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Abstract. For k prime and A a finite set of integers with |A| ≥ 3(k − 1)2(k − 1)!

we prove that |A + k ·A| ≥ (k + 1)|A| − dk(k + 2)/4e where k ·A = {ka, a ∈ A}. We
also describe the sets for which the equality holds.

1. Introduction

Let k be a positive integer and let A ⊂ Z. We denote by k · A = {ka, a ∈ A} the
k–dilation of A and by kA = A+ · · ·+A (k–times) the k–fold sumset of A. We observe
that A+ k ·A ⊂ A+ kA = (k+ 1)A and that, in general, A+ k ·A is much smaller than
(k + 1)A. It is well known that |(k + 1)A| ≥ (k + 1)|A| − k and that the equality holds
only if A is an arithmetic progression. Indeed, if A is an arithmetic progression with
|A| ≥ k one can check that A + k · A = (k + 1)A. So it is a natural problem to study
lower bounds for |A+ k ·A| as well as the description of the extremal cases.

The case k = 1 is trivial since |A+A| ≥ 2|A|− 1 and the equality holds for arithmetic
progressions. The case k = 2 (see [3]) is also easy since we can split A = A1 ∪A2 in the
two classes (mod 2) and then |A+ 2 ·A| = |A1 + 2 ·A|+ |A2 + 2 ·A| ≥ |A1|+ |2 ·A| −
1 + |A2|+ |2 · A| − 1 = 3|A| − 2. (If A contains only a class we write A = 2 · A′ + i and
then |A+ 2 · A| = |A′ + 2 · A′|). It is shown in [2] that |A+ 2 · A| = 3|A| − 2 only when
A is an arithmetic progression.

The cases k ≥ 3 are much more involved. Nathanson [3] proved that |A + k · A| ≥
b 72 |A| −

5
2c for k ≥ 3 and Bukh [1] proved that |A+ 3 ·A| ≥ 4|A| − C for some constant

C. Cilleruelo, Silva and Vinuesa obtained the sharp bound and the description of the
extremal cases for k = 3.

Theorem 1 ([2]). For any set of integers A we have |A+ 3 ·A| ≥ 4|A|− 4. Furthermore
if |A+ 3 ·A| = 4|A| − 4 then A = 3 · {0, . . . , n}+ {0, 1} or A = {0, 1, 3} or A = {0, 1, 4}
or A is an affine transformation of any of these sets.

They proposed the following conjecture:

Conjecture (Cilleruelo–Silva–Vinuesa [2]). For all positive integer k and a finite set of
integers A with sufficiently large cardinality we have

|A+ k ·A| ≥ (k + 1)|A| − dk(k + 2)/4e .
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Bukh’s main Theorem [1] states that for (λ1, · · · , λt) ∈ Zt with gcd(λ1, · · · , λt) = 1,

|λ1 ·A+ · · ·+ λt ·A| ≥ (|λ1|+ · · ·+ |λt|)|A| − o(|A|).

This general result implies |A + k · A| ≥ (k + 1)|A| − o(|A|) in our problem. The
existence of a simple proof for |A+ k ·A| ≥ (k + 1)|A| −Ck for k ≥ 4 is implicitly asked
by Bukh in [1].

When k is prime we give a positive answer to the above questions by proving a precise
version of Conjecture above. In addition we characterize the extremal sets A for the
lower bound in that conjecture. Since |A + k · A| is invariant by affine transformations
we will assume without loss of generality that 0 ∈ A and gcd(A) = 1.

Theorem 2. Let k be a prime and let A be a subset of Z with minA = 0, gcd(A) = 1
and |A| ≥ 3|Â|2(k − 1)!, where Â is the projection of A in Zk. Then

(1) |A+ k ·A| ≥ (k + 1)|A| − |Â|(k + 1− |Â|).

Furthermore if |Â| < k equality holds in (1) only if

(2) A = k · {0, 1, . . . , n}+ {0, 1, . . . , |Â| − 1}

for some n, while if |Â| = k, equality holds in (1) only if A is an arithmetic progression.

If |Â| = k, one can obtain

|A+ k ·A| ≥ (k + 1)|A| − k,
under the weaker hypothesis |A| > k and equality holds only when A is an arithmetic
progression. This case is contained in Corollary 5 below.

The following Corollary follows from Theorem 2.

Corollary 3. Let k be a prime and let A be a subset of Z with |A| ≥ 3(k − 1)2(k − 1)!.
Then

(3) |A+ k ·A| ≥ (k + 1)|A| − dk(k + 2)/4e .
Moreover, up to affine transformations, equality holds in (3) only if

(4) A = k · {0, 1, . . . , n}+ {0, 1, . . . , (k − 1)/2}
for some n.

Theorem 2 implies in particular that, for k prime and any set A, we have |A+k ·A| ≥
(k + 1)|A| − Ck for a suitable constant Ck. Indeed, Lemma 9 below shows that the
inequality holds with Ck = 3(k − 1)!.

Small sets are more difficult to deal with. For example, in case k = 3, Theorem 2
covers Theorem 1 only when |A| ≥ 24. Smaller sets have to be analyzed more carefully
as it was done in [2] with a distinct approach. Actually the lower bound (1) does not
hold for an arbitrary set. In [2] it is shown that there exist small sets A for which
|A+ k ·A| ≤ (k + 1)|A| − P (k) where P is a cubic polynomial.

The paper is organized as follows. We first give some notation and preliminary results
in Section 2. We then show in Section 3 that, for the class of so–called k–full sets, which
actually contain the extremal ones, Theorem 2 is relatively easy to prove. In Section 4
we give a universal weaker lower bound for the cardinality of A + k · A and we use to
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show in the final section that, for sufficiently large sets which are not k–full, we get a
better lower bound for |A+ k ·A| than the one in Theorem 2 thus completing its proof.

2. Notation and preliminary results

For two finite nonempty sets of integers A and B it is well known that |A + B| ≥
|A|+ |B|−1, and that equality holds only if either min{|A|, |B|} = 1 or both A and B are
arithmetic progressions with the same common difference. We next give a generalization
of the above inequality for |A+ k ·B|.

A maximal subset of X ⊂ Z, of congruent elements modulo k will be called a k–
component of X.

Lemma 4. For arbitrary nonempty sets of integers A and B with |B| > 1, we have

|A+ k ·B| ≥ |A|+ |Â|(|B| − 1),

where Â denotes the natural projection of A on Z/kZ.

Furthermore if the equality holds and A has a k–component C with |C| > 1 then both
C and k ·B are arithmetic progressions with the same difference.

Proof. Observe that A + k · B is the disjoint union ∪i∈Â(Ai + k · B), where Ai are the
distinct k–components of A. Write Ai = k ·Xi + ui. We have

|A+k·B| = |∪i∈Â(k·Xi+ui+k·B)| =
∑
i∈Â

|Xi+B| ≥
∑
i∈Â

(|Xi|+|B|−1) = |A|+|Â|(|B|−1).

To prove the second part of the statement, suppose that equality holds and let C = Ar =
k · Xr + ur. Then |Xr + B| = |Xr| + |B| − 1 which implies that both Xr and B are
arithmetic progressions with the same difference and the same is true of Ar and k ·B. �

Lemma 4 easily handles the case when |Â| = k as described in next Corollary.

Corollary 5. Let A be a set of integers with |Â| = k and |A| > k. Then we have

|A+ k ·A| ≥ (k + 1)|A| − k

and the equality holds only if A is an arithmetic progression.

Proof. The inequality follows from Lemma 4. For the inverse part, we observe that
|Ar| ≥ 2 for some r, and Lemma 4 implies that the set k · A must be an arithmetic
progression. Hence A must be an arithmetic progression as well. �

Throughout the paper we use the following notation. For a set A we write j = |Â|,
where Â is the natural projection of A on Z/kZ and A1, . . . , Aj for the distinct classes
modulo k. We also write Ai = k · Xi + ui, i = 1, . . . , j for some distinct ui modulo k.
Thus,

A =
j⋃

i=1

Ai =
j⋃

i=1

(k ·Xi + ui).
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We will always assume that |A1| ≥ |A2| ≥ · · · ≥ |Aj |. Also we write

F = {i : |X̂i| = k}, AF =
⋃
i∈F

Ai

E = {i : 0 < |X̂i| < k}, AE =
⋃
i∈E

Ai.

Denote by
∆rs = (Ar + k ·A) \ (Ar + k ·As),

so that

(5) |Ar + k ·A| = |Ar + k ·As|+ |∆rs| = |Xr + k ·Xs|+ |∆rs|.

Lemma 6. For each subset I ⊂ {1, 2, . . . , j} and each r ∈ {1, 2, . . . , j}, we have

i)
∑

i∈I |∆ii| ≥ |I|(|I| − 1),
ii)
∑

i∈I |∆ri| ≥ |I|(|I| − 1),

Proof. Let
∆+

r,s = (Ar + k ·A) \ (−∞,max(Ar + k ·As)],

and
∆−r,s = (Ar + k ·A) \ [min(Ar + k ·As),∞),

so that
|∆r,s| ≥ |∆+

r,s|+ |∆−r,s|.

Denote by Γ+(s) = {h : max(As) < max(Ah)} and Γ−(s) = {h : min(As) > min(Ah)}.
Clearly max(Ar +k ·As) < max(Ar +k ·Ah), for every h ∈ Γ+(s). Since, for distinct h, the
elements in the right–hand side of the last inequality belong to distinct congruence classes
modulo k2, we have |∆+

rs| ≥ |Γ+(s)|. By replacing A by −A, we obtain |∆−rs| ≥ |Γ−(s)|.

Observe that |Γ+(u)| > |Γ+(v)| if max(Au) < max(Av). In particular, the numbers
|Γ+(u)|, u = 1, . . . , j are pairwise distinct. Since |Γ+(u)| ≤ j − 1 it follows that

{|Γ+(u)|;u = 1, 2, . . . , j} = {0, 1, · · · , j − 1}.

By replacing A by −A, we get {|Γ−(u)|;u = 1, 2, . . . , j} = {0, 1, · · · , j − 1} as well.
Therefore,∑

i∈I

|∆ii| ≥
∑
i∈I

|∆+
ii |+

∑
i∈I

|∆−ii | ≥
∑
i∈I

|Γ+(i)|+
∑
i∈I

|Γ−(i)| ≥ |I|(|I| − 1),

which proves (i). Similarly∑
i∈I

|∆ri| ≥
∑
i∈I

|Γ+(i)|+
∑
i∈I

|Γ−(i)| ≥ |I|(|I| − 1)

and (ii) follows. �

Lemma 7. Let k be a prime and we assume the notation above. Then

i) If i ∈ E then |∆ii| ≥ |As| for any s 6= i.
ii)
∑

i∈E |∆ii| ≥ (|E| − 1)|A1|+ |A2|.
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Proof. i) Suppose that X̂i +x = X̂i + y for distinct x, y ∈ Zk. Then X̂i = X̂i + (y−x) =
X̂i + 2(y − x) = · · · = X̂i + (k − 1)(y − x) which implies X̂i = Zk. Hence, if i ∈ E and
s 6= i then X̂i + ûs 6= X̂i + ûi. Thus |(X̂i + ûs) \ (X̂i + ûi)| ≥ 1. Now we have

|∆ii| = |(Ai + k ·A) \ (Ai + k ·Ai)| ≥ |(k ·Xi + ui + k ·As) \ (k ·Xi + ui + k ·Ai)|
= |(Xi +As) \ (Xi +Ai)| = |(Xi + k ·Xs + us) \ (Xi + k ·Xi + ui)|
≥ |Xs||(X̂i + ûs) \ (X̂i + ûi)| ≥ |Xs| = |As|.

ii) We observe that i) implies that |∆ii| ≥ |A1| for all i ∈ E except for i = 1 when
1 ∈ E. In that case we have |∆11| ≥ |A2|. �

3. Full sets

We say that a set A is k–full if |X̂i| = k for each i = 1, 2, . . . , j. The following Lemma
proves Theorem 2 for k–full sets and all k with no condition on their cardinality. Since
Corollary 5 proves Theorem 2 for j = k, we can assume that j < k.

Lemma 8. Let A be a finite k–full set of integers with min(A) = 0 and j < k. Then

|A+ k ·A| ≥ (k + 1)|A| − j(k − j + 1).

Moreover, equality holds if and only if

A = k · {0, 1, . . . , n}+ {0, 1, . . . , j − 1}

for some n.

Proof. We apply (5) and Lemma 4 to get, for each s = 1, . . . , j,

|A+ k ·A| =
j∑

i=1

|Ai + k ·A|

=
j∑

i=1

(|Xi + k ·Xs|+ |∆is|)

≥
j∑

i=1

(|Xi|+ k(|Xs| − 1) + |∆is|)(6)

≥ |A|+ kj|Xs| − kj +
j∑

i=1

|∆is|.

If we sum in all s = 1, . . . , j and divide by j we obtain

|A+ kA| ≥ (k + 1)|A| − kj +
1
j

j∑
s=1

j∑
i=1

|∆is|

= (k + 1)|A| − kj +
1
j

j∑
i=1

j∑
s=1

|∆is|(7)

≥ (k + 1)|A| − j(k + 1− j),

due to Lemma 6. This proves the lower bound.
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For the inverse part of the Lemma and only till the end of this proof we next order
the k–components A1, A2, . . . , Aj of A in such a way that 0 = m1 < m2 < · · · < mj ,
where mi = min(Ai) (so we do not assume they are decreasing in cardinality).

Suppose that equality holds in (1). Since there is equality in (6), we have |Xi+k·Xs| =
|Xi|+k(|Xs|−1) for all i, s and, since |Xi| ≥ k for all i = 1, . . . , j, Lemma 4 implies that
all Xi are arithmetic progressions with the same difference d. So for i = 1, . . . , j we have

Ai = (kd) · {0, 1, . . . , ni}+mi

for some ni ≥ k − 1 where mi = min(Ai) and |A| =
∑j

i=1(ni + 1).

Observe that, since ni ≥ k − 1, we have

Ai + k ·Ar = mi + (kd) · {0, 1, . . . ni}+ k · (mr + (kd) · {0, 1, . . . , nr})
= mi + kmr + (kd) · ({0, 1, . . . , ni}+ k · {0, 1, . . . , nr})
= mi + kmr + (kd) · {0, 1, . . . , ni + knr},(8)

so that Ai + k ·Ar is an arithmetic progression for each i and r.

First we will prove that mr ≡ 0 (mod d) for all r. Otherwise if we write R0 for those
r with mr ≡ 0 (mod d) (which contains m1) and R1 for those r with mr 6≡ 0 (mod d)
(which is also nonempty by assumption) we have

|A+ k ·A| =
j∑

i=1

|Ai + k ·A| =
j∑

i=1

∣∣∣∣∣⋃
r

(Ai + kAr)

∣∣∣∣∣
=

j∑
i=1

∣∣∣∣∣⋃
r

(
mi + kmr + (kd) · {0, 1, . . . , ni + knr}

)∣∣∣∣∣
=

j∑
i=1

∣∣∣∣∣⋃
r

(
mr + d · {0, 1, . . . , ni + knr}

)∣∣∣∣∣
=

j∑
i=1

(∣∣∣∣∣ ⋃
r∈R0

(d · {0, . . . , knr + ni}+mr)

∣∣∣∣∣+

∣∣∣∣∣ ⋃
r∈R1

(d · {0, . . . , knr + ni}+mr)

∣∣∣∣∣
)

≥
j∑

i=1

(ni + 1 + kmax
r∈R0

nr) +
j∑

i=1

(ni + 1 + kmax
r∈R1

nr)

= 2|A|+ kj

(
max
r∈R0

nr + max
r∈R1

nr

)
≥ 2|A|+ kj

(
k − 1 + max

r
nr

)
= 2|A|+ kj

(
k − 2 + max

r
(nr + 1)

)
≥ 2|A|+ kj

(
k − 2 +

|A|
j

)
≥ (2 + k)|A| > (k + 1)|A|

and the equality (1) can not hold.

Now, since gcd(A) = 1 we have that d = 1. It follows, by (8), that

(9) Ai + k ·A =
j⋃

r=1

(
Ai + k ·Ar

)
=

j⋃
r=1

(
mi + kmr + k · {0, 1, . . . , knr + ni}

)
.
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By using the notation from the proof of Lemma 6, for each i and for each r ≥ 2, the set
∆−i,r = (Ai + k ·A) \ [min(Ai + k ·Ar),∞) clearly contains mi + km1,mi + km2, . . . ,mi +
kmr−1. It follows that

j∑
r=1

|∆−ir| ≥
j∑

r=2

(r − 1) = j(j − 1)/2.

By the analogous argument on −A we also have
∑j

r=1 |∆
+
ir| ≥ j(j − 1)/2.

Since there is equality in (7) we have
∑j

s=1 ∆is = j(j − 1) for each i. It follows that∑j
r=1 |∆

−
ir| =

∑j
r=1 |∆

+
ir| = j(j − 1)/2. Hence

(10) ∆−ir = mi + k · {m1,m2, . . . ,mr−1}, r = 2, 3, . . . , j.

We claim that mr−1 + 1 = mr for any 2 ≤ r ≤ j. Suppose, on the contrary, that
mr−1 + 1 < mr (we have assumed that 0 = m1 < · · · < mj). Then mi + k(mr−1 + 1) <
min(Ai + k ·Ar). On the other hand, by (9), we have mi + k(mr−1 + 1) ∈ mi + kmr + k ·
{0, 1, . . . , knr + ni} ⊂ Ai + k ·A. Thus mi + k(mr−1 + 1) ∈ ∆−ir, which is a contradiction
because max ∆−ir = mi + kmr−1 < mi + k(mr−1 + 1).

Since m1 = 0, we conclude that mr = r − 1 for r = 1, . . . , j.

Putting this in (9) we have

(11) |Ai + k ·A| ≥

∣∣∣∣∣
j⋃

r=1

(r − 1 + {0, . . . , knr + ni})

∣∣∣∣∣ = ni + 1 + knl + l − 1,

where knl + l − 1 = maxr(knr + r − 1). Since

(12) nl ≥

{
nr for r ≤ l
nr + 1 for r > l,

we have

(13) jnl ≥ n1 + · · ·+ nl + (nl+1 + 1) + · · ·+ (nj + 1) = |A| − l.

By (11) we have

|A+ k ·A| =
j∑

i=1

|Ai + k ·A| ≥ |A|+ j(knl + l − 1) ≥ (k + 1)|A| − l(k − j)− j.

Since we have assumed that |A+ k · A| = (k + 1)|A| − j(k + 1− j), we have that l = j.
Furthermore we can see that all the inequalities, included those of (13) and (12), are
equalities, so n1 = · · · = nj .

Hence, Ai = k · {0, . . . , n}+ i− 1 for i = 1, . . . , j and we can write

A =
r⋃

i=1

Ai = {0, 1, . . . , j − 1}+ k · {0, 1, . . . , n},

for some n ≥ k − 1. This completes the proof. �
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4. A general lower bound

In this Section we give a weaker lower bound for |A + k · A| valid for every finite set
A of integers and k prime.

Lemma 9. Let k be a prime and let A be a finite nonempty subset of Z. We have

(14) |A+ k ·A| ≥ (k + 1)|A| − 3(k − 1)!

Proof. Let t be the largest integer such that, for every finite set X of integers,

|X + k ·X| ≥ (t+ 1)|X| − 3(t− 1)!.

Suppose that t < k and let A be a critical set, verifying |A + k · A| ≤ (t + 2)|A| − 3t!.
Without loss of generality we may assume that 0 ∈ A1 and gcd(A) = 1. In particular
j = |Â| ≥ 2.

Lemma 4 gives |A+ k ·A| ≥ (j + 1)|A| − j. Therefore t ≥ j + 1.

We have

(15) |A+ k ·A| =
∑
i∈F

|Ai + k ·A|+
∑
i∈E

|Ai + k ·A|.

We have ∑
i∈F

|Ai + k ·A| ≥
∑
i∈F

|Ai + k ·A1|

=
∑
i∈F

|Xi + k ·X1|

(by Lemma 4) ≥
∑
i∈F

(|Xi|+ k(|X1| − 1))

=
∑
i∈F

(|Ai|+ k(|A1| − 1))

(since t ≤ k − 1) ≥ |AF |+ (t+ 1)|F |(|A1| − 1)
(since t|A1||F | ≥ t|AF |) ≥ (t+ 1)|AF |+ |F ||A1| − (t+ 1)|F |.(16)

On the other hand, by (5), induction hypothesis and Lemma 7-ii),∑
i∈E

|Ai + k ·A| =
∑
i∈E

(|Ai + k ·Ai|+ |∆ii|)

≥
∑
i∈E

((t+ 1)|Ai| − 3(t− 1)!) +
∑
i∈E

∆ii

≥ (t+ 1)|AE | − 3|E|(t− 1)! + (|E| − 1)|A1|+ |A2|.(17)

By substitution of (16) and (17) in (15) we get

|A+ k ·A| ≥ (t+ 1)|A|+ (|F |+ |E| − 1)|A1|+ |A2| − (t+ 1)|F | − 3|E|(t− 1)!
≥ (t+ 2)|A| − (t+ 1)|F | − 3|E|(t− 1)!,

since (|F | + |E| − 1)|A1| + |A2| = (j − 1)|A1| + |A2| ≥ |A1| + |A2| + · · · + |Aj | = |A|.
Finally, since |E|+ |F | = j ≤ t, we have

3|E|(t−1)! + (t+ 1)|F | ≤ 3(t−|F |)(t−1)! + (t+ 1)|F | ≤ 3t! + |F |(t+ 1−3(t−1)!) ≤ 3t!,

which contradicts our choice of A. This contradiction proves the statement. �
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5. Proof of theorem 2

Suppose now that|A| ≥ 3j2(k − 1)!. By Lemma 8 and Corollary 5 we may assume
E 6= ∅ and j < k.

Case 1: There is s ≥ 2 with s ∈ E.

By (5), Lemma 9 and Lemma 7-i), we obtain

|A+ k ·A| = |As + k ·A|+
∑
i 6=s

|Ai + k ·A|

≥ |Xs + k ·Xs|+ ∆ss +
∑
i 6=s

|Xi + k ·Xi|

≥ (k + 1)|As| − 3(k − 1)! + |A1|+
∑
i6=s

((k + 1)|Ai| − 3(k − 1)!)

≥ (k + 1)|A| − 3j(k − 1)! +
|A|
j

≥ (k + 1)|A|,

since |A| ≥ 3j2(k − 1)!.

Case 2: E = {1}.

In this case, since |X̂2| = k, Lemma 4 implies that

(18) |X2 + k ·X1| ≥ |X2|+ k(|X1| − 1) = |A2|+ k|A1| − k.

We observe also (by Lemma 7-i)) that |∆11| ≥ |A2|.

Then, by (5), Lemma 9, Lemma 7-i) and (18) we have

|A+ k ·A| = |A1 + k ·A|+ |A2 + k ·A|+
∑
i≥3

|Ai + k ·A|

≥ |X1 + k ·X1|+ ∆11 + |X2 + k ·X1|+
∑

3≤i≤j

|Xi + k ·Xi|

≥ (k + 1)|A1| − 3(k − 1)! + |A2|+ (|A2|+ k|A1| − k) +
∑

3≤i≤j

((k + 1)|Ai| − 3(k − 1)!)

≥ |A1|+ (k + 1)|A| − 3(j − 1)(k − 1)!− k

≥ |A|
j

+ (k + 1)|A| − 3j(k − 1)!

≥ (k + 1)|A|,

since |A| ≥ 3j2(k − 1)!.

This completes the proof.
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