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Abstract. For integer g ≥ 5, we prove that any positive integer can be written as a

sum of three palindromes in base g.

1. Introduction

Let g ≥ 2 be a positive integer. Any nonnegative integer n has a unique base g

representation namely

n =
∑
j≥0

δjg
j , with 0 ≤ δj ≤ g − 1.

The numbers δi are called the digits of n in base g. If l is the number of digits of n, we

use the notation

(1.1) n = δl−1 · · · δ0,

where we assume that δl−1 6= 0.

Definition 1.1. We say that n is a base g palindrome whenever δl−i = δi−1 holds for

all i = 1, . . . ,m = bl/2c.

There are many problems and results concerning the arithmetic properties of base

g palindromes. For example, in [2] it is shown that almost all base g palindromes are

composite. In [4], it is shown that for every large L, there exist base g palindromes

n with exactly L digits and many prime factors (at least (log log n)1+o(1) of them as

L → ∞). The average value of the Euler function over binary (that is, with g = 2)

palindromes n with a fixed even number of digits was investigated in [3]. In [7] (see

also [9]), it is shown that the set of numbers n for which Fn, the nth Fibonacci number,

is a base g palindrome has asymptotic density zero as a subset of all positive integers,

while in [6] it was shown that base g palindromes which are perfect powers (of some

integer exponent k ≥ 2) form a thin set as a subset of all base g palindromes. In [10],

the authors found all positive integers n such that 10n± 1 is a base 2 palindrome, result

which was extended in [5].
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Recently, Banks [1] started the investigation of the additive theory of palindromes

by proving that every positive integer can be written as a sum of at most 49 base 10

palindromes. A natural question to ask would be how optimal is the number 49 in the

above result. In this respect, we prove the following results.

Theorem 1.2. Let g ≥ 5. Then any positive integer can be written as a sum of three

base g palindromes.

The case g = 10 of Theorem 1.2 is a folklore conjecture which has been around for

some time. The paper [8] attributes a stronger conjecture to John Hoffman, namely that

every positive integer n can be written in base g = 10 as a sum of three palindromes

where one of them is the maximal palindrome less than or equal to n itself. This was

refuted in [11] which provided infinitely many examples of positive integers n which are

not a sum of two decimal palindromes.

However, we prove that “many” positive integers are a sum of two palindromes.

Theorem 1.3. Let g ≥ 2. There exists a positive constant c1 depending on g such that

|{n ≤ x : n = p1 + p2, p1, p2 base g palindromes}| ≥ x1−
c1√
log x

for all x ≥ 2.

On the other hand the set of integers which are not sum of two palindromes has

positive density.

Theorem 1.4. For any g ≥ 3 there exists a constant c < 1 such that

|{n ≤ x : n = p1 + p2, p1, p2 base g palindromes }| ≤ cx

for x large enough.

It makes sense to ask whether the set of positive integers which are sum of two base

g palindromes has positive density.

We set forward the following conjecture.

Conjecture 1.5. The set of positive integers n which are the sum of two base g palin-

dromes has positive density.

It would be interesting to extend Theorem 1.2 to the missing bases g ∈ {2, 3, 4}.
Throughout this paper, we use the Landau symbols O and o as well as the Vinogradov

symbols� and� with their usual meaning. These are used only in the proof of Theorem

1.3.
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2. The algorithms

The proof of Theorem 1.2 is algorithmic. Indeed one can program the following

proof to input a positive integer n and obtain a representation of n as a sum of three

palindromes in base g ≥ 5. We assume through the proof that g ≥ 5.

For ease of notation, and using a convention introduced by Banks [1], we consider

that 0 is a base g palindrome as well. For any integer a, we write D(a) for that unique

d ∈ {0, . . . , g − 1} such that d ≡ a (mod g).

As in (1.1), we write the base g representation of n as

n = δl−1 . . . . . . . . . δ1δ0.

As before, δl−1 6= 0.

2.1. Small cases. To present a clear algorithm, those integers with less than 7 digits

are considered separately in Section §4.

So, the algorithm starts by counting the number of digits of n. If n has less than

7 digits, then Proposition 4.1 from Section §4 shows how to write n as a sum of three

palindromes. If n has 7 or more digits then we apply the general algorithm that we

present in the next pages.

2.2. The starting point. For those integers with at least 7 digits, the starting point

consists in assigning a type to n according to the following classification. The type will

define the lengths and the first digits (so, also the last) of the three palindromes p1, p2, p3

that we will use to represent n.

Type A:

A.1) δl−2 6= 0, 1, 2, z1 = D(δ0 − δl−1 − δl−2 + 1) 6= 0.

n δl−1 δl−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 δl−1 . . . . . . . . . . . . . δl−1

p2 δl−2 − 1 . . . . . . . . . . . . δl−2 − 1

p3 z1 . . . . . . . . . . . z1

A.2) δl−2 6= 0, 1, 2, D(δ0 − δl−1 − δl−2 + 1) = 0.

n δl−1 δl−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 δl−1 . . . . . . . . . . . . . δl−1

p2 δl−2 − 2 . . . . . . . . . . . . δl−2 − 2

p3 1 . . . . . . . . . . . 1
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A.3) δl−2 = 0, 1, 2, δl−1 6= 1, z1 = D(δ0 − δl−1 + 2) 6= 0.

n δl−1 δl−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 δl−1 − 1 . . . . . . . . . . . . . δl−1 − 1

p2 g − 1 . . . . . . . . . . . . g − 1

p3 z1 . . . . . . . . . . . z1

A.4) δl−2 = 0, 1, 2 δl−1 6= 1, D(δ0 − δl−1 + 2) = 0.

n δl−1 δl−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 δl−1 − 1 . . . . . . . . . . . . . δl−1 − 1

p2 g − 2 . . . . . . . . . . . . g − 2

p3 1 . . . . . . . . . . . 1

A.5) δl−1 = 1, δl−2 = 0, δl−3 ≤ 3, z1 = D(δ0 − δl−3) 6= 0.

n 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 g − 1 . . . . . . . . . . . . g − 1

p2 δl−3 + 1 . . . . . . . . . . . δl−3 + 1

p3 z1 . . . . . . . . . . z1

A.6) δl−1 = 1, δl−2 = 0, δl−3 ≤ 3, D(δ0 − δl−3) = 0.

n 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 g − 1 . . . . . . . . . . . . g − 1

p2 δl−3 + 2 . . . . . . . . . . . δl−3 + 2

p3 g − 1 . . . . . . . . . . g − 1

Type B

B.1) δl−1 = 1, δl−2 ≤ 2, δl−3 ≥ 4, z1 = D(δ0 − δl−3) 6= 0.

n 1 δl−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 1 δl−2 . . . . . . . . . . . δl−2 1

p2 δl−3 − 1 . . . . . . . . . . . δl−3 − 1

p3 z1 . . . . . . . . . . z1

B.2) δl−1 = 1, δl−2 ≤ 2, δl−3 ≥ 4, D(δ0 − δl−3) = 0.

n 1 δl−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 1 δl−2 . . . . . . . . . . . δl−2 1

p2 δl−3 − 2 . . . . . . . . . . . δl−3 − 2

p3 1 . . . . . . . . . . 1
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B.3) δl−1 = 1, δl−2 = 1, 2, δl−3 = 0, 1, δ0 = 0.

n 1 δl−2 δl−3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 1 δl−2 − 1 . . . . . . . . . . . δl−2 − 1 1

p2 g − 2 . . . . . . . . . . . g − 2

p3 1 . . . . . . . . . . 1

B.4) δl−1 = 1, δl−2 = 1, 2, δl−3 = 2, 3, δ0 = 0.

n 1 δl−2 δl−3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 1 δl−2 . . . . . . . . . . . δl−2 1

p2 1 . . . . . . . . . . . 1

p3 g − 2 . . . . . . . . . . g − 2

B.5) δl−1 = 1, δl−2 = 1, 2, δl−3 = 0, 1, 2, z1 = δ0 6= 0.

n 1 δl−2 δl−3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 1 δl−2 − 1 . . . . . . . . . . . δl−2 − 1 1

p2 g − 1 . . . . . . . . . . . g − 1

p3 z1 . . . . . . . . . . z1

B.6) δl−1 = 1, δl−2 = 1, 2, δl−3 = 3, z1 = D(δ0 − 3) 6= 0.

n 1 δl−2 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 1 δl−2 . . . . . . . . . . . δl−2 1

p2 2 . . . . . . . . . . . 2

p3 z1 . . . . . . . . . . z1

B.7) δl−1 = 1, δl−2 = 1, 2, δl−3 = 3, δ0 = 3.

n 1 δl−2 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ0

p1 1 δl−2 . . . . . . . . . . . δl−2 1

p2 1 . . . . . . . . . . . 1

p3 1 . . . . . . . . . . 1

Notice that all the digits appearing in the clasification are valid digits; i.e. 0 ≤ δ ≤
g − 1. We observe also that when n if of type B, the digit of p1 below δl−3, which will

be denoted by x2, takes the values 0, 1, 2 or 3.
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2.3. The algorithms. Once we have asssigned the type to n we have to check if n is a

special number or not.

Definition 2.1. We say that n is a special number if the palindrome p1 corresponding

to n according the classification in types above has an even number of digits, say l = 2m,

and at least one of the digits δm−1 or δm is equal to 0. Otherwise we say that n is a

normal number.

We use five distinct algorithms. We use Algorithms I, II, II and IV for normal numbers

and Algorithm V for special numbers.

Algorithm I: To be applied to integers such that the associated palindromes p1, p2, p3 have

2m + 1, 2m, 2m − 1 digits respectively for some m ≥ 3. In other words, those

of type A1, A2, A3 and A4 when l = 2m+ 1 and those of type A5 and A6 when

l = 2m+ 2. The cases m ≤ 2 correspond to the small cases.

Algorithm II: To be applied to integers such that the associated palindromes p1, p2, p3 have

2m, 2m− 1, 2m− 2 digits respectively for some m ≥ 3 and such that δm−1 6= 0

and δm 6= 0. In other words, those of type A1, A2, A3 and A4 when l = 2m

and δm−1 6= 0 and δm 6= 0 and those of type A5 and A6 when l = 2m + 1 and

δm−1 6= 0 and δm 6= 0. The cases m ≤ 2 correspond to the small cases.

Algorithm III: To be applied to integers such that the associated palindromes p1, p2, p3 have

2m+ 1, 2m− 1, 2m− 2 digits respectively for some m ≥ 3. In other words, those

of type B with l = 2m+ 1. The cases m ≤ 2 correspond to the small cases.

Algorithm IV: To be applied to integers such that the associated palindromes p1, p2, p3 have

2m, 2m− 2, 2m− 3 digits respectively for some m ≥ 4. In other words, those of

type B with l = 2m and with δm 6= 0 and δm−1 6= 0. The cases m ≤ 3 correspond

to the small cases.

Algorithm V: To be applied to special numbers that are not covered by the small cases.

2.4. Algorithm I. Asssume m ≥ 3. The initial configuration when we apply Algorithm

I is one of the following configurations:

δ2m δ2m−1 δ2m−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ1 δ0

x1 . . . . . . . . . . . . . x1

y1 . . . . . . . . . . . . y1

z1 . . . . . . . . . . . z1
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1 δ2m δ2m−1 δ2m−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δ1 δ0

x1 . . . . . . . . . . . . . x1

y1 . . . . . . . . . . . . y1

z1 . . . . . . . . . . . z1

Algorithm I in either case is the following:

Step 1: We choose x1, y1, z1 according to the configurations described in the starting

point. Define c1 = (x1 + y1 + z1)/g, which is the carry of the column 1.

Step 2: Define the digits

x2 =

{
D(δ2m−1 − y1) if z1 ≤ δ2m−2 − 1;

D(δ2m−1 − y1 − 1) if z1 ≥ δ2m−2;
y2 = D(δ2m−2 − z1 − 1);

z2 = D(δ1 − x2 − y2 − c1);

c2 = (x2 + y2 + z2 + c1 − δ1)/g (the carry from column 2).

Step i, 3 ≤ i ≤ m: Define the digits

xi =

{
1 if zi−1 ≤ δ2m−i − 1;

0 if zi−1 ≥ δ2m−i;
yi = D(δ2m−i − zi−1 − 1);

zi = D(δi−1 − xi − yi − ci−1);

ci = (xi + yi + zi + ci−1 − δi−1)/g (the carry from column i).

Step m+ 1: Define

xm+1 = 0.

The diagram below represents the configuration after step i:

. . . δ2m−i+1 δ2m−i δ2m−i−1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ δi−1 . . .

. . . xi . . . . . . . . . . . . xi . . .

. . . yi−1 yi . . . . . . . . . . . yi . . .

. . . zi−2 zi−1 zi . . . . . . . . . . zi . . .

A few words to explain what is behind the algorithm:

The digit yi is defined to adjust the digit δ2m−i from the left side once we know

the digit zi−1 and assuming a possible carry from the previous column (the −1 in the

definition of yi takes into account this possible carry). The zi is defined to adjust the

digit δi−1 in the right side once we know xi, yi and ci−1, the carry from the previous



EVERY POSITIVE INTEGER IS A SUM OF THREE PALINDROMES 8

column. Now we go again to the left side. If zi ≥ δ2m−i−1 we will get the possible carry

we had assumed and then we define xi+1 = 0. If zi ≤ δ2m−i−1 − 1 we do not get any

carry and then we define xi+1 = 1, which has the same effect that the carry we expected.

After the last step the configuration that we obtain is the following:

δ2m δ2m−1 δ2m−2 ∗ ∗ ∗ δm δm−1 δm−2 ∗ ∗ ∗ ∗ ∗ δ1 δ0

x1 ∗ ∗ ∗ ∗ xm 0 xm ∗ ∗ ∗ ∗ ∗ ∗ ∗ x1

y1 ∗ ∗ ∗ ym−1 ym ym ym−1 ∗ ∗ ∗ ∗ ∗ ∗ y1

z1 ∗ ∗ ∗ zm−1 zm zm−1 ∗ ∗ ∗ ∗ ∗ ∗ z1

We call temporary configuration the configuration we get after the last step. We

have drawn a vertical line where both sides of the algorithm collide. It is not true in

general that n is equal to the sum of the three palindromes we obtain in the temporary

configuration.

If ∆m is the digit we obtain in column m+ 1 when we sum the three palindromes, we

observe that

∆m ≡ ym + zm−1 + cm ≡ δm + cm − 1 (mod g).

If cm = 1 then ∆m = δm and we obtain the correct digit in column m + 1 and, as

consequence of Proposition 2.2, we obtain the correct digit in all the columns. In this

case n is equal to the sum of the three palindromes of the temporary configuration so

the temporary configuration is also the final configuration.

If cm 6= 1, then we need an extra adjustment.

2.5. The adjustment step. For i = 0, . . . , 2m, we denote by ∆i the digit we obtain in

column i + 1 when we sum the three palindromes that we have obtained after the last

step. Of course we want that ∆i = δi for all i, 0 ≤ i ≤ 2m. Unfortunately, this is not

always true but it is almost true. The following proposition shows that we obtain the

correct digits on the left side (thanks to the zi’s) and that we obtain the correct digit

in a column of the right side if the digit we obtain in the previous column is also the

correct digit.

Proposition 2.2. Let g ≥ 5 and m ≥ 3. We have that ∆i = δi for all 0 ≤ i ≤ m − 1.

Furhthermore, for any 0 ≤ i ≤ m− 1, if ∆m+i = δm+i, then ∆m+i+1 = δm+i+1.

Proof. The first statement of the proposition is clear because of the way we have defined

the zi’s. As for the second statement, we prove it separately for i = 0, for 1 ≤ i ≤ m−3,

for i = m− 2 and for i = m− 1.
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i) i = 0. We have

∆m+1 ≡ xm + ym−1 + zm−2 + cm+1

≡ δm+1 + xm + cm+1 − 1 (mod g).

Then we have to prove that xm + cm+1 = 1.

a) If xm = 1 then zm−1 ≤ δm − 1, so ym = δm − zm−1 − 1. Since

∆m ≡ ym + zm−1 + cm ≡ δm + cm − 1 (mod g),

and we have assumed that ∆m = δm, we conclude that cm ≡ 1 (mod g), so

cm = 1 (because |cm − 1| ≤ 2 < g). Thus,

cm+1 = (ym + zm−1 + cm − δm)/g = (cm − 1)/g = 0,

and then xm + cm+1 = 1.

b) If xm = 0, then zm−1 ≥ δm, so ym = g + δm − zm−1 − 1. The argument is

similar to the one before except that now we get

cm+1 = (ym + zm−1 + cm − δm)/g = (g + cm − 1)/g = 1,

and again xm + cm+1 = 1.

In any case, we have that xm + cm+1 = 1, and then ∆m+1 = δm+1.

ii) 1 ≤ i ≤ m− 3 (these cases are vacuous for m = 3):

∆m+i+1 ≡ xm−i + ym−i−1 + zm−i−1−2 + cm+i+1

≡ δm+i+1 + xm−i + cm+i+1 − 1 (mod g).

We have to prove that xm−i + cm+i+1 = 1.

a) If xm−i = 1, then zm−i−1 ≤ δm+i − 1, so ym−i = δm+i − zm−i−1 − 1. Since

∆m+i ≡ xm−i+1 + ym−i + zm−i−1 + cm+i

≡ xm−i+1 + δm+i − 1 + cm+i (mod g),

and we have assumed that ∆m+i = δm+i, we conclude that

xm−i+1 + cm+i − 1 ≡ 0 (mod g),

therefore xm−i+1 + cm+i − 1 = 0 (because |xm−i+1 + cm+i − 1| ≤ 2). Thus,

cm+i+1 = (xm−i+1 + ym−i + zm−i−1 + cm+i − δm+i)/g

= (xm−i+1 − 1 + cm+i)/g = 0,

and xm−i + cm+i+1 = 1.
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b) If xm−i = 0, then zm−i−1 ≥ δm+i, so ym−i = g + δm+i − zm−i−1 − 1. The

argument is similar to one before except that now we get

cm+i+1 = (xm−i+1 + ym−i + zm−i−1 + cm+i − δm+i)/g

= (g + xm−i+1 − 1 + cm+i)/g = 1,

and again xm−i + cm+i+1 = 1.

In any case, we have that xm−i + cm+i+1 = 1 and then ∆m+i+1 = δm+i+1.

iii) i = m− 2. We have

∆2m−1 ≡ x2 + y1 + c2m−1 (mod g).

We distinguish two cases:

a) If z1 ≤ δ2m−2 − 1, then y2 = δ2m−2 − z1 − 1 and

∆2m−1 ≡ x2 + y1 + c2m−1 ≡ δ2m−1 + c2m−1 (mod g).

Since

∆2m−2 ≡ x3 + y2 + z1 + c2m−2 ≡ x3 + δ2m−2 − 1 + c2m−2 (mod g),

and we have assumed that ∆2m−2 = δ2m−2, we get x3 − 1 + c2m−2 = 0

(because |x3 − 1 + c2m−2| ≤ 2 ). Thus,

c2m−1 = (x3 + y2 + z1 + c2m−2 − δ2m−2)/g = 0,

and we have ∆2m−1 = δ2m−1.

b) If z1 ≥ δ2m−2, then y2 = g + δ2m−2 − z1 − 1 and

∆2m−1 ≡ x2 + y1 + c2m−1 ≡ δ2m−1 + c2m−1 − 1 (mod g).

We repeat the same argument as in case a) except that now

c2m−1 = (x3 + y2 + z1 + c2m−2 − δ2m−2)/g = 1,

and again ∆2m−1 = δ2m−1.

iii) i = m − 1. We can check in the classification in types that if ∆2m−1 = δ2m−1,

then ∆2m = δ2m. In other words, that we have c2m = 0 for the types A1 and A2

and we have c2m = 1 for the types A3, A4, A5 and A6.

�

Proposition 2.2 shows that if ∆m = δm then ∆i = δi for all i = 0, . . . , 2m and then

the three palindromes we have obtained do the job.

The problem appears when ∆m 6= δm and this occurs when cm 6= 1. When this

happens, we need to make an adjustment to our temporary configuration.
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Notice that for m ≥ 3 we have

∆m ≡ δm + cm − 1 (mod g),

and that cm takes the value 0, 1 or 2.

All the possible situations are considered in the cases below:

I.1 cm = 1. In this case ∆m = δm and there is nothing to change. The temporary

configuration is simply the final configuration since in all columns the sums of the digits

including the carries yield the digits of n.

I.2 cm = 0. In this case we need to increment by one unit the digit we obtain in

the column m+ 1. We can do this by changing the value of xm+1 = 0 to xm+1 = 1.

δm δm−1

0 ∗
ym ym

∗ zm

−→

δm δm−1

1 ∗
ym ym

∗ zm

Notice that we have modified the central digit of the first palindrome, so the new first

row is also a palindrome. Notice also that now we obtain the correct digit in column

m+ 1 and also in all remaining columns.

I.3 cm = 2. In this case, we have that ym 6= 0 (otherwise cm 6= 2). We distinguish

two cases:

I.3.i) zm 6= g − 1.

δm δm−1

∗ ∗
ym ym

∗ zm

−→

δm δm−1

∗ ∗
ym − 1 ym − 1

∗ zm + 1

I.3.ii) zm = g − 1.

δm δm−1

0 ∗
ym ym

∗ g − 1

−→

δm δm−1

1 ∗
ym − 1 ym − 1

∗ 0

Observe that in every adjustment step we have been successful in increasing or de-

creasing the digit that was obtained in the column m + 1 when cm = 0 or 2, without

altering the digits from the previous column. Notice also that in every adjustement we

always modify the central digits of the temporary palindromes such that the new ones

are also palindromes. Once we have realized these adjustments, the digit we get in the
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column m+ 1 is δm, the correct digit, and Proposition 2.2 proves that all the digits are

correct.

2.6. The three palindromes and an example. We end this subsection by illustrating

the application of Algorithm I to an example. Let n be the positive integer giving the

first 21 decimal digits of π:

n = 314159265358979323846.

We see that n is of type A1, therefore the configuration after Step 1 is the following :

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

2 . . . . . . . . . . . . . . . . . . . 2

9 . . . . . . . . . . . . . . . . . . 9

5 . . . . . . . . . . . . . . . . . 5

Thus n is a normal integer and we can apply Algorithm I.

Since z1 ≥ δ2m−2, Step 2 starts defining

x2 = D(δ2m−1 − y1 − 1) = D(1− 9− 1) = 1,

y2 = D(δ2m−2 − z1 − 1) = D(4− 5− 1) = 8,

z2 = D(δ1 − x2 − y2 − c1) = D(4− 1− 8− 1) = 4,

c2 = (x2 + y2 + z2 + c1 − δ1)/10 = 1,

and the configuration after Step 2 is

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

2 1 . . . . . . . . . . . . . . . . . 1 2

9 8 . . . . . . . . . . . . . . . . 8 9

5 4 . . . . . . . . . . . . . . . 4 5

and after Step 3 is

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

2 1 0 . . . . . . . . . . . . . . . 0 1 2

9 8 6 . . . . . . . . . . . . . . 6 8 9

5 4 1 . . . . . . . . . . . . . 1 4 5

Continuing with the algorithm we get to the temporary configuration:

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

2 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 2

9 8 6 3 9 9 2 9 4 0 0 4 9 2 9 9 3 6 8 9

5 4 1 9 2 3 5 8 4 7 4 8 5 3 2 9 1 4 5
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Since cm = 0, we need to apply Adjustment I.2 and obtain the final configuration:

n 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

p1 2 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 2

p2 9 8 6 3 9 9 2 9 4 0 0 4 9 2 9 9 3 6 8 9

p3 5 4 1 9 2 3 5 8 4 7 4 8 5 3 2 9 1 4 5

3. The remaining cases

3.1. Algorithm II. The algorithm only differs in the subindices of the δi’s (because

now l = 2m is even) and in the adjustment step, which is slightly more complicated to

describe because of the many cases to be considered. The cases m ≤ 2 correspond to

the small cases. For m ≥ 3, we proceed in the following steps:

Step 1: We choose x1, y1, z1 according to the configurations described in Section 2.2.

Define c1 = (x1 + y1 + z1)/g, which is the carry of the column 1.

Step 2: Define the digits

x2 =

{
D(δ2m−2 − y1) if z1 ≤ δ2m−3 − 1;

D(δ2m−2 − y1 − 1) if z1 ≥ δ2m−3;
y2 = D(δ2m−3 − z1 − 1);

z2 = D(δ1 − x2 − y2 − c1);

c2 = (x2 + y2 + z2 + c1 − δ1)/g (the carry from column 2).

Step i, 3 ≤ i ≤ m− 1 (these steps are vacuos for m = 3): Define the digits

xi =

{
1 if zi−1 ≤ δ2m−i−1 − 1;

0 if zi−1 ≥ δ2m−i−1;
yi = D(δ2m−i−1 − zi−1 − 1);

zi = D(δi−1 − xi − yi − ci−1);

ci = (xi + yi + zi + ci−1 − δi−1)/g (the carry from column i).

Step m: Define the digits

xm = 0.

ym = D(δm−1 − zm−1 − cm−1).
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The temporary configuration is:

δ2m−1 δ2m−2 δ2m−3 ∗ ∗ ∗ δm δm−1 δm−2 ∗ ∗ ∗ ∗ ∗ δ1 δ0

x1 . . . . . 0 0 xm−1 . . . . . . x1

y1 . . . . ym−1 ym ym−1 . . . . . . y1

z1 . . . . zm−1 zm−1 . . . . . . z1

or

1 δ2m−1 δ2m−2 δ2m−3 ∗ ∗ ∗ δm δm−1 δm−2 ∗ ∗ ∗ ∗ ∗ δ1 δ0

x1 . . . . . 0 0 xm−1 . . . . . . x1

y1 . . . . ym−1 ym ym−1 . . . . . . y1

z1 . . . . zm−1 zm−1 . . . . . . z1

with δm−1 6= 0 and δm 6= 0.

Proposition 3.1. Let g ≥ 5 and m ≥ 3. We have that ∆i = δi for all 0 ≤ i ≤ m − 1.

Furhthermore, for any 0 ≤ i ≤ m− 2, if ∆m+i = δm+i, then ∆m+i+1 = δm+i+1.

Proof. The proof is similar to the proof of Proposition 2.2. We only give the details for

i = 0, which is the only case somewhat different.

Assume that ∆m = δm. In other words, that (ym−1 +zm−2 + cm− δm)/g is an integer.

We have

∆m+1 ≡ xm−1 + ym−2 + zm−3 + cm+1 ≡ xm−1 + δm+1 − 1 + cm+1 (mod g).

If xm−1 = 0, then zm−2 ≥ δm and ym−1 = g + δm − zm−2 − 1. Thus,

cm+1 = (ym−1 + zm−2 + cm − δm)/g = (g + cm − 1)/g = 1

because cm+1 is an integer and |cm − 1| ≤ 1 < g.

If xm−1 = 1, then zm−2 ≤ δm − 1 and ym−1 = δm − zm−2 − 1. Thus,

cm+1 = (ym−1 + zm−2 + cm − δm)/g = (cm − 1)/g = 0

because cm+1 is an integer and |cm − 1| ≤ 1 < g.

In any case, we have that xm−1 + cm+1 = 1, so ∆m+1 ≡ δm+1. �

The above proposition implies that if ∆m = δm, then ∆i = δi for all i = 0, . . . , 2m−1.

Adjustment step: Notice that ∆m ≡ δm + cm − 1 (mod g). Thus, we make the

adjustment according this observation.

II.1 cm = 1. We do nothing and the temporary configuration becomes the final

one.

II.2 cm = 0. We distinguish the following cases:
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II.2.i) ym 6= 0.

δm δm−1

0 0

∗ ym

∗ ∗

−→

δm δm−1

1 1

∗ ym − 1

∗ ∗

II.2.ii) ym = 0.

II.2.ii.a) ym−1 6= 0, zm−1 6= g − 1.

δm δm−1 δm−2

0 0 ∗
ym−1 0 ym−1

∗ zm−1 zm−1

−→

δm δm−1 δm−2

1 1 ∗
ym−1 − 1 g − 2 ym−1 − 1

∗ zm−1 + 1 zm−1 + 1

II.2.ii.b) ym−1 6= 0, zm−1 = g − 1.

δm δm−1 δm−2

0 0 ∗
ym−1 0 ym−1

∗ g − 1 g − 1

−→

δm δm−1 δm−2

2 2 ∗
ym−1 − 1 g − 2 ym−1 − 1

∗ 0 0

II.2.ii.c) ym−1 = 0. In this case, we have that zm−1 6= 0. Otherwise we would have

that δm−1 = 0 (because cm−1 = 0), which is not allowed.

δm δm−1 δm−2

0 0 ∗
0 0 0

∗ zm−1 zm−1

−→

δm δm−1 δm−2

0 0 ∗
1 1 1

∗ zm−1 − 1 zm−1 − 1

II.3 cm = 2. In this case it is clear that zm−1 = ym = g − 1 (otherwise cm 6= 2).

Note also that if ym−1 = 0, then cm−1 6= 2 and then cm 6= 2.

δm δm−1 δm−2

0 0 ∗
ym−1 g − 1 ym−1

∗ g − 1 g − 1

−→

δm δm−1 δm−2

1 1 ∗
ym−1 − 1 g − 2 ym−1 − 1

∗ 0 0
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Let us illustrate this algorithm with an example. We consider the positive integer

representing the first 22 decimal digits of e:

n = 2718281828459045235360.

First let us note that since δ10 6= 0 and δ11 6= 0, then n is a normal integer. In addition

n is of type A1. Therefore the initial configuration is:

2 7 1 8 2 8 1 8 2 8 4 5 9 0 4 5 2 3 5 3 6 0

1 . . . . . . . . . . . . . . . . . . . . 1

8 . . . . . . . . . . . . . . . . . . . 8

1 . . . . . . . . . . . . . . . . . . 1

Applying the algorithm II we get to the temporary configuration:

2 7 1 8 2 8 1 8 2 8 4 5 9 0 4 5 2 3 5 3 6 0

1 8 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 8 1

8 9 9 9 2 1 7 4 8 2 0 2 8 4 7 1 2 9 9 9 8

1 8 2 5 9 0 7 9 1 5 5 1 9 7 0 9 5 2 8 1

Observe that the digit in column 12 is not correct (we get a 3 instead of a 4 for the

sum). This is because c11 = 0, therefore we have to apply the adjustment step. Since

y11 = 0, y10 6= 0 and z10 6= 0, the adjustment step is that described in II.2.ii.a):

n 2 7 1 8 2 8 1 8 2 8 4 5 9 0 4 5 2 3 5 3 6 0

p1 1 8 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 8 1

p2 8 9 9 9 2 1 7 4 8 1 8 1 8 4 7 1 2 9 9 9 8

p3 1 8 2 5 9 0 7 9 1 6 6 1 9 7 0 9 5 2 8 1

3.2. Algorithm III. The cases m ≤ 2 correspond to the small cases. For m ≥ 3, we

proceed in the following steps:

Step 1: We choose x1, y1, z1 according to the configurations described in Section 2.2.

Define c1 = (1 + y1 + z1)/g, which is the carry of the column 1.

Step 2: Define the digits

x2 =

{
D(δ2m−2 − y1) if z1 ≤ δ2m−3 − 1;

D(δ2m−2 − y1 − 1) if z1 ≥ δ2m−3;
y2 = D(δ2m−3 − z1 − 1);

z2 = D(δ1 − x1 − y2 − c1);

c2 = (x1 + y2 + z2 + c1 − δ1)/g (the carry from column 2).
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Step i, 3 ≤ i ≤ m− 1: (these steps are vacuos for m = 3). Define the digits

xi =

{
1 if zi−1 ≤ δ2m−i−1 − 1;

0 if zi−1 ≥ δ2m−i−1;
yi = D(δ2m−i−1 − zi−1 − 1);

zi = D(δi−1 − xi−1 − yi − ci−1);

ci = (xi−1 + yi + zi + ci−1 − δi−1)/g (the carry from column i).

Step m: Define the digits

xm = 0.

ym = D(δm−1 − zm−1 − xm−1 − cm−1).

The temporary configuration is:

1 δ2m−1 δ2m−2 ∗ ∗ ∗ δm δm−1 δm−2 ∗ ∗ ∗ ∗ ∗ δ1 δ0

1 x1 . . . xm−1 0 xm−1 xm−2 . . . . . x1 1

y1 . . . ym−1 ym ym−1 . . . . . . y1

z1 . . . zm−1 zm−1 . . . . . . z1

We omit the proof of the following proposition because it is similar to the Proposition

2.2 of Algorithm I.

Proposition 3.2. Let g ≥ 5 and m ≥ 3. We have that ∆i = δi for all 0 ≤ i ≤ m − 2.

Furthermore, for any −1 ≤ i ≤ m− 2, if ∆m+i = δm+i, then ∆m+i+1 = δm+i+1.

Again, the above proposition gives that if ∆m = δm, then ∆i = δi for i = 0, . . . , 2m−1.

Adjustment step: Notice that ∆m ≡ δm + cm − 1 (mod g). According this obser-

vation we distinghish the following cases:

III.1 cm = 1. We do nothing and the temporary configuration becomes the final

one.

III.2 cm = 0.

δm δm−1

0 ∗
∗ ∗
∗ ∗

−→

δm δm−1

1 ∗
∗ ∗
∗ ∗

III.3 cm−1 = 2. Notice that ym 6= 0 (otherwise cm 6= 2). This is clear for m ≥ 4

because xm−1 takes the values 0 or 1. It also holds for m = 3 because x2 takes the values

0, 1, 2 or 3 for integers of type B when g ≥ 5 and then x2 ≤ g − 2.
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III.3.i) ym−1 6= 0, zm−1 6= g − 1.

δm δm−1 δm−2

0 ∗ ∗
ym−1 ym ym−1

∗ zm−1 zm−1

−→

δm δm−1 δm−2

0 ∗ ∗
ym−1 − 1 ym − 1 ym−1 − 1

∗ zm−1 + 1 zm−1 + 1

III.3.ii) ym−1 6= 0, zm−1 = g − 1.

δm δm−1 δm−2

0 ∗ ∗
ym−1 ym ym−1

∗ g − 1 g − 1

−→

δm δm−1 δm−2

1 ∗ ∗
ym−1 − 1 ym ym−1 − 1

∗ 0 0

III.3.iii) ym−1 = 0, zm−1 6= g − 1. In this case xm−1 6= 0.

δm+1 δm δm−1 δm−2

xm−1 0 xm−1 ∗
∗ 0 ym 0

∗ ∗ zm−1 zm−1

−→

δm+1 δm δm−1 δm−2

xm−1 − 1 0 xm−1 − 1 ∗
∗ g − 1 ym − 1 g − 1

∗ ∗ zm−1 + 1 zm−1 + 1

III.3.iv) ym−1 = 0, zm−1 = g − 1. In this case xm−1 6= 0.

δm+1 δm δm−1 δm−2

xm−1 0 xm−1 ∗
∗ 0 ym 0

∗ ∗ g − 1 g − 1

−→

δm+1 δm δm−1 δm−2

xm−1 − 1 1 xm−1 − 1 ∗
∗ g − 1 ym g − 1

∗ ∗ 0 0

Example: Let us illustrate this algorithm with an example. We consider the positive

integer representing the first 21 decimal digits of ζ(3):

n = 120205690315959428539.

First let us note that n is a normal integer because the number of digits is odd. In

addition n is of type B3. Therefore the initial configuration is:

1 2 0 2 0 5 6 9 0 3 1 5 9 5 9 4 2 8 5 3 9

1 1 . . . . . . . . . . . . . . . . . 1 1

9 . . . . . . . . . . . . . . . . . 9

9 . . . . . . . . . . . . . . . . 9
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Applying the algorithm III we get to the temporary configuration. Since c10 = 1 we do

not need any adjustment step and the temporary configuration is also the final configu-

ration.

n 1 2 0 2 0 5 6 9 0 3 1 5 9 5 9 4 2 8 5 3 9

p1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1

p2 9 2 0 0 7 4 0 5 0 5 0 5 0 4 7 0 0 2 9

p3 9 9 4 8 4 9 7 0 9 9 0 7 9 4 8 4 9 9

3.3. Algorithm IV. The cases m ≤ 3 correspond to the small cases. For m ≥ 4, we

proceed in the following steps:

Step 1: We choose x1, y1, z1 according to the configurations described in Section 2.2.

Define c1 = (1 + y1 + z1)/g, which is the carry of the column 1.

Step 2: Define the digits

x2 =

{
D(δ2m−3 − y1) if z1 ≤ δ2m−4 − 1;

D(δ2m−3 − y1 − 1) if z1 ≥ δ2m−4;
y2 = D(δ2m−4 − z1 − 1);

z2 = D(δ1 − x1 − y2 − c1);

c2 = (x1 + y2 + z2 + c1 − δ1)/g (the carry from column 2).

Step i, 3 ≤ i ≤ m− 2: Define the digits

xi =

{
1 if zi−1 ≤ δ2m−i−2 − 1;

0 if zi−1 ≥ δ2m−i−2;
yi = D(δ2m−i−2 − zi−1 − 1);

zi = D(δi−1 − xi−1 − yi − ci−1);

ci = (xi−1 + yi + zi + ci−1 − δi−1)/g (the carry from column i).

Step i = m− 1: Define the digits

xm−1 =

{
1 if zm−2 ≤ δm−1 − 1;

0 if zm−2 ≥ δm−1;
ym−1 = D(δm−1 − zm−2 − 1)

zm−1 = D(δm−2 − xm−2 − ym−1 − cm−2).
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The temporary configuration is:

1 δ2m−2 δ2m−3 ∗ ∗ ∗ δm δm−1 δm−2 ∗ ∗ ∗ ∗ ∗ δ1 δ0

1 x1 . . . xm−2 xm−1 xm−1 xm−2 . . . . . x1 1

y1 . . . ym−2 ym−1 ym−1 ym−2 . . . . . y1

z1 . . . zm−2 zm−1 zm−2 . . . . . z1

Proposition 3.3. Let g ≥ 5 and m ≥ 4. We have that ∆i = δi for all 0 ≤ i ≤ m − 2.

Furhthermore, for any −1 ≤ i ≤ m− 3, if ∆m+i = δm+i, then ∆m+i+1 = δm+i+1.

Proof. The first statement of the proposition is clear. For the second one, we consider

firs the case i = −1. Assuming that ∆m−1 = δm−1 we have to prove that ∆m = δm.

Indeed

∆m ≡ xm−1 + ym−2 + zm−3 + cm ≡ δm + xm−1 + cm − 1 (mod g).

If xm−1 = 1 then zm−2 ≤ δm−1 − 1 and ym−1 = δm−1 − zm−2 − 1. On the other

hand, since ∆m−1 ≡ δm−1 + xm−1 + cm−1 − 1 (mod g) and ∆m−1 = δm−1, we have that

xm−1 + cm−1 = 1. Thus, cm−1 = 0. Finally

cm = (xm−1 + ym−1 + zm−2 + cm−1 − δm−1)/g = 0.

If xm−1 = 0, then zm−2 ≥ δm−1 and ym−1 = g + δm−1 − zm−2 − 1. On the other

hand, since ∆m−1 ≡ δm−1 + xm−1 + cm−1 − 1 (mod g) and ∆m−1 = δm−1, we have that

xm−1 + cm−1 = 1. Thus cm−1 = 1. Finally

cm = (xm−1 + ym−1 + zm−2 + cm−1 − δm−1)/g = 1.

In any case we have that xm−1 + cm = 1 and then we conclude that ∆m = δm.

We omit the proof of the proposition for the other cases because they are similar to

the case i = −1. �

The above proposition gives that if ∆m−1 = δm−1 then ∆i = δi for all i = 0, . . . , 2m−2.

The adjustment step of this algorithm is more complicated than the previous ones.

Adjustment step: Assume that m ≥ 4. Notice that in this algorithm we have that

∆m−1 ≡ δm−1 + xm−1 + cm−1 − 1 (mod g).

IV.1 xm−1 + cm−1 = 1. We do nothing and the temporary configuration becomes

the final one.

IV.2 xm−1 + cm−1 = 0, ym−1 6= g − 1. Then xm−1 = cm−1 = 0. If ym−1 = 0,

then zm−2 ≡ δm−2 − 1 (mod g), thus zm−1 ≤ δm−2 − 1, so xm−1 = 1 unless δm−1 = 0,

which is not allowed. Thus, ym−1 6= 0.
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IV.2.i) zm−1 6= 0.

δm−1 δm−2

∗ ∗
ym−1 ym−1

∗ zm−1

−→

δm−1 δm−2

∗ ∗
ym−1 + 1 ym−1 + 1

∗ zm−1 − 1

IV.2.ii) zm−1 = 0, ym−2 6= 0.

IV.2.ii.a) ym−1 6= 1 zm−2 6= g − 1.

δm δm−1 δm−2 ∗
0 0 ∗ ∗

ym−2 ym−1 ym−1 ym−2

∗ zm−2 0 zm−2

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 − 1 ym−1 − 1 ym−1 − 1 ym−2 − 1

∗ zm−2 + 1 1 zm−2 + 1

IV.2.ii.b) ym−1 6= 1 zm−2 = g − 1.

δm δm−1 δm−2 ∗
0 0 ∗ ∗

ym−2 ym−1 ym−1 ym−2

∗ g − 1 0 g − 1

−→

δm δm−1 δm−2 ∗
2 2 ∗ ∗

ym−2 − 1 ym−1 − 2 ym−1 − 2 ym−2 − 1

∗ 0 3 0

IV.2.ii.c) ym−1 = 1, zm−2 6= g − 1.

δm δm−1 δm−2 ∗
0 0 ∗ ∗

ym−2 1 1 ym−2

∗ zm−2 0 zm−2

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 − 1 0 0 ym−2 − 1

∗ zm−2 + 1 1 zm−2 + 1

IV.2.ii.d) ym−1 = 1, zm−2 = g − 1.

δm δm−1 δm−2 ∗
0 0 ∗ ∗

ym−2 1 1 ym−2

∗ g − 1 0 g − 1

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 − 1 g − 1 g − 1 ym−2 − 1

∗ 0 3 0

IV.2.iii) zm−1 = 0, ym−2 = 0. Notice that ym−2 ≡ δm − zm−3 − 1 (mod g). Since

ym−2 = 0 and δm 6= 0, we have that zm−3 ≤ δm − 1 and then xm−2 6= 0 (even

when m = 4).
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IV.2.iii.a) zm−2 6= g − 1. It follows that ym−1 6= 0. Otherwise we would have

δm−1 = 0, which is not allowed.

∗ δm δm−1 δm−2 ∗
xm−2 0 0 xm−2 ∗
∗ 0 ym−1 ym−1 0

∗ ∗ zm−2 0 zm−2

−→

∗ δm δm−1 δm−2 ∗
xm−2 − 1 1 1 xm−2 − 1 ∗
∗ g − 1 ym−1 − 1 ym−1 − 1 g − 1

∗ ∗ zm−2 + 1 1 zm−2 + 1

IV.2.iii.b) zm−2 = g − 1, ym−1 6= 1.

∗ δm δm−1 δm−2 ∗
xm−2 0 0 xm−2 ∗
∗ 0 ym−1 ym−1 0

∗ ∗ g − 1 0 g − 1

−→

∗ δm δm−1 δm−2 ∗
xm−2 − 1 2 2 xm−2 − 1 ∗
∗ g − 1 ym−1 − 2 ym−1 − 2 g − 1

∗ ∗ 0 3 0

IV.2.iii.c) zm−2 = g − 1, ym−1 = 1.

∗ δm δm−1 δm−2 ∗
xm−2 0 0 xm−2 ∗
∗ 0 1 1 0

∗ ∗ g − 1 0 g − 1

−→

∗ δm δm−1 δm−2 ∗
xm−2 − 1 2 2 xm−2 − 1 ∗
∗ g − 2 g − 3 g − 3 g − 2

∗ ∗ 1 5 1

IV.3 xm−1 + cm−1 = 0, ym−1 = g − 1. Since cm−1 = 0, it follows that

xm−2 = zm−1 = 0. Notice that if ym−2 = 0, then δm = 0 (otherwise zm−3 = δm − 1 and

then xm−2 6= 0), which is not allowed.

IV.3.i) zm−2 6= g − 1.

δm δm−1 δm−2 ∗
0 0 ∗ ∗

ym−2 g − 1 g − 1 ym−2

∗ zm−2 0 zm−2

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 − 1 g − 2 g − 2 ym−2 − 1

∗ zm−2 + 1 1 zm−2 + 1

IV.3.ii) zm−2 = g − 1.

δm δm−1 δm−2 ∗
0 0 ∗ ∗

ym−2 g − 1 g − 1 ym−2

∗ g − 1 0 g − 1

−→

δm δm−1 δm−2 ∗
2 2 ∗ ∗

ym−2 − 1 g − 3 g − 3 ym−2 − 1

∗ 0 3 0

IV.4 xm−1 + cm−1 = 2, xm−1 = 0, cm−1 = 2. If ym−1 = 0, then zm−2 = g−1

and then δm−1 6= 0. So, ym−1 6= 0.
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IV.4.i) zm−1 6= g − 1.

δm−1 δm−2

∗ ∗
ym−1 ym−1

zm−2 zm−1

−→

δm−1 δm−2

∗ ∗
ym−1 − 1 ym−1 − 1

zm−2 zm−1 + 1

IV.4.ii) zm−1 = g − 1, zm−2 6= g − 1. Notice that ym−1 6= 1. Otherwise cm−1 6= 2

(even when m = 4)

IV.4.ii.a) ym−2 6= 0.

δm δm−1 δm−2 ∗
0 0 ∗ ∗

ym−2 ym−1 ym−1 ym−2

∗ zm−2 g − 1 zm−2

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 − 1 ym−1 − 2 ym−1 − 2 ym−2 − 1

∗ zm−2 + 1 1 zm−2 + 1

IV.4.ii.b) ym−2 = 0. As in case IV.2.iii), we have that xm−2 6= 0.

∗ δm δm−1 δm−2 ∗
xm−2 0 0 xm−2 ∗
∗ 0 ym−1 ym−1 0

∗ ∗ zm−2 g − 1 zm−2

−→

∗ δm δm−1 δm−2 ∗
xm−2 − 1 1 1 xm−2 − 1 ∗
∗ g − 1 ym−1 − 2 ym−1 − 2 g − 1

∗ ∗ zm−2 + 1 1 zm−2 + 1

IV.5 xm−1 + cm−1 = 2, xm−1 = 1, cm−1 = 1. In particular, it follows that

zm−2 6= g − 1 (otherwise we would have xm−1 = 0).

IV.5.i) zm−1 6= g − 1, ym−1 6= 0.

δm−1 δm−2

∗ ∗
ym−1 ym−1

∗ zm−1

−→

δm−1 δm−2

∗ ∗
ym−1 − 1 ym−1 − 1

∗ zm−1 + 1

IV.5.ii) zm−1 6= g − 1, ym−1 = 0.

∗ δm−1 δm−2

1 1 ∗
∗ 0 0

∗ ∗ zm−1

−→

∗ δm−1 δm−2

0 0 ∗
∗ g − 1 g − 1

∗ ∗ zm−1 + 1

IV.5.iii) zm−1 = g − 1, zm−2 6= 0.
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IV.5.iii.a) ym−2, ym−1 6= g − 1.

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 ym−1 ym−1 ym−2

∗ zm−2 g − 1 zm−2

−→

δm δm−1 δm−2 ∗
0 0 ∗ ∗

ym−2 + 1 ym−1 + 1 ym−1 + 1 ym−2 + 1

∗ zm−2 − 1 g − 2 zm−2 − 1

IV.5.iii.b) ym−2 = g − 1, ym−1 6= 0, 1.

δm δm−1 δm−2 ∗
1 1 ∗ ∗

g − 1 ym−1 ym−1 g − 1

∗ zm−2 g − 1 zm−2

−→

δm δm−1 δm−2 ∗
2 2 ∗ ∗

g − 2 ym−1 − 2 ym−1 − 2 g − 2

∗ zm−2 + 1 1 zm−2 + 1

IV.5.iii.c) ym−2 = g − 1, ym−1 = 0.

δm δm−1 δm−2 ∗
1 1 ∗ ∗

g − 1 0 0 g − 1

zm−2 g − 1 zm−2

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

g − 2 g − 2 g − 2 g − 2

. zm−2 + 1 1 zm−2 + 1

IV.5.iii.d) ym−2 = g − 1, ym−1 = 1.

δm δm−1 δm−2 ∗
1 1 ∗ ∗

g − 1 1 1 g − 1

∗ zm−2 g − 1 zm−2

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

g − 2 g − 1 g − 1 g − 2

∗ zm−2 + 1 1 zm−2 + 1

IV.5.iii.e) ym−1 = g − 1, ym−2 6= g − 1.

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 g − 1 g − 1 ym−2

∗ zm−2 g − 1 zm−2

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 + 1 0 0 ym−2 + 1

∗ zm−2 − 1 g − 2 zm−2 − 1

IV.5.iv) zm−1 = g − 1, zm−2 = 0, ym−2 6= 0.

IV.5.iv.a) ym−1 6= 0, 1.

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 ym−1 ym−1 ym−2

∗ 0 g − 1 0

−→

δm δm−1 δm−2 ∗
2 2 ∗ ∗

ym−2 − 1 ym−1 − 2 ym−1 − 2 ym−2 − 1

∗ 1 1 1
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IV.5.iv.b) ym−1 = 0.

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 0 0 ym−2

∗ 0 g − 1 0

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 − 1 g − 2 g − 2 ym−2 − 1

1 1 1

IV.5.iv.c) ym−1 = 1.

δm δm−1 δm−2 ∗
1 1 . .

ym−2 1 1 ym−2

. 0 g − 1 0

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

ym−2 − 1 g − 1 g − 1 ym−2 − 1

∗ 1 1 1

IV.5.v) zm−1 = g − 1, zm−2 = 0, ym−2 = 0. If xm−2 = 0, then δm = 0, which is

not allowed. Thus, xm−2 6= 0 (even when m = 4).

IV.5.v.a) ym−1 6= 0, 1. As in case IV.2.iii), we have that xm−2 6= 0.

∗ δm δm−1 δm−2 ∗
xm−2 1 1 xm−2 ∗
∗ 0 ym−1 ym−1 0

∗ ∗ 0 g − 1 0

−→

∗ δm δm−1 δm−2 ∗
xm−2 − 1 2 2 xm−2 − 1 ∗

g − 1 ym−1 − 2 ym−1 − 2 g − 1

. . 1 1 1

IV.5.v.b) ym−1 = 0.

δm δm−1 δm−2 ∗
1 1 ∗ ∗
0 0 0 0

0 g − 1 0

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

g − 2 g − 3 g − 3 g − 2

∗ 2 1 2

IV.4.v.c) ym−1 = 1.

δm δm−1 δm−2 ∗
1 1 ∗ ∗
0 1 1 0

∗ 0 g − 1 0

−→

δm δm−1 δm−2 ∗
1 1 ∗ ∗

g − 2 g − 2 g − 2 g − 2

2 1 2

IV.6 xm−1 + cm−1 = 3. Then xm−1 = 1 and cm−1 = 2. We always have that

xm−2 ≤ 3 (even when m = 4). It follows that ym−1 ≥ 1 and zm−1 = g − 1 (otherwise
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zm−1 + ym−1 + xm−2 + cm−2 ≤ g − 1 + 4 + 2 ≤ 2g − 1 and then cm−1 6= 2).

δm−1 δm−2

∗ ∗
ym−1 ym−1

∗ g − 1

−→

δm−1 δm−2

∗ ∗
ym−1 − 1 ym−1 − 1

∗ 0

3.4. Algorithm V. We recall that in this case the associated palindrome p1 of n has

2m digits and that δm−1 = 0 or δm = 0. First we consider the integer

n′ = n− s, where s = gm + gm−1.

If δ′m−1 6= 0 and δ′m 6= 0, we keep n′. Otherwise we consider the integer n′ = n−2s. It is

easy to check that one of n′ = n− s or n′ = n− 2s satisfies that δ′m−1 6= 0 and δ′m 6= 0.

We distinguish two cases:

i) The associated palindrome p′1 of n′ has also 2m digits (this is the typical situa-

tion).

We apply Algorithms II or IV according the type of n′. Then n′ = p′1 +p′2 +p′3
and so

n = n′ + s = (p′1 + s) + p′2 + p′3.

Notice that p′1 + s is also a palindrome because we are adding 1 or 2 to the two

central digits of p′1. Note that if we have applied Algorithm II, then the central

digits are x′m and x′m, which are 0 or 1 for m ≥ 3. Note also that if we have

applied Algorithm IV, then the central digits are x′m−1 and x′m−1, which are 0

or 1 for m ≥ 4. Hence, in all the cases the value of the two central digits is at

most 3, which are legal digits for g ≥ 5 (indeed, even for g ≥ 4).

ii) The associated palindrome p′1 of n′ has 2m− 1 digits.

This is only possible if n is of the form n = 104 . . . and n′ = 103 . . . . In this

special situation, we consider n′ as of type B1 or B2 and apply the Algorithm

IV to n′ (instead of Algorithm I). Notice that the configuration of the starting

point in B1 and B2 is also valid when δl−3 = 3. Then the palindrome p′1 we get

in this way has 2m digits and, as above, we have

n = n′ + s = (p′1 + s) + p′2 + p′3.

Example: We finish with one example which shows how to apply Algorithms IV and

V. Let n be the positive integer giving the first 20 digits of 3
√

2:

n = 12267420107203532444.

The number n is a special number because it has an even number of digits, 20, m = 10

and δm = 0. Thus, we apply Algorithm V and consider n′ = n−s, where s = 1010 +109.
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Note that n′ = 12267420096203532444, which is a normal number because δ′m 6= 0 and

δ′m−1 6= 0.

We observe that n′ is of type B.3, so we apply Algorithm IV to n′. The initial

configuration is

1 2 2 6 7 4 2 0 0 9 6 2 0 3 5 3 2 4 4 4

1 1 . . . . . . . . . . . . . . . . 1 1

9 . . . . . . . . . . . . . . . . 9

4 . . . . . . . . . . . . . . . 4

The temporary configuration is

1 2 2 6 7 4 2 0 0 9 6 2 0 3 5 3 2 4 4 4

1 1 3 1 0 0 0 0 1 1 1 1 0 0 0 0 1 3 1 1

9 1 5 7 8 5 0 6 1 1 6 0 5 8 7 5 1 9

4 1 6 3 4 9 2 4 9 4 2 9 4 3 6 1 4

Note that we need an adjustment becuase the digit in column 10 is not correct. The

reason is that x9 + c9 = 2. Looking at the central digits, we must follow the Adjustment

Step IV.5.iii.a):

n′ 1 2 2 6 7 4 2 0 0 9 6 2 0 3 5 3 2 4 4 4

p′1 1 1 3 1 0 0 0 0 1 0 0 1 0 0 0 0 1 3 1 1

p′2 9 1 5 7 8 5 0 7 2 2 7 0 5 8 7 5 1 9

p′3 4 1 6 3 4 9 2 3 8 3 2 9 4 3 6 1 4

Finally, we add s = 1010 + 109 to n′ to obtain a representation of n as a sum of three

palindromes.

n 1 2 2 6 7 4 2 0 1 0 7 2 0 3 5 3 2 4 4 4

p1 1 1 3 1 0 0 0 0 1 1 1 1 0 0 0 0 1 3 1 1

p2 9 1 5 7 8 5 0 7 2 2 7 0 5 8 7 5 1 9

p3 4 1 6 3 4 9 2 3 8 3 2 9 4 3 6 1 4

4. Small integers

Proposition 4.1. All positive integers with less than seven digits are the sum of three

palindromes in base g ≥ 5.

Proof. The proof is a consequence of the Lemmas 4.2, 4.3, 4.4, 4.5 and 4.6. �

Lemma 4.2. All positive integers with two digits are the sum of two palindromes in base

g ≥ 5, except those of the form n = (δ + 1)δ, 1 ≤ δ ≤ g − 2, which are sum of three

palindromes.
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Proof. Let n = δ1δ0.

δ1 ≤ δ0 δ1 ≤ δ0 δ1 = δ0 + 1

δ1 δ0

δ1 δ1

δ0 − δ1

δ1 δ0

δ1 − 1 δ1 − 1

g + δ0 − δ1 + 1

δ0 + 1 δ0

δ0 δ0

g − 1

1

�

Lemma 4.3. All positive integers with three digits are the sum of two palindromes in

base g ≥ 5, except n = 201 which is sum of three palindromes.

Proof. Let n = δ2δ1δ0.

δ2 ≤ δ0 δ2 ≥ δ0+1, δ1 6= 0 δ2 ≥ δ0+1, δ1 = 0, D(δ2−δ0−1) 6= 0

δ2 δ1 δ0

δ2 δ1 δ2

δ0 − δ2

δ2 δ1 δ0

δ2 δ1 − 1 δ2

g + δ0 − δ2

δ2 δ1 δ0

δ2 − 1 g − 1 δ2 − 1

g + δ0 − δ2 + 1

If δ2 ≥ δ0 + 1, δ1 = 0, and D(δ2 − δ0 − 1) = 0, we have that δ0 ≡ δ2 − 1 (mod g) and

we distinguish the following cases:

δ2 ≥ 3 δ2 = 2 δ2 = 1

δ2 0 δ2 − 1

δ2 − 2 g − 1 δ2 − 2

1 1 1

2 0 1

1 0 1

g − 1 g − 1

1

1 0 0

g − 1 g − 1

1

�

Lemma 4.4. All positive integers with four digits are the sum of three palindromes in

base g ≥ 5.

Proof. Let n = δ3δ2δ1δ0.

i) n ≥ δ300δ3, and n is not of the form n = δ300δ3+m with m = 201, or m = (δ+1)δ

with δ ≥ 1. Then n− δ300δ3 is the sum of two palindromes p1, p2 and

n = δ300δ3 + p1 + p2.

ii) n = δ300δ3 + 201.

δ3 6= 1, g − 1 δ3 = 1 δ3 = g − 1
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δ3 2 0 δ3 + 1

δ3 − 1 g − 1 g − 1 δ3 − 1

2 1 2

1 2 0 2

1 1 1 1

g − 2 g − 2

3

g − 1 2 1 0

g − 1 1 1 g − 1

g − 2 g − 2

3

iii) n = δ300δ3 + (δ + 1)δ, 1 ≤ δ ≤ g − 2 :

a) δ3 + δ = δ0,

δ3 6= 1 δ3 = 1

δ3 0 δ + 1 δ0

δ3 − 1 g − 2 g − 2 δ3 − 1

1 δ + 2 1

δ

1 0 δ + 1 δ + 1

g − 1 g − 1 g − 1

δ + 1 δ + 1

1

b) δ3 + δ = g + δ0 with 0 ≤ δ0 ≤ g − 1:

δ3 0 δ + 1 δ0

δ3 0 0 δ3

δ δ

iv) n ≤ δ300(δ3 − 1) and δ3 6= 1. Then:

δ3 0 0 δ0

δ3 − 1 g − 1 g − 1 δ3 − 1

g + δ0 − δ3
1

v) n ≤ δ300(δ3 − 1) and δ3 = 1. Then:

1 0 0 0

g − 1 g − 1 g − 1

1

�

Lemma 4.5. All positive integers with five digits are the sum of three palindromes in

base g ≥ 5.

Proof. If δ4 6= 1, then n is of type A and we apply Algorithm I, which works for m = 2.

Thus, we assume that δ4 = 1. Let n = 1δ3δ2δ1δ0.

i) n ≥ 1δ30δ31 and n is not of the form n = 1δ30δ31 + m with m = 201, or

m = (δ+ 1)δ with δ ≥ 1. By Propositions 4.2 and 4.3, n− 1δ30δ31 is the sum of

two palindromes p1, p2 and then

n = 1δ30δ31 + p1 + p2.

ii) n = 1δ30δ31 + 201:

1 δ3 2 δ3 2

1 δ3 1 δ3 1

1 0 1



EVERY POSITIVE INTEGER IS A SUM OF THREE PALINDROMES 30

iii) n = 1δ30δ31 + (δ + 1)δ, 1 ≤ δ ≤ g − 2, δ3 6= 0 :

a) δ + 1 + δ3 ≤ g − 1 :

1 δ3 0 δ3 + δ + 1 δ + 1

1 δ3 − 1 1 δ3 − 1 1

g − 1 δ + 1 g − 1

δ + 1

b) δ3 + 1 + δ = g + δ1 with 0 ≤ δ1 ≤ g − 1:

1 δ3 1 δ1 δ + 1

1 δ3 − 1 0 δ3 − 1 1

g − 1 δ + 1 g − 1

δ + 1

iv) n = 1δ30δ31 + (δ + 1)δ, 1 ≤ δ ≤ g − 2, δ3 = 0 :

1 0 0 δ + 1 δ + 1

g − 1 g − 1 g − 1 g − 1

δ + 1 δ + 1

1

v) n ≤ 1δ30δ30 and δ3 = 0. Then:

1 0 0 0 0

g − 1 g − 1 g − 1 g − 1

1

vi) n ≤ 1δ30δ30 and δ3 6= 0 with n = 1(δ3 − 1)(g − 1)(δ3 − 1)1 + m with m 6= 201

and m 6= (δ + 1)δ, 1 ≤ δ ≤ g − 2. Propositions 4.2 and 4.3 imply that m is sum

of two palindromes p1, p2 and then

n = 1(δ3 − 1)(g − 1)(δ3 − 1)1 + p1 + p2.

vii) n = 1(δ3 − 1)(g − 1)(δ3 − 1)1 + 201, δ3 6= 0 :

1 δ3 1 δ3 − 1 2

1 δ3 − 1 g − 2 δ3 − 1 1

2 g − 1 2

g − 1

viii) n = 1(δ3 − 1)(g − 1)(δ3 − 1)1 + (δ + 1)δ, δ3 6= 0, δ3 + δ ≤ g − 1 :

1 δ3 − 1 g − 1 δ3 + δ δ + 1

1 δ3 − 1 g − 2 δ3 − 1 1

1 δ + 1 1

δ − 1
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viii) n = 1(δ3− 1)(g− 1)(δ3− 1)1 + (δ+ 1)δ, δ3 6= 0, δ3 + δ = g+ δ1, 0 ≤ δ1 ≤ g− 1 :

1 δ3 − 1 g − 1 δ3 + δ δ + 1

1 δ3 − 1 g − 3 δ3 − 1 1

1 δ + 1 1

δ − 1

�

Lemma 4.6. All positive integers with six digits are the sum of three palindromes in

base g ≥ 5.

Proof. First, we consider the case δ5 6= 1.

We apply Algorithm II for m = 3 with some exceptions. Note that Algorithm II was

applied to normal numbers. It was only used in the Adjustment Step II.2.ii.c), where

we assumed that δ2 6= 0 and then that z2 6= 0 in that step. Thus, to apply Algorithm II

when n is not a normal number, we have to account also for the possibility z2 = 0 in the

Step II.2.ii.c). This is the temporary configuration in Step II.2.ii.c) (c2 = 0, y3 = y2 = 0)

with z2 = 0.

δ5 δ4 δ3 δ2 δ1 δ0

x1 x2 0 0 x2 x1

y1 0 0 0 y1

z1 0 0 z1

If x2 6= 0, then the adjustment step is the following:

δ5 δ4 δ3 δ2 δ1 δ0

x1 x2 0 0 x2 x1

y1 0 0 0 y1

z1 0 0 z1

−→

δ5 δ4 δ3 δ2 δ1 δ0

x1 x2 − 1 g − 1 g − 1 x2 − 1 x1

y1 1 1 1 y1

z1 0 0 z1

If x2 = 0, we distinghish several cases:

i) x1 = 1. It follows that δ5 = 1 (which is not allowed), unless y1 = z1 = g − 1.

The adjustment step is the following:

δ5 δ4 δ3 δ2 δ1 δ0

1 0 0 0 0 1

g − 1 0 0 0 g − 1

g − 1 0 0 g − 1

−→

δ5 δ4 δ3 δ2 δ1 δ0

2 0 0 0 0 2

1 1

g − 4
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ii) x1 6= 1, y1 6= g − 1. The adjustment step is the following:

δ5 δ4 δ3 δ2 δ1 δ0

x1 0 0 0 0 x1

y1 0 0 0 y1

z1 0 0 z1

−→

δ5 δ4 δ3 δ2 δ1 δ0

x1 − 1 g − 1 0 0 g − 1 x1 − 1

y1 + 1 0 g − 1 0 y1 + 1

z1 1 1 z1

iii) x1 6= 1, z1 6= g − 1. The adjustment step is the following:

δ5 δ4 δ3 δ2 δ1 δ0

x1 0 0 0 0 x1

y1 0 0 0 y1

z1 0 0 z1

−→

δ5 δ4 δ3 δ2 δ1 δ0

x1 − 1 g − 1 g − 2 g − 2 g − 1 x1 − 1

y1 1 1 1 y1

z1 + 1 0 0 z1 + 1

iv) x1 6= 1, g − 1, z1 = x1 = g − 1. The adjustment step is the following:

δ5 δ4 δ3 δ2 δ1 δ0

x1 0 0 0 0 x1

g − 1 0 0 0 g − 1

g − 1 0 0 g − 1

−→

δ5 δ4 δ3 δ2 δ1 δ0

x1 + 1 0 0 0 0 x1 + 1

1 1

g − 4

v) x1 = y1 = z1 = g − 1. Note that in this case we have that

δ5δ4δ3δ2δ1δ0 = (g − 1)0000(g − 1) + (g − 1)000(g − 1) + (g − 1)00(g − 1) + 1000

but we can check easily that this number has 7 digits.

Secondly, we consider the case δ5 = 1.

i) z1 = D(δ0 − δ4 + 1) 6= 0 and D(δ0 − δ4 + 2) 6= 0.

1 δ4 δ3 δ2 δ1 δ0

x1 x2 x3 x2 x1

y1 y2 y3 y2 y1

z1 z2 z1

We choose x1, y1 such that 1 ≤ x1, y1 ≤ g − 1 and x1 + y1 = g + δ4 − 1. This

is possible because 2 ≤ g + δ4 − 1 ≤ 2g − 2.

We choose x2, y2 such that 0 ≤ x2, y2 ≤ g− 1 and x2 + y2 = g+ δ3− 1. This is

possible because 0 ≤ g+δ4−1 ≤ 2g−2. We also define z2 = D(δ1−x2−y2−c1).
We choose x3, y3 such that 0 ≤ x3, y3 ≤ g − 1 and x3 + y3 = g + δ2 − c2 − z1.

This is possible because, as z1 6= 0, we have that g + δ2 − c2 − z1 ≤ 2g − 2, and

since D(δ0 − δ4 + 2) 6= 0, we have z1 6= g − 1 and therefore

g + δ2 − c2 − z1 ≥ g + 0− 2− (g − 2) = 0.
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ii) D(δ0 − δ4 + 2) = 0, δ2 6= 0.

1 δ4 δ3 δ2 δ1 δ0

x1 x2 x3 x2 x1

y1 y2 y3 y2 y1

z1 z2 z1

We choose x1, y1 such that 1 ≤ x1, y1 ≤ g − 1 y x1 + y1 = g + δ4 − 1.

We choose x2, y2 such that 0 ≤ x2, y2 ≤ g − 1 y x2 + y2 = g + δ3 − 1.

We choose x3, y3 such that 0 ≤ x3, y3 ≤ g − 1 y x3 + y3 = g + δ2 − c2 − z1.
All such choices are possible by the same argument as in i) except that now

we have to justify in a different way that g + δ2 − c2 − z1 ≥ 0. But this is clear

because g + δ2 − c2 − z1 ≥ g + 1− 2− (g − 1) = 0.

iii) D(δ0 − δ4 + 2) = 0, δ2 = 0.

a) δ4 = 0. Then δ0 = g − 2.

1 0 δ3 0 δ1 g − 2

g − 2 x2 x3 x2 g − 2

1 y2 y3 y2 1

g − 1 z2 z2 g − 1

We choose x2, y2 such that 0 ≤ x2, y2 ≤ g − 1 and x2 + y2 = δ3.

We choose x3, y3 such that 0 ≤ x3, y3 ≤ g − 1 and x3 + y3 = g − c2 − z2.
Observe that c2 = (x2 + y2 + z2 + c1 − δ1)/g ≤ (g − 1 + g − 1 + 1)/g < 2.

Thus, c2 6= 2 and g − c2 − z2 ≥ g − 1− (g − 1) ≥ 0, therefore we can choose

such x3 and y3.

b) δ4 = 1. Then δ0 = g − 1.

1 1 δ3 0 δ1 g − 1

g − 1 x2 x3 x2 g − 1

1 y2 y3 y2 1

g − 1 z2 z2 g − 1

The choices for the xi’s are identical to the ones from case a).

c) δ4 = 2. Then δ0 = 0.

1 2 δ3 0 δ1 0

g − 1 x2 x3 x2 g − 1

2 y2 y3 y2 2

g − 1 z2 z2 g − 1
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We choose x2, y2 such that 0 ≤ x2, y2 ≤ g − 1 y x2 + y2 = δ3.

We choose x3, y3 such that 0 ≤ x3, y3 ≤ g − 1 y x3 + y3 = g − c2 − z2.
If c2 6= 2, then we can make such a choice for x3 and y3.

However, if c2 = 2, then x2 + y2 = z2 = g− 1 and δ1 = 0 and δ3 = g− 1. In

this special case, we have:

1 2 g − 1 0 0 0

1 2 g − 2 g − 2 2 1

1 g − 3 1

g − 2

iii) D(δ0 − δ4 + 1) = 0, δ3 6= 0 :

1 δ4 δ3 δ2 δ1 δ0

x1 x2 x3 x2 x1

y1 y2 y3 y2 y1

z1 z2 z1

We choose x1, y1 such that 1 ≤ x1, y1 ≤ g − 1 and x1 + y1 = g + δ4. This is

possible because δ4 ≤ 2 ≤ g − 2. On the other hand, z1 = g − 1.

We choose x2, y2 such that 0 ≤ x2, y2 ≤ g − 1 and x2 + y2 = δ3 − 1.

We choose x3, y3 such that 0 ≤ x3, y3 ≤ g − 1 and

x3 + y3 = g + δ2 − c2 − z1 = 1 + δ2 − c2.

This is possible because c2 ≤ 1. Indeed,

c2 = (x2 + y2 + z2 + c1 − δ1)/g ≤ (δ3 − 1 + g − 1 + 2)/g < 2.

iv) D(δ0 − δ4 + 1) = 0, δ3 = 0.

a) δ4 = 0. Then δ0 = g − 1.

If δ2 6= 0, then n− 100001 = δ2δ1(g − 2) is a sum of two palindromes.

If δ2 = 0 and δ1 6= 0, g − 1, then n− 100001 = (δ1 − 1)(g − 1) is also a sum

of two palindromes.

If δ2 = 0 and δ1 = 0, then

1 0 0 0 0 g − 1

1 0 0 0 0 1

g − 2
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If δ2 = 0 and δ1 = g − 1, then

1 0 0 0 g − 1 g − 1

g − 1 0 1 0 g − 1

g − 1 g − 2 g − 2 g − 1

1 0 1

b) δ4 = 1. Then δ0 = 0.

If δ2 ≥ 2 or if δ2 = 1 and δ1 6= 0, 1 then n− 110011 has three digits, its last

digit is g − 1, therefore it can be written as a sum of two palindromes.

If δ2 = 1 and δ1 = 0, then

1 1 0 1 0 0

1 0 g − 1 g − 1 0 1

1 g − 1 1

g − 2

If δ2 = 1 and δ1 = 1, then

1 1 0 1 1 0

1 1 0 0 1 1

g − 1 g − 1

If δ2 = 0 and δ1 ≥ 2, then

1 1 0 0 δ1 0

1 1 0 0 1 1

δ1 − 2 δ1 − 2

g − δ1 + 1

If δ2 = 0 and δ1 = 1, then

1 1 0 0 1 0

1 0 0 0 0 1

1 0 0 0 1

g − 2

If δ2 = 0 and δ1 = 0 then

1 1 0 0 0 0

1 0 0 0 0 1

g − 1 g − 1 g − 1 g − 1

c) δ4 = 2. Then δ0 = 1.

If δ2 ≥ 2 or if δ2 = 1 and δ1 6= 0, 1, then n− 120021 has three digits, its last

digit is g − 1, therefore can be written as a sum of two palindromes.
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If δ2 = 1 and δ1 = 0, then

1 2 0 1 0 0

1 1 g − 1 g − 1 1 1

1 g − 2 1

g − 2

If δ2 = 1 and δ1 = 1, then

1 2 0 1 1 0

1 1 g − 1 g − 1 1 1

1 g − 1 1

g − 2

If δ2 = 0 and δ1 ≥ 3, then

1 2 0 0 δ1 0

1 2 0 0 2 1

δ1 − 3 δ1 − 3

g − δ1 + 2

If δ2 = 0 and δ1 = 2, then

1 2 0 0 2 0

1 1 g − 1 g − 1 1 1

1 0 1

g − 2

If δ2 = 0 and δ1 = 1, then

1 2 0 0 1 0

1 0 0 0 0 1

2 0 0 0 2

g − 3

If δ2 = 0 and δ1 = 0, then

1 2 0 0 0 0

1 1 g − 1 g − 1 1 1

g − 2 g − 2

1

�
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5. The proofs of Theorems 1.3 and 1.4

5.1. Proof of Theorem 1.3. To get the lower bound we argue in the following way.

Let Pl be the set of palindromes with l base g digits. Its cardinality is bounded by

g(l+1)/2. Let X be large and l be that positive integer such that 2gl ≤ X < 2gl+1. It is

clear that for all r ≥ 1, |Pl + Pl−r| is a lower bound for the number of positive integers

less than or equal to X which are a sum of two base g palindromes. We use the relation

|Pl||Pl−r| =
∑

n∈Pl+Pl−r

r(n) ≤ |Pl + Pl−r| max
n∈Pl+Pl−r

r(n).

Consider the representations of n of the form n = x + y with x ∈ Pl and y ∈ Pl−r.

Assume that l = 2mr + t, with 0 ≤ t ≤ 2r − 1.

If

x = x1x2 . . . x2x1 and y = y1y2 . . . y2y1

are the base g representations of x and y, then we group the digits in blocks of length r

from the left to the right and we get left over with a middle block of length t:

x = x1 . . . xr · · ·x2r(m−1)+1 . . . x2rm x2rm+t . . . x2rm+1 x2rm . . . x2r(m−1)+1 · · ·xr . . . x1.

If X = x1 . . . xr, we define f(X) := xr . . . x1. With this notation, x and y are represented

as Xi, Yi, f(Xi), f(Yi), ∆3 of length r, while ∆1,∆2 have lengh t:

x = X1 · · · · · · · · · Xm ∆1 f(Xm) · · · · · · · · · f(X1)

y = f(Y1) · · · · · · f(Ym−1) ∆2 ∆3 Ym−1 · · · · · · Y1

When we sum x and y, digit by digit, in every column we could get a carry or not. Let ti

for i = 1, . . . , 2m be the carries in each column and let t = (t1, . . . , t2m) be the vector of

carries. We denote by rt(n) the number of representations of n under the form n = x+y

with x ∈ Pl, y ∈ Pl−r with a carries vector t. Clearly,

r(n) =
∑
t

rt(n).

As in the case of x and y, we write n with the same length of the string of digits as x.

n = δ2m · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · δ0

x = X1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · f(X1)

y = f(Y1) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Y1

Let us see that Xi, Yi,∆1,∆2,∆3 are all determined by δi and by the vector t.

In fact, X1 is determined by δ2m are t2m. We then put f(X1), which in turn determines

Y1. If the carry in the first column does not coincide with t1, then rt(n) = 0. If

it does, then we put f(Y1) in its appropriate position. We then determine X2 using
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δ2m−1 and t2m−1. Again if the carry in the second column does not correspond with

t2, then rt(n) = 0; otherwise, we keep on determining Xi, Yi and ∆3. If one of these

determinations is not compatible with the corresponding ti’s then rt(n) = 0. In the last

step, we have to determine who is ∆1. Since ∆1 is a palindrome itself and has length t,

there are at most gr possibilities for it. Once we made up our mind about ∆1, the value

of ∆2 is determined. So, rt(n) ≤ gr and therefore r(n) ≤ 2mgr.

Hence,

|Pl + Pl−r| ≥ gl+1−r/22−mg−r

≥ (X/2)g−3r/22−m

≥ (X/2)g−3r/22−l/(2r)

≥ (X/2)g
− 1

2
(3r+ l log g

r log 2
)
.

Taking r = b
√
l(log g)/(3 log 2)c and using the fact that l ∼ logX/ log g, we get

|Pl + Pl−r| � Xg−
√

3l log g/ log 2 � Xe−c
√
logX .

5.2. Proof of Theorem 1.4. For g ≥ 3, it is not hard to see that then the number

(5.1) (g − 1)(g − 1) ∗ ∗ ∗ · · · ∗ 0(g − 1)

is not a sum of two base g palindromes. Indeed, assume that the length of the above n

is l ≥ 4 and that x = xl−1−r · · ·x0 ≥ y = yl−1−s · · · y0 are base g palindromes whose sum

is the above n, where r, s are nonnegative integers. Since x0 + y0 ≤ 2g − 2 and the last

digit of n is g − 1, there is no carry in the last position when summing x and y in base

g, so x0 + y0 = g − 1 with 1 ≤ x0, y0 ≤ g − 2. If both r > 0 and s > 0 (so, the lengths

of both x and y are smaller than l), then n = x+ y which has length l in base g should

start with 1, which is not the case. If r = 0 but s > 0, then x0 = g − 2 and y0 = 1.

Since yl−2 = 1 or 0 according to whether s = 1 or s ≥ 2, respectively, and since there

is a carry in the position l − 2 when adding x with y, we conclude that xl−2 = g − 2 or

g− 1. But then g+ 1 ≥ xl−2 + yl−2 + 1 ≥ g+ (g− 1) = 2g− 1, where the last inequality

follows from the fact that the digit in the position l−2 of n is g−1, and the above string

of inequalities is impossible. Hence, r = s = 0. Now looking at x1 and y1, we get that

x1 + y1 = 0 or g. Looking now at the left, we conclude that xl−2 + yl−2 = x1 + y1 = 0

or g, so in the position l − 2 of the digits of n we should have either the digit 0 or 1

according to whether there is no carry coming from the sum of digits of x and y from

the position l−3, or of there is one such carry, respectively, and both these numbers are

smaller than the corresponding digit g − 1 of n, which is the final contradiction.
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