1;
C o if 2i—1 2> 02m—i—2;
yi = D(dm—i2—2i1—1);
zi = D(0i—1— i1 —yi —cic1);
¢i = (zic1+vyi+zi+cio1—0i-1)/g (the carry from column 1).

Step ¢ = m — 1: Define the digits

1 if Zm—2 <01 — 1;
Lo — =
mt 0 if Zm—2 = Om—1;

Ym—1 = D((Sm—l — Zm-2 — 1)

Zm—-1 = D((Sm—Q —ITm—-2 — Ym—1 — Cm—2)-
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The temporary configuration is:

1 52m—2 52m—3 * ok * 6m (5m—1 (Sm_g * * ok ok ok (51 50
1 T . e Tm—2 Tm—1 Tm—-1 | Tm—2 . A
Y1 . . . Ym—2 Ym—-1 | Ym—-1 Ym-2 - . . . . Y1

Z1 . . . Zm—2 | Bm—1 “Am—2 . . . . . Al

Proposition 3.3. Let g > 5 and m > 4. We have that A; = 9; for all 0 < i < m — 2.
Furhthermore, for any —1 <i <m — 3, if Apti = Omti, then Apyit1 = Omtit1-

Proof. The first statement of the proposition is clear. For the second one, we consider
firs the case i = —1. Assuming that A,,_1 = d,,—1 we have to prove that A,;, = d,,.
Indeed

A =Ty 1+ Ym—2+2m-3+Ccm =0m +Tm-1+cm—1 (mOd g)‘

If 21 = 1 then 2,9 < 01 — 1 and ypm—1 = 6m—1 — 2Zm—2 — 1. On the other
hand, since A,,—1 = dpp—1 + Tm-1 + ¢m—1 — 1 (mod g) and A,,—1 = dm—1, we have that
Tm—1+ ¢m—1 = 1. Thus, ¢,;,—1 = 0. Finally

cm = (Tm—1+ Ym—1 + Zm—2 + €m—1 — Om-1)/9 = 0.

If 2,1 = 0, then z,,_9 > 6,1 and Ym-1 = g+ dm—1 — 2Zm—2 — 1. On the other
hand, since A,,—1 = dpp—1 + Tim—1 + ¢m—1 — 1 (mod g) and A,,—1 = ;—1, we have that
Tm—1+ ¢m—1 = 1. Thus ¢;,—1 = 1. Finally

Cm = (xmfl + Ym—1+ 2Zm—2 + Cm—1 — 6m71)/g = 1.
In any case we have that z,,_1 4+ ¢, = 1 and then we conclude that A,, = d,,.

We omit the proof of the proposition for the other cases because they are similar to
the case i = —1. O

The above proposition gives that if A,,,_1 = §,,_1 then A; = §; foralli =0,...,2m—2.
The adjustment step of this algorithm is more complicated than the previous ones.

Adjustment step: Assume that m > 4. Notice that in this algorithm we have that
Am—l = 5m—1 + Tm—1 + Cm—1 — 1 (mOd g)
IV.1l x,3,,-1 4+ ¢m—1 = 1. Wedo nothing and the temporary configuration becomes

the final one.

IV.2 L —1 + Cm—1 = 0, Ym—1 75 g — 1. Then ITm—-1 — Cmp—1 — 0. If Ym—1 = 0,
then z,—9 = dm—2 — 1 (mod g), thus z;,—1 < dp—2 — 1, 80 ;-1 = 1 unless 0,1 = 0,
which is not allowed. Thus, y,,,—1 # 0.
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IV.Q.i) Zm—1 75 0.
5m—1 5m—2 5m—1 5m—2
* * * *
Ym—1 | Ym—1 Ym—-1+ 1| ym-1+1
* Zm—1 * Zm—1— 1
IV211) Zm—1 = 0, Ym—2 75 0.
IV.2iia)  ym—-1#1zm2#g—1.
5m 5m71 6m72 * 5m 5m71 6m72 *
0 0 * * 1 1 * *
Ym—-2 Ym—1 | Ym—-1 Ym—2 Ym—2 — 1 Ym—1 — 1 Ym—1 — 1 Ym—-2 — 1
* Zm—9 0 Zm—2 * Zm—ao + 1 1 Zm—2+ 1
IV.2.iib) Ym—1#12zm—o2=9g—1.
5m 6m—1 6m—2 * 6m 6m—1 5m—2 *
0 0 * * 2 2 * *
Ym—2 Ym—1 | Ym—1 Ym—2 Ym—2—1 Ym-1—2|Yn-1—2 Ym—2-—1
* g—1 0 g—1 * 0 3 0
IV.2iic) yYm-1=1, z2m_2#g—1.
5m 5m71 5m72 * 5m 5m71 5m72 *
0 0 * 1 1 * *
Ym—2 1 1 Ym—2 Ym—-2 — 1 0 0 Ym—2 — 1
* Zm—9 0 Zm—2 * Zm—2 + 1 1 Zm—2 + 1
IV.2iid) yYym—1 =1, z2p—2 =g — 1.
5m 5m—1 6m—2 * 5m 6m—1 5m—2 *
0 0 * * 1 1 * *
Ym—2 1 1 Ym—2 Ym—2 — 1 g — 1 g — 1 Ym—2 — 1
* g—1 0 g—1 * 0 3 0
IV.2iiil)  zm—1 = 0, Ym—2 = 0. Notice that y,,—2 = 6, — 2m—3 — 1 (mod g). Since

Ym—2 = 0 and &, # 0, we have that z,,_3 < d,, — 1 and then z,,,_o # 0 (even
when m = 4).
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It follows that y,,—1 # 0. Otherwise we would have

* 6m 5m—l 5m—2 *
Tm—2 — 1 1 1 Tm—2 — 1 *

* 9—1 Yyma—1|ym1—1 g-—1

* * Zm—o + 1 1 Zm—2 + 1

* 6m 5m—1 5m—2 *
Tm—o — 1 2 2 Tm—o — 1 *

* 9—=1 Yn1—-2|Yyn1-2 g-—1

* * 0 3 0

* 5m 5m71 5m72

IV.2iiia)  zm—2#g—1.
Om—1 = 0, which is not allowed.
* 5m 5m—1 5m—2 *
Tm—2 0 0 Tm—2 *
* 0 Ym—1 | Ym—1 0
* *  Zm-2 0 Zm—2
IV.2iiib) zm—2=9g—1, ym-1 # 1.
* 6m 5m—1 6m—2 *
Tm—o O 0 Lm—2 *
* 0 Ym—1 | Ym—1
* g—1 0 g—1
IV.2iiic) zm—2=g—1, yp_1 =1
* 5m 5m71 5m72 *
Tp—o O 0 Ton—9 *
* 0 1 1
* * g—1 0 g¢g-—1
IV.3 Ly —1 —|— Cm—1 = 0,

Ym—-1 =g — 1.

Since ¢;,—1 = 0, it follows that

ZTm—2 = zZm—1 = 0. Notice that if y,,,—2 = 0, then d,, = 0 (otherwise z,,—3 = §,, — 1 and

then x,,_2 # 0), which is not allowed.

IV.3i) zm_2#g—1.
5m (5m—1 (5m—2 *
0 0 * *
Ym—2 g—19—1 Ym—2
* Zm—2 0 Zm—2
IV3i) zm—2=g—1
6m 6m71 5m72 *
0 0 * *
Ymn—2 9g—1]g—1 ym-2
* g—1 0 g—1
IV.4

(Sm 6m—1 6m_2 *
1 1 * *
Ym—2—1  9g—2 |g—=2 yno2—1
* Zm—2 +1 1 Zm—2 +1
5m 5m71 5m72 *
2 2 * *
Ym—2—1 g—=319—3 yYm-a—1
* 0 3 0

Tm—1+Cm-1=2, Tm-1=0, c;n—1 = 2. Ify,,_1 =0, then z,,_o =g—1
and then é,,—1 # 0. So, Yym—1 # 0.
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IVA4i) zm—1#g—1.

5m71 5m72 6m71 5m72
* * * *
—
Ym—1 | Ym—1 Ym—1— 1| Ym-1—1
Zm—2 | Am—1 Zm—2 Zm—1+1

IV.4ii)  zm—1 =9 — 1, zm_2 # g — 1. Notice that y,,—1 # 1. Otherwise ¢,,—1 # 2

(even when m = 4)

IV.diia)  ym—2 # 0.

5m 5m—1 5m—2 * 5m 5m—1 (5m—2 *
0 0 * * 1 1 * *
—
Ym—-2 Ym—1 | Ym—-1 Ym-2 Ym—2 — 1 Ym—1 — 2 Ym—1 — 2 Ym—2 — 1
* Zm—2 | 9—1 Zzm_2 * Zm—2+ 1 1 Zm—9o + 1

IV.4.iib)  Yym—2 = 0. As in case 1V.2.iii), we have that z,,_s # 0.

* 5m 5m—1 5m—2 * * 5m 5m—1 5m—2 *
Tm—o O 0 Tm—9 * R Tm—o — 1 1 1 Tm—o — 1 *

* 0 Ym—1 | Ym—1 0 * g— 1 Ym—-1 — 2 Ym—1 — 2 g9 — 1

* *  Zm—o | g—1 2zZm—2 * * Zm—2+ 1 1 Zm—o + 1

IVS zp 1+ Cm_1=2, ©m_1 =1, ¢;u_1 = 1. In particular, it follows that
Zm—2 # g — 1 (otherwise we would have x,,_; = 0).

IV.5i) zm_1#g—1, ym—1 # 0.

5m71 5m72 5m71 (5m72
* * * *
—
Ym—1 | Ym—1 Ym—1— 1| ym-1—1
* Zm—1 * Zm—1+1

IV.5ii)  zm—1#9g—1, ym—1 =0.

* 5mfl 5m72 * 5m71 6m72

11 * 0 0 *
—

* 0 0 x* g—1 g—1

* * Zm—1 * * Zm—1+ 1

IV.5iil)  zpm—1 =9 —1, zm—2 # 0.
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IV.hiiia)  Ym—2yYm—1 #g — L.
5m 5m—1 6m—2 * 5m 5m—1 5m—2 *
1 1 * * 0 0 * *
—
Ym—-2 Ym—1 | Ym—1 Ym-2 Ym—2+1l Yym1+1|ym1+1 ymo+1
* Zm—2 | 9 — I zm—2 * Zm—2 — 1 g— 2 Zm—2 — 1
IV.5iiib)  ym—2=9 —1, ym—1 # 0, 1.
5m 5m—1 5m—2 * 5m 5m—1 5m—2 *
1 1 * * 2 2 * *
9—1 Ym—1|Ym-1 g—1 9=2 Ym-1—2|Ym-1—-2 g—2
* Zm—2 | g—1 Zzm—2 * Zm—9o + 1 1 Zm—2+ 1
IV.5iii.c)  Ym—2=9 — 1, Yym—1 = 0.
5m 5m—1 5m—2 * 5m 6m—1 5m—2 *
1 1 * * 1 1 * *
—
g—1 0 0 g—1 g—2 g—2 |g-—2 g—2
Zm—2 | 9—1 2Zm—2 Zm—2 + 1 1 Zm—2 + 1
IV.5iiid)  ym—2=9 —1, ym—1 = 1.
5m 5m—1 5m—2 * 5m 5m—1 5m—2 *
1 1 * * 1 1 * *
—
g—1 1 1 g—1 g—2 g—1 g—1 g—2
* Zm—2|9g—1 ZzZm—2 * Zm—2 + 1 1 Zm—2 + 1
IV.hiiie) Ym—1=9—1, Ym—2 #g— 1.
5m 5m—1 (5m—2 * 5m 5m—1 5m—2 *
1 1 * * 1 1 * *
Ym—2 9—119—-1 ym-2 Ym—2+1 0 0 Yymoa+l1
* Zm-2 | 9 — 1 Zm—2 * Zm—2 — 1 g— 2 Zm—2 — 1
IV5iv) zm_1=9g—1, zm—2 =0, ym_2 # 0.
IV.5iv.a)  ym-—1 # 0, 1.
5m 5m—1 6m—2 * 5771 5m—1 5m—2 *
1 1 * * 2 2 * *
—
Ym—-2 Ym—-1 | Ym—-1 Ym-2 Ym—2—1 Ym-1—2|Yn-1—2 Ym-o—1
* 0 g—1 0 * 1 1 1
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IV.5.ivb)  Ym_1 = 0.
5m 5m—1 5m—2 *
1 1 * *
Ym—2 0 0 Ym—2
* 0 |g—1 0
IV.5iv.e)  ym—1 = 1.
6m 5m—1 5m—2 *
1 1
Ym—2 1 1 Ym—2
0 [g—1 0
IV.5.v)

Om Om—1 | Om—2 *

1 1 * *
Ym—2—1 g—219—2 ymo2-—1

1 1 1

5m 5m—l (5m—2 *

1 1 * *
Yn—2—1 g—1|g—1 yn-o—1

* 1 1 1

not allowed. Thus, x,,—2 # 0 (even when m = 4).

Zm—1=9g— 1, 2m—2 =0, Yym—2 = 0. If x,,,_9 = 0, then §,, = 0, which is

IV5v.a)  Ym—1 7# 0,1. As in case IV.2.iii), we have that x,,_2 # 0.
* 6m 6m—1 (5m—2 * * 5m (5m—1 5m—2 *
Tm—o 1 1 Tm—o % Tm—o — 1 2 2 Tm—o — 1 *
* 0 Ym-1|Ym-1 O 9—=1 Ym-1—-2|yn-1—-2 g-—1
* * 0 g—1 0 1 1 1
IV.5.v.b)  ym—1 =0.
5m 5m—1 6m—2 * 5m 5m—1 6m—2 *
1 1 * * 1 1 * *
—
0 0 0 0 g—2 g—3|9g—3 g—2
0 g—1 0 * 2 1 2
IV4dv.e)  ym—1=1.
5m 5m71 5m72 * 5m 5m71 6m72 *
1 1 * * 1 1 * *
—
0 1 0 g—2 g—2|9g—2 g—2
* 0 g—1 0 2 1 2
IV.6 x,-1+cm-1 =3. Then x,,—1 = 1 and ¢,,—1 = 2. We always have that

Tm—2 < 3 (even when m = 4). It follows that y,,—1 > 1 and z,,-1 = g — 1 (otherwise
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Zm—1 4 Ym—1+ Tm-2+cm—2<g—1+4+2<2g—1 and then ¢,,—1 # 2).

5m—1 5m—2 5m—1 5m—2
* % * *
—
Ym—1 | Ym—1 Ym—1— 1| Ym—1—1
¥ [g—1 * 0

3.4. Algorithm V. We recall that in this case the associated palindrome p; of n has

2m digits and that 6,,_1 = 0 or J,,, = 0. First we consider the integer

n =n—s, where s=gm4gm L

If 6/, 1 # 0 and 4], # 0, we keep n’. Otherwise we consider the integer n’ = n —2s. It is

easy to check that one of ' =n — s or n’ = n — 2s satisfies that 0,, ; # 0 and 4,, # 0.

We distinguish two cases:

i)

i)

The associated palindrome p} of n’ has also 2m digits (this is the typical situa-
tion).
We apply Algorithms IT or IV according the type of n’. Then n’ = p| +pl, +ph
and so
n=n'+s=(p] +s) +ph+ ph.
Notice that p} + s is also a palindrome because we are adding 1 or 2 to the two
central digits of p}. Note that if we have applied Algorithm II, then the central

which are 0 or 1 for m > 3. Note also that if we have

/
m—1>

L / /
digits are z;, and z,,

applied Algorithm IV, then the central digits are x/,_; and z which are 0
or 1 for m > 4. Hence, in all the cases the value of the two central digits is at

most 3, which are legal digits for g > 5 (indeed, even for g > 4).

The associated palindrome p} of n’ has 2m — 1 digits.

This is only possible if n is of the form n = 104... and n’ = 103.... In this
special situation, we consider n’ as of type B1 or B2 and apply the Algorithm
IV to n’ (instead of Algorithm I). Notice that the configuration of the starting
point in Bl and B2 is also valid when ¢;_3 = 3. Then the palindrome p| we get
in this way has 2m digits and, as above, we have

n=n'+s=(p| +s) + py + pi.

Example: We finish with one example which shows how to apply Algorithms IV and
V. Let n be the positive integer giving the first 20 digits of v/2:

n = 12267420107203532444.

The number n is a special number because it has an even number of digits, 20, m = 10

and 6,, = 0. Thus, we apply Algorithm V and consider n’ = n — s, where s = 100 4 107.
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Note that n' = 12267420096203532444, which is a normal number because ¢/, # 0 and
s #0.
We observe that n’ is of type B.3, so we apply Algorithm IV to n’. The initial

configuration is

12 2 6 742009 6203353 244
O |

4

The temporary configuration is

1226 742009 6[(20335 3 2444
113100001111 00001311
91578506 1|16 0587519
416 349 24194 2 9 43 6 14

Note that we need an adjustment becuase the digit in column 10 is not correct. The
reason is that zg + cg = 2. Looking at the central digits, we must follow the Adjustment
Step IV.5.iii.a):

n/

i
Ph
Pl 4

1 2
11

O W N
_= =
= Ot O
~N O =
N O O W
ot O Ot
S UL W
— = =

W N N
W N oo
= 00 O w
W 1 N
= O =

W o O
- Ol OO
o O = | O
NN Of©
W N O

Finally, we add s = 10'° 4+ 10° to n’ to obtain a representation of n as a sum of three

palindromes.

n
P
P2
P3

==

DN
O W IN
N e =)
e AR =N N |
DN O
W o O
= Ot OO
O O ==
N N = O
W N =g
co N =N
w N OO
N O O W
O ot O Ot
= 00 O w
W =N
S Ot W
— = =
B~ O |

4. SMALL INTEGERS

Proposition 4.1. All positive integers with less than seven digits are the sum of three
palindromes in base g > 5.

Proof. The proof is a consequence of the Lemmas 4.2, 4.3, 4.4, 4.5 and 4.6. O

Lemma 4.2. All positive integers with two digits are the sum of two palindromes in base
g > 5, except those of the formn = (§ +1)0, 1 <0 < g— 2, which are sum of three

palindromes.
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Proof. Let n = 619p.

01 < do

01

do

1

01
do — 61

So+1 &

5, % 0; 50
51— 1 5 —1 0 01
g+ —01+1 gl

28

Lemma 4.3. All positive integers with three digits are the sum of two palindromes in

base g > 5, except n = 201 which is sum of three palindromes.

Proof. Let n = 62016p.

do < o b9 > do+1, &1 75 0 b9 > do+1, 61 =0, D(52—60—1) 75 0
do 01 do 09 o1 do 09 o1 do
52 (51 52 52 51*1 (52 52*1 gfl 52*1
0o — 09 g+ 68— 62 g+d—0a+1

If 60 > 0o+ 1, 61 = 0, and D(d2 — dp — 1) = 0, we have that §g = d2 — 1 (mod g) and
we distinguish the following cases:

5y >3 Sy = 2 Sy =1
2 0 1
5 0 0,1 0 : 1 0 0
do—2 g—1 §o—2 1 1 g—1 g—1
1 1 1 g g1 1

O

Lemma 4.4. All positive integers with four digits are the sum of three palindromes in
base g > 5.

Proof. Let n = 6302610¢.

i) n > 630003, and n is not of the form n = d30003+m with m = 201, or m = (§+1)4
with § > 1. Then n — 430003 is the sum of two palindromes p1, po and

n = 030003 4+ p1 + pa.
ii) n = 630093 + 201.
03=1

o3 #1,9—1 o3 =g—1
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5 5 0 5 1 1 1 2 0 2 g—1 2 1 0
1 1 1 g—1 1 1 g-1
03—1 g—1 g—1 03—1
5 1 5 g—2 g—2 g—2 g—2
3 3
iii) n = §30083 + (5 +1)5, 1 <5< g—2:
a) d3 + 6 = do,
dg £ 1 03 =1
03 0 o0+1 do 1 0 0+1 6+1
03—1 g—2 g—2 03—1 g—1 g—1 g—1
1 0+2 1 6+1 6+1
0 1
03 0 6+1 do
b) d3+0 =g+ dp with 0 <y <g—1: 03 0 0 43
4] 0
03 0 0 9o
iv) 1< 8500005 —1) and 05 £ 1. Then: | @ 1 971 9-1 -1
g+ 69— 03
1
1 0 0 0
v) n < 6300(63 — 1) and 3 = 1. Then: g—1 g—1 g—1
1

O

Lemma 4.5. All positive integers with five digits are the sum of three palindromes in
base g > 5.

Proof. If §4 # 1, then n is of type A and we apply Algorithm I, which works for m = 2.
Thus, we assume that 4 = 1. Let n = 1d30291g.
i) n > 1630031 and n is not of the form n = 130031 + m with m = 201, or
m = (0 + 1) with § > 1. By Propositions 4.2 and 4.3, n — 1630631 is the sum of
two palindromes pq, po and then
n = 1630031 + p1 + po.

1 03 2 03 2
ii) n = 1030031 +201: |1 3 1 I3 1
1 0 1
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iii) n = 1030631 + (6 +1)6, 1<5<g—2, 03#0:
a) d+1+03<g—1:

1 63 0 d+0+1 6+1
1 05—1 1 g3 — 1 1
g—1 0+1 g—1

0+1

b) d3+1+d=g+0d with0<d; <g—1:

1 o 1 5 6+1
1 é3—-1 0 d63—1 1

g—1 6+1 g-—-1

0+1

iV)n=1(530531+(5+1)(5, 1<6d<g—2,63=0:

1 0 0 o+1 d+1
g—1 g—1 g—1 g—1
o+1 d+1

1

1 0 0 0 0

v) n < 130030 and 63 = 0. Then: g—1 g—1 g—1 g—1

1

vi) n < 1630050 and 03 # 0 with n = 1(d3 — 1)(g — 1)(d3 — 1)1 + m with m # 201
and m # (§ +1)d, 1 < < g — 2. Propositions 4.2 and 4.3 imply that m is sum
of two palindromes p1, p2 and then

n=1(03 = 1)(g = 1)(d3 = D1+ p1 + pa.
vii) n =1(d3 — 1)(g — 1)(d3 — 1)1 4+ 201, d3 # 0 :

1 03 1 03— 1 2
1 (53—1 g—2 (53—1 1
2 g-1 2
g—1
viil) n =1(03 —1)(g — 1)(d3 — 1)1 + (0 + 1), 63 #0, I3+ <g—1:

1 63—1 g—1 03406 6+1
1 63—-1 g—2 63—-1 1
1 6+1 1

§—1




EVERY POSITIVE INTEGER IS A SUM OF THREE PALINDROMES

31

viii) n = 1(05 — 1)(g — 1)(63 — 1)1+ (5 +1)8, 63 £ 0, d3+8=g+0y, 0< 6 < g—1:

1 65—1 g—1 6346 0+1

1 63—1 g—3 63—1 1

1

d+1 1
0—1

O

Lemma 4.6. All positive integers with six digits are the sum of three palindromes in

base g > 5.

Proof. First, we consider the case d5 # 1.

We apply Algorithm II for m = 3 with some exceptions. Note that Algorithm II was

applied to normal numbers. It was only used in the Adjustment Step I1.2.ii.c), where
we assumed that do # 0 and then that zo £ 0 in that step. Thus, to apply Algorithm II
when n is not a normal number, we have to account also for the possibility zo = 0 in the

Step II.2.ii.c). This is the temporary configuration in Step I1.2.ii.c) (c2 = 0, y3 = y2 = 0)

with zo = 0.

55 54 53 52 51 50
Tr1 I2 0 0 Tro I
vy 010 0 wm
Z1 0 0 21
If x5 # 0, then the adjustment step is the following;:
05 04 O3 )02 61 do 05 04 03 02 01 0o
-1 g—1|g—1 -1
1 3 010 =y o N g g T2 T
yi 010 0 Y1 1 1 1 Y1
z110 0 =z 21 0 0 21

If 9 = 0, we distinghish several cases:

i) 21 = 1. Tt follows that d5 = 1 (which is not allowed), unless y; = 23 = g — 1.

The adjustment step is the following:

(55 54 (53 52 61 50
1 0 0 0 0 1
g—1 0 0 0 g—1
g—1{0 0 ¢g-—1

05 04 03|02 01 do
2 0 0]0 O 2
1 1

g—4
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i) 21 # 1, y1 # g — 1. The adjustment step is the following:

ds 04 93|02 1 o 05 04 03| 02 01 0o
-1 —1 —1 -1
xgy 0 0|0 0 =z R T g 0 0 g T
yi 000 0 u pn+l1 0jg=-1 0 y+1
2110 0 = 21 1 1 21
iii) 1 # 1, 21 # g — 1. The adjustment step is the following:
05 04 d3 |02 01 o 05 04 03 09 01 0o
0 0]0 O -1 g-—1 -2 -2 g-—1 -1
1 1 _, = g g g g z1
v 010 0 wn (1 1 1 1 Y1
z110 0 =z z1+1 0 0 z1+1
iv) x1 #1,9—1, 21 = x1 = g — 1. The adjustment step is the following:
05 04 03 |82 6 do 05 04 03|02 01 0o
1 0 0 0 0 =z z1+1 0 010 0 x1+1
—
g—1 0 0 0 g—1 1 1
g—1]{0 0 g-1 g—4

v) x1 = y1 = z1 = g — 1. Note that in this case we have that

856463020100 = (g — 1)0000(g — 1) + (g — 1)000(g — 1) + (g — 1)00(g — 1) + 1000

but we can check easily that this number has 7 digits.

Secondly, we consider the case 5 = 1.

i) 21:D(50—54—|—1)#OandD(50—54+2)7é0.

We choose x1,y; such that 1 < z1,y1 <g—1and z1 +y; = g+ d4 — 1. This

04 03 09 01 dg
r1 T2 X3 X2 X1
Yyio¥2 Y3 Y2 N

21 k2 Z1

is possible because 2 < g+ 64 — 1 < 2g — 2.

We choose x4, y2 such that 0 < x9,y9 < g—1and x2 41y = g+ 3 — 1. This is
possible because 0 < g+d4 —1 < 2g—2. We also define zo = D(61 —x2 —y2 —c1).
We choose x3,y3 such that 0 < x3,y3 < g—1and x3+ys =g+ da — co — 21.
This is possible because, as z; # 0, we have that g + do — co — 21 < 29 — 2, and

since D(dg — d4 + 2) # 0, we have z; # g — 1 and therefore

g+d—ca—21>9g+0-2—(9g—2)=0.
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ii) D(8 — 0y +2) =0, s # 0.

1 64 63 02 01 o
r1 I9 T3 T2 T1

Yyi Y2 Y3 Y2 U1

21 22 2

We choose x1,y1 such that 1 < z1,91 <g—1yx1+y1 =9+ 64 — 1.

We choose 2,12 such that 0 < z9,yo < g—1yxa+ys =g+ 33— 1.

We choose z3,y3 such that 0 < z3,y3 < g—1yxs+ys=9g+ds —co — 21.

All such choices are possible by the same argument as in i) except that now

we have to justify in a different way that g + do — co — 21 > 0. But this is clear
because g +do —co —21 > g+1—-2—(g—1)=0.

111) D((Sg —(54+2) =0, d5 =0.
a) 4 = 0. Then 0y = g — 2.

1 0 (53 0 (51 g—2
g—2 x2 w3 T2 g-—2

1 y2 Y3 y2 1
g—1 20 29 g—1

We choose x2, y2 such that 0 < z9,y0 < g — 1 and x2 + yo = d3.

We choose x3,y3 such that 0 < z3,y3 < g—1and x3+y3 =g — ca — 29.
Observe that co = (z2 +y2 +220+c1—0)/g<(g—1+g—1+1)/g < 2.
Thus, cog #2and g —co — 29 > g—1— (g — 1) > 0, therefore we can choose

such r3 and ys.

b) 64 = 1. Then §p = g — 1.

1 1 03 0 0 g—1
g—1 x99 a3 22 g—1

1 y2 Y3 y2 1
g—1 22 2z g-—1

The choices for the z;’s are identical to the ones from case a).

C) 54 = 2. Then (5() =0.

1 2 03 0 o 0
g—1 @ x3 22 g—1

2 Y2 Yz Y2 2
g—1 20 20 g—1
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We choose x3, 99 such that 0 < z9,y0 < g—1y xo + y2 = 3.

We choose x3,y3 such that 0 < z3,y3 <g—1yx3+ys =g —Cca — 29.

If co # 2, then we can make such a choice for x3 and ys.

However, if co = 2, then 2o +yo =29 =g—1land 6 =0and 63 =g — 1. In
this special case, we have:

1 2 g-1 0 0 0
1 2 g—2 g—2 2
1 g—3

111) D(50—54—|-1):0, 03#0:

1 64 93 62 01 6o
r1 T2 X3 X2 X1

Y1 Y2 Ys Y2 n
Z1 k2 21

We choose z1,y1 such that 1 < x1,y1 < g—1and z1 +y1 = g + d4. This is
possible because §4 <2 < g — 2. On the other hand, z; =g — 1.

We choose x3,ys such that 0 < z9,120 < g — 1 and 2o + yo = 03 — 1.

We choose x3,y3 such that 0 < z3,y3 < g —1 and

T3+ys=g+da—co—21 =1+ —co.
This is possible because co < 1. Indeed,
co=(ro+y2+z204+c1—01)/9g<(03—14+g—1+2)/g<2.

iV) D((50 — 04 + 1) =0, 3 =0.
a) 04 = 0. Then 69 =g — 1.
If 02 # 0, then n — 100001 = 281 (g — 2) is a sum of two palindromes.
If 6o =0 and §; # 0,9 — 1, then n — 100001 = (61 — 1)(g — 1) is also a sum
of two palindromes.
If 6o = 0 and d; = 0, then

1 0000 g—1
1 00 0O 1
g—2
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If 6o =0 and §; = g — 1, then

1 0 0 0 g—1 g—1
g—1 0 1 0 g—1
g—1 g—2 g—2 g-—1

1 0 1

(54 = 1. Then (50 =0.
If 09 > 2 or if §o = 1 and §; # 0,1 then n — 110011 has three digits, its last
digit is g — 1, therefore it can be written as a sum of two palindromes.

If 6o =1 and 4; = 0, then

11 0 1 0 0
1 0 g—1 g—1 0

If (52 =1 and 51 = 1, then

1101 1 0

1 1 0 0 1 1
g—1 g-1
If52:0and 5122, then
1 1 0 0 01 0
1 1 0 0 1 1
0 — 2 0 — 2
g—01+1

If 6o = 0 and d; = 1, then

11001 O

10000 1

1 000
g—2

If 6 = 0 and 47 = O then

11 0 0 0 0
10 O 0 0 1

g—1 g—1 g—1 g—1

54 = 2. Then 50 =1.
If 92 > 2 orif 65 = 1 and §; # 0,1, then n — 120021 has three digits, its last
digit is g — 1, therefore can be written as a sum of two palindromes.
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If 6o =1 and 4; = 0, then

1 2 0 1 0 0
11 g—1 g-—1 1 1
1 g—2 1
g—2
If52:1and (51:1, then
1 2 0 1 1 0
11 g-1g-1 1 1
1 g-1 1
qg—2
If 6o = 0 and d; > 3, then
1 0 o1 0
1 0 0 2 1
0 —3 60 —3
g—01+2
If 6o = 0 and d; = 2, then
1 2 0 0 2 0

11g-1g-11 1

1 0 1
g—2
If 6o = 0 and d; = 1, then
1 2 0 01 0
1 00 00 1
2 0 0 0 2
g—3
If 6o = 0 and d; = 0, then
1 2 0 0 0 0
11g-1g-1 1 1
g—2 g—2
1

36
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5. THE PROOFS OF THEOREMS 1.3 AND 1.4

5.1. Proof of Theorem 1.3. To get the lower bound we argue in the following way.
Let P, be the set of palindromes with [ base g digits. Its cardinality is bounded by
gUt1/2 Let X be large and [ be that positive integer such that 2¢! < X < 2¢'*1. It is
clear that for all » > 1, |P, + P,—,| is a lower bound for the number of positive integers

less than or equal to X which are a sum of two base g palindromes. We use the relation
BlP_,| = r(n) <|P+ P_ max r(n).
[Pl P | > )< IR+ lr’nePZ—i-Pl_,»()
neP+P

Consider the representations of n of the form n = 4+ y with x € P, and y € P_,.
Assume that [ = 2mr + ¢, with 0 <t < 2r — 1.

If
r=x1x2...2921 and Yy =y1yo2...You1
are the base g representations of x and y, then we group the digits in blocks of length r

from the left to the right and we get left over with a middle block of length t:

r=T1...Tp *-" $2r(m71)+1 « o o X2%rm L2rm—~+t - - - L2rm+1 L2rm - - - ng(m,l)H R 7SN i

If X =x...2,, wedefine f(X) := x,...2z1. With this notation, z and y are represented
as X;,Y;, f(X;), f(Yi), As of length r, while Ay, Ag have lengh ¢:
— X e e e X A1 f(Xm) e e e f(XY)
Y= fyvy) oo f(Yip1) A2 Az Y oo o0 N
When we sum z and y, digit by digit, in every column we could get a carry or not. Let ¢;
for i = 1,...,2m be the carries in each column and let ¢ = (¢y, ..., t2,) be the vector of

carries. We denote by r;(n) the number of representations of n under the form n = z+y
with z € P, y € P,_, with a carries vector t. Clearly,

r(n) = Z ri(n).

As in the case of z and y, we write n with the same length of the string of digits as x.

P
T= X|  cer e e e e e e (X))
y = FOD) cer e e e e Y

Let us see that X;,Y;, A1, Ao, Az are all determined by §; and by the vector .

In fact, X is determined by 09y, are to,,. We then put f(X7), which in turn determines
Yi. If the carry in the first column does not coincide with ¢;, then ry(n) = 0. If
it does, then we put f(Y7) in its appropriate position. We then determine X5 using
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0om—1 and to,,—1. Again if the carry in the second column does not correspond with
to, then ry(n) = 0; otherwise, we keep on determining X;,Y; and As. If one of these
determinations is not compatible with the corresponding ¢;’s then r;(n) = 0. In the last
step, we have to determine who is Aj. Since A; is a palindrome itself and has length ¢,
there are at most ¢g" possibilities for it. Once we made up our mind about Ay, the value

r

of Ay is determined. So, r;(n) < ¢" and therefore r(n) < 2™g

Hence,
P4 P, > gtimr/2mmgr
> (X/2)9737"/22*m
> (X/2)g %/ 2971/
> (X/2)g 20,

Taking r = |1/I(log g)/(3log2)| and using the fact that [ ~ log X/ log g, we get

P+ Pi_y| > Xg~V/3lesg/los2 5, xe—cvioBX

5.2. Proof of Theorem 1.4. For g > 3, it is not hard to see that then the number

(5.1) (g—1)(g—1)**%---%x0(g—1)

is not a sum of two base g palindromes. Indeed, assume that the length of the above n
isl>4andthat x =x;_1_,-- 29 >y =1y;_1_s - Yo are base g palindromes whose sum
is the above n, where r, s are nonnegative integers. Since zg + yo < 29 — 2 and the last
digit of n is g — 1, there is no carry in the last position when summing = and y in base
g,80 9 +yo =9 — 1 with 1 < zg,y0 < g— 2. If both » > 0 and s > 0 (so, the lengths
of both  and y are smaller than [), then n = z + y which has length [ in base g should
start with 1, which is not the case. If r = 0 but s > 0, then zo = g — 2 and yg = 1.
Since y;_o = 1 or 0 according to whether s = 1 or s > 2, respectively, and since there
is a carry in the position | — 2 when adding x with y, we conclude that ;o =g — 2 or
g—1. Butthen g+1>x o+y 2o+1>g+(g—1) =29 —1, where the last inequality
follows from the fact that the digit in the position I —2 of n is g — 1, and the above string
of inequalities is impossible. Hence, » = s = 0. Now looking at x; and y;, we get that
x1+y1 = 0 or g. Looking now at the left, we conclude that x;_o+y;_ o =21 +y1 =0
or g, so in the position [ — 2 of the digits of n we should have either the digit 0 or 1
according to whether there is no carry coming from the sum of digits of x and y from
the position [ — 3, or of there is one such carry, respectively, and both these numbers are
smaller than the corresponding digit ¢ — 1 of n, which is the final contradiction.
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