ON SUMS OF DILATES

JAVIER CILLERUELO, YAHYA O. HAMIDOUNE, AND ORIOL SERRA

Abstract

For k prime and A a finite set of integers with $|A| \geq 3(k-1)^{2}(k-1)$! we prove that $|A+k \cdot A| \geq(k+1)|A|-\lceil k(k+2) / 4\rceil$ where $k \cdot A=\{k a, a \in A\}$. We also describe the sets for which the equality holds.

1. Introduction

Let k be a positive integer and let $A \subset \mathbb{Z}$. We denote by $k \cdot A=\{k a, a \in A\}$ the k-dilation of A and by $k A=A+\cdots+A$ (k-times) the k-fold sumset of A. We observe that $A+k \cdot A \subset A+k A=(k+1) A$ and that, in general, $A+k \cdot A$ is much smaller than $(k+1) A$. It is well known that $|(k+1) A| \geq(k+1)|A|-k$ and that the equality holds only if A is an arithmetic progression. Indeed, if A is an arithmetic progression with $|A| \geq k$ one can check that $A+k \cdot A=(k+1) A$. So it is a natural problem to study lower bounds for $|A+k \cdot A|$ as well as the description of the extremal cases.

The case $k=1$ is trivial since $|A+A| \geq 2|A|-1$ and the equality holds for arithmetic progressions. The case $k=2$ (see [3]) is also easy since we can split $A=A_{1} \cup A_{2}$ in the two classes $(\bmod 2)$ and then $|A+2 \cdot A|=\left|A_{1}+2 \cdot A\right|+\left|A_{2}+2 \cdot A\right| \geq\left|A_{1}\right|+|2 \cdot A|-$ $1+\left|A_{2}\right|+|2 \cdot A|-1=3|A|-2$. (If A contains only a class we write $A=2 \cdot A^{\prime}+i$ and then $\left.|A+2 \cdot A|=\left|A^{\prime}+2 \cdot A^{\prime}\right|\right)$. It is shown in [2] that $|A+2 \cdot A|=3|A|-2$ only when A is an arithmetic progression.

The cases $k \geq 3$ are much more involved. Nathanson [3] proved that $|A+k \cdot A| \geq$ $\left\lfloor\frac{7}{2}|A|-\frac{5}{2}\right\rfloor$ for $k \geq 3$ and Bukh [1] proved that $|A+3 \cdot A| \geq 4|A|-C$ for some constant C. Cilleruelo, Silva and Vinuesa obtained the sharp bound and the description of the extremal cases for $k=3$.

Theorem 1 ([2]). For any set of integers A we have $|A+3 \cdot A| \geq 4|A|-4$. Furthermore if $|A+3 \cdot A|=4|A|-4$ then $A=3 \cdot\{0, \ldots, n\}+\{0,1\}$ or $A=\{0,1,3\}$ or $A=\{0,1,4\}$ or A is an affine transformation of any of these sets.

They proposed the following conjecture:
Conjecture (Cilleruelo-Silva-Vinuesa [2]). For all positive integer k and a finite set of integers A with sufficiently large cardinality we have

$$
|A+k \cdot A| \geq(k+1)|A|-\lceil k(k+2) / 4\rceil
$$

[^0]J. C. was supported by Project MTM2008-03880 from MYCIT (Spain) and the joint Madrid RegionUAM project TENU3 (CCG08-UAM/ESP-3906).

Bukh's main Theorem [1] states that for $\left(\lambda_{1}, \cdots, \lambda_{t}\right) \in \mathbb{Z}^{t}$ with $\operatorname{gcd}\left(\lambda_{1}, \cdots, \lambda_{t}\right)=1$,

$$
\left|\lambda_{1} \cdot A+\cdots+\lambda_{t} \cdot A\right| \geq\left(\left|\lambda_{1}\right|+\cdots+\left|\lambda_{t}\right|\right)|A|-o(|A|)
$$

This general result implies $|A+k \cdot A| \geq(k+1)|A|-o(|A|)$ in our problem. The existence of a simple proof for $|A+k \cdot A| \geq(k+1)|A|-C_{k}$ for $k \geq 4$ is implicitly asked by Bukh in [1].

When k is prime we give a positive answer to the above questions by proving a precise version of Conjecture above. In addition we characterize the extremal sets A for the lower bound in that conjecture. Since $|A+k \cdot A|$ is invariant by affine transformations we will assume without loss of generality that $0 \in A$ and $\operatorname{gcd}(A)=1$.
Theorem 2. Let k be a prime and let A be a subset of \mathbb{Z} with $\min A=0, \operatorname{gcd}(A)=1$ and $|A| \geq 3|\hat{A}|^{2}(k-1)$!, where \hat{A} is the projection of A in \mathbb{Z}_{k}. Then

$$
\begin{equation*}
|A+k \cdot A| \geq(k+1)|A|-|\hat{A}|(k+1-|\hat{A}|) \tag{1}
\end{equation*}
$$

Furthermore if $|\hat{A}|<k$ equality holds in (1) only if

$$
\begin{equation*}
A=k \cdot\{0,1, \ldots, n\}+\{0,1, \ldots,|\hat{A}|-1\} \tag{2}
\end{equation*}
$$

for some n, while if $|\hat{A}|=k$, equality holds in (1) only if A is an arithmetic progression.
If $|\hat{A}|=k$, one can obtain

$$
|A+k \cdot A| \geq(k+1)|A|-k
$$

under the weaker hypothesis $|A|>k$ and equality holds only when A is an arithmetic progression. This case is contained in Corollary 5 below.

The following Corollary follows from Theorem 2.
Corollary 3. Let k be a prime and let A be a subset of \mathbb{Z} with $|A| \geq 3(k-1)^{2}(k-1)$!. Then

$$
\begin{equation*}
|A+k \cdot A| \geq(k+1)|A|-\lceil k(k+2) / 4\rceil \tag{3}
\end{equation*}
$$

Moreover, up to affine transformations, equality holds in (3) only if

$$
\begin{equation*}
A=k \cdot\{0,1, \ldots, n\}+\{0,1, \ldots,(k-1) / 2\} \tag{4}
\end{equation*}
$$

for some n.

Theorem 2 implies in particular that, for k prime and any set A, we have $|A+k \cdot A| \geq$ $(k+1)|A|-C_{k}$ for a suitable constant C_{k}. Indeed, Lemma 9 below shows that the inequality holds with $C_{k}=3(k-1)$!.

Small sets are more difficult to deal with. For example, in case $k=3$, Theorem 2 covers Theorem 1 only when $|A| \geq 24$. Smaller sets have to be analyzed more carefully as it was done in [2] with a distinct approach. Actually the lower bound (1) does not hold for an arbitrary set. In [2] it is shown that there exist small sets A for which $|A+k \cdot A| \leq(k+1)|A|-P(k)$ where P is a cubic polynomial.

The paper is organized as follows. We first give some notation and preliminary results in Section 2. We then show in Section 3 that, for the class of so-called k-full sets, which actually contain the extremal ones, Theorem 2 is relatively easy to prove. In Section 4 we give a universal weaker lower bound for the cardinality of $A+k \cdot A$ and we use to
show in the final section that, for sufficiently large sets which are not k-full, we get a better lower bound for $|A+k \cdot A|$ than the one in Theorem 2 thus completing its proof.

2. Notation and preliminary Results

For two finite nonempty sets of integers A and B it is well known that $|A+B| \geq$ $|A|+|B|-1$, and that equality holds only if either $\min \{|A|,|B|\}=1$ or both A and B are arithmetic progressions with the same common difference. We next give a generalization of the above inequality for $|A+k \cdot B|$.

A maximal subset of $X \subset \mathbb{Z}$, of congruent elements modulo k will be called a $k-$ component of X.

Lemma 4. For arbitrary nonempty sets of integers A and B with $|B|>1$, we have

$$
|A+k \cdot B| \geq|A|+|\hat{A}|(|B|-1)
$$

where \hat{A} denotes the natural projection of A on $\mathbb{Z} / k \mathbb{Z}$.
Furthermore if the equality holds and A has a k-component C with $|C|>1$ then both C and $k \cdot B$ are arithmetic progressions with the same difference.

Proof. Observe that $A+k \cdot B$ is the disjoint union $\cup_{i \in \hat{A}}\left(A_{i}+k \cdot B\right)$, where A_{i} are the distinct k-components of A. Write $A_{i}=k \cdot X_{i}+u_{i}$. We have
$|A+k \cdot B|=\left|\cup_{i \in \hat{A}}\left(k \cdot X_{i}+u_{i}+k \cdot B\right)\right|=\sum_{i \in \hat{A}}\left|X_{i}+B\right| \geq \sum_{i \in \hat{A}}\left(\left|X_{i}\right|+|B|-1\right)=|A|+|\hat{A}|(|B|-1)$.
To prove the second part of the statement, suppose that equality holds and let $C=A_{r}=$ $k \cdot X_{r}+u_{r}$. Then $\left|X_{r}+B\right|=\left|X_{r}\right|+|B|-1$ which implies that both X_{r} and B are arithmetic progressions with the same difference and the same is true of A_{r} and $k \cdot B$.

Lemma 4 easily handles the case when $|\hat{A}|=k$ as described in next Corollary.
Corollary 5. Let A be a set of integers with $|\hat{A}|=k$ and $|A|>k$. Then we have

$$
|A+k \cdot A| \geq(k+1)|A|-k
$$

and the equality holds only if A is an arithmetic progression.

Proof. The inequality follows from Lemma 4. For the inverse part, we observe that $\left|A_{r}\right| \geq 2$ for some r, and Lemma 4 implies that the set $k \cdot A$ must be an arithmetic progression. Hence A must be an arithmetic progression as well.

Throughout the paper we use the following notation. For a set A we write $j=|\hat{A}|$, where \hat{A} is the natural projection of A on $\mathbb{Z} / k \mathbb{Z}$ and A_{1}, \ldots, A_{j} for the distinct classes modulo k. We also write $A_{i}=k \cdot X_{i}+u_{i}, i=1, \ldots, j$ for some distinct u_{i} modulo k. Thus,

$$
A=\bigcup_{i=1}^{j} A_{i}=\bigcup_{i=1}^{j}\left(k \cdot X_{i}+u_{i}\right)
$$

We will always assume that $\left|A_{1}\right| \geq\left|A_{2}\right| \geq \cdots \geq\left|A_{j}\right|$. Also we write

$$
\begin{array}{ll}
F=\left\{i:\left|\hat{X}_{i}\right|=k\right\}, & A_{F}=\bigcup_{i \in F} A_{i} \\
E=\left\{i: 0<\left|\hat{X}_{i}\right|<k\right\}, &
\end{array} A_{E}=\bigcup_{i \in E} A_{i} .
$$

Denote by

$$
\Delta_{r s}=\left(A_{r}+k \cdot A\right) \backslash\left(A_{r}+k \cdot A_{s}\right)
$$

so that

$$
\begin{equation*}
\left|A_{r}+k \cdot A\right|=\left|A_{r}+k \cdot A_{s}\right|+\left|\Delta_{r s}\right|=\left|X_{r}+k \cdot X_{s}\right|+\left|\Delta_{r s}\right| \tag{5}
\end{equation*}
$$

Lemma 6. For each subset $I \subset\{1,2, \ldots, j\}$ and each $r \in\{1,2, \ldots, j\}$, we have
i) $\sum_{i \in I}\left|\Delta_{i i}\right| \geq|I|(|I|-1)$,
ii) $\sum_{i \in I}\left|\Delta_{r i}\right| \geq|I|(|I|-1)$,

Proof. Let

$$
\Delta_{r, s}^{+}=\left(A_{r}+k \cdot A\right) \backslash\left(-\infty, \max \left(A_{r}+k \cdot A_{s}\right)\right]
$$

and

$$
\Delta_{r, s}^{-}=\left(A_{r}+k \cdot A\right) \backslash\left[\min \left(A_{r}+k \cdot A_{s}\right), \infty\right)
$$

so that

$$
\left|\Delta_{r, s}\right| \geq\left|\Delta_{r, s}^{+}\right|+\left|\Delta_{r, s}^{-}\right|
$$

Denote by $\Gamma^{+}(s)=\left\{h: \max \left(A_{s}\right)<\max \left(A_{h}\right)\right\}$ and $\Gamma^{-}(s)=\left\{h: \min \left(A_{s}\right)>\min \left(A_{h}\right)\right\}$. Clearly $\max \left(A_{r}+k \cdot A_{s}\right)<\max \left(A_{r}+k \cdot A_{h}\right)$, for every $h \in \Gamma^{+}(s)$. Since, for distinct h, the elements in the right-hand side of the last inequality belong to distinct congruence classes modulo k^{2}, we have $\left|\Delta_{r s}^{+}\right| \geq\left|\Gamma^{+}(s)\right|$. By replacing A by $-A$, we obtain $\left|\Delta_{r s}^{-}\right| \geq\left|\Gamma^{-}(s)\right|$.

Observe that $\left|\Gamma^{+}(u)\right|>\left|\Gamma^{+}(v)\right|$ if $\max \left(A_{u}\right)<\max \left(A_{v}\right)$. In particular, the numbers $\left|\Gamma^{+}(u)\right|, u=1, \ldots, j$ are pairwise distinct. Since $\left|\Gamma^{+}(u)\right| \leq j-1$ it follows that

$$
\left\{\left|\Gamma^{+}(u)\right| ; u=1,2, \ldots, j\right\}=\{0,1, \cdots, j-1\}
$$

By replacing A by $-A$, we get $\left\{\left|\Gamma^{-}(u)\right| ; u=1,2, \ldots, j\right\}=\{0,1, \cdots, j-1\}$ as well. Therefore,

$$
\sum_{i \in I}\left|\Delta_{i i}\right| \geq \sum_{i \in I}\left|\Delta_{i i}^{+}\right|+\sum_{i \in I}\left|\Delta_{i i}^{-}\right| \geq \sum_{i \in I}\left|\Gamma^{+}(i)\right|+\sum_{i \in I}\left|\Gamma^{-}(i)\right| \geq|I|(|I|-1)
$$

which proves (i). Similarly

$$
\sum_{i \in I}\left|\Delta_{r i}\right| \geq \sum_{i \in I}\left|\Gamma^{+}(i)\right|+\sum_{i \in I}\left|\Gamma^{-}(i)\right| \geq|I|(|I|-1)
$$

and (ii) follows.
Lemma 7. Let k be a prime and we assume the notation above. Then
i) If $i \in E$ then $\left|\Delta_{i i}\right| \geq\left|A_{s}\right|$ for any $s \neq i$.
ii) $\sum_{i \in E}\left|\Delta_{i i}\right| \geq(|E|-1)\left|A_{1}\right|+\left|A_{2}\right|$.

Proof. i) Suppose that $\hat{X}_{i}+x=\hat{X}_{i}+y$ for distinct $x, y \in \mathbb{Z}_{k}$. Then $\hat{X}_{i}=\hat{X}_{i}+(y-x)=$ $\hat{X}_{i}+2(y-x)=\cdots=\hat{X}_{i}+(k-1)(y-x)$ which implies $\hat{X}_{i}=\mathbb{Z}_{k}$. Hence, if $i \in E$ and $s \neq i$ then $\hat{X}_{i}+\hat{u}_{s} \neq \hat{X}_{i}+\hat{u}_{i}$. Thus $\left|\left(\hat{X}_{i}+\hat{u}_{s}\right) \backslash\left(\hat{X}_{i}+\hat{u}_{i}\right)\right| \geq 1$. Now we have

$$
\begin{aligned}
\left|\Delta_{i i}\right| & =\left|\left(A_{i}+k \cdot A\right) \backslash\left(A_{i}+k \cdot A_{i}\right)\right| \geq\left|\left(k \cdot X_{i}+u_{i}+k \cdot A_{s}\right) \backslash\left(k \cdot X_{i}+u_{i}+k \cdot A_{i}\right)\right| \\
& =\left|\left(X_{i}+A_{s}\right) \backslash\left(X_{i}+A_{i}\right)\right|=\left|\left(X_{i}+k \cdot X_{s}+u_{s}\right) \backslash\left(X_{i}+k \cdot X_{i}+u_{i}\right)\right| \\
& \geq\left|X_{s}\right|\left|\left(\hat{X}_{i}+\hat{u}_{s}\right) \backslash\left(\hat{X}_{i}+\hat{u}_{i}\right)\right| \geq\left|X_{s}\right|=\left|A_{s}\right| .
\end{aligned}
$$

ii) We observe that i) implies that $\left|\Delta_{i i}\right| \geq\left|A_{1}\right|$ for all $i \in E$ except for $i=1$ when $1 \in E$. In that case we have $\left|\Delta_{11}\right| \geq\left|A_{2}\right|$.

3. Full sets

We say that a set A is k-full if $\left|\hat{X}_{i}\right|=k$ for each $i=1,2, \ldots, j$. The following Lemma proves Theorem 2 for k-full sets and all k with no condition on their cardinality. Since Corollary 5 proves Theorem 2 for $j=k$, we can assume that $j<k$.
Lemma 8. Let A be a finite k-full set of integers with $\min (A)=0$ and $j<k$. Then

$$
|A+k \cdot A| \geq(k+1)|A|-j(k-j+1)
$$

Moreover, equality holds if and only if

$$
A=k \cdot\{0,1, \ldots, n\}+\{0,1, \ldots, j-1\}
$$

for some n.

Proof. We apply (5) and Lemma 4 to get, for each $s=1, \ldots, j$,

$$
\begin{align*}
|A+k \cdot A| & =\sum_{i=1}^{j}\left|A_{i}+k \cdot A\right| \\
& =\sum_{i=1}^{j}\left(\left|X_{i}+k \cdot X_{s}\right|+\left|\Delta_{i s}\right|\right) \\
& \geq \sum_{i=1}^{j}\left(\left|X_{i}\right|+k\left(\left|X_{s}\right|-1\right)+\left|\Delta_{i s}\right|\right) \tag{6}\\
& \geq|A|+k j\left|X_{s}\right|-k j+\sum_{i=1}^{j}\left|\Delta_{i s}\right|
\end{align*}
$$

If we sum in all $s=1, \ldots, j$ and divide by j we obtain

$$
\begin{align*}
|A+k A| & \geq(k+1)|A|-k j+\frac{1}{j} \sum_{s=1}^{j} \sum_{i=1}^{j}\left|\Delta_{i s}\right| \\
& =(k+1)|A|-k j+\frac{1}{j} \sum_{i=1}^{j} \sum_{s=1}^{j}\left|\Delta_{i s}\right| \tag{7}\\
& \geq(k+1)|A|-j(k+1-j)
\end{align*}
$$

due to Lemma 6. This proves the lower bound.

For the inverse part of the Lemma and only till the end of this proof we next order the k-components $A_{1}, A_{2}, \ldots, A_{j}$ of A in such a way that $0=m_{1}<m_{2}<\cdots<m_{j}$, where $m_{i}=\min \left(A_{i}\right)$ (so we do not assume they are decreasing in cardinality).

Suppose that equality holds in (1). Since there is equality in (6), we have $\left|X_{i}+k \cdot X_{s}\right|=$ $\left|X_{i}\right|+k\left(\left|X_{s}\right|-1\right)$ for all i, s and, since $\left|X_{i}\right| \geq k$ for all $i=1, \ldots, j$, Lemma 4 implies that all X_{i} are arithmetic progressions with the same difference d. So for $i=1, \ldots, j$ we have

$$
A_{i}=(k d) \cdot\left\{0,1, \ldots, n_{i}\right\}+m_{i}
$$

for some $n_{i} \geq k-1$ where $m_{i}=\min \left(A_{i}\right)$ and $|A|=\sum_{i=1}^{j}\left(n_{i}+1\right)$.
Observe that, since $n_{i} \geq k-1$, we have

$$
\begin{align*}
A_{i}+k \cdot A_{r} & =m_{i}+(k d) \cdot\left\{0,1, \ldots n_{i}\right\}+k \cdot\left(m_{r}+(k d) \cdot\left\{0,1, \ldots, n_{r}\right\}\right) \\
& =m_{i}+k m_{r}+(k d) \cdot\left(\left\{0,1, \ldots, n_{i}\right\}+k \cdot\left\{0,1, \ldots, n_{r}\right\}\right) \\
& =m_{i}+k m_{r}+(k d) \cdot\left\{0,1, \ldots, n_{i}+k n_{r}\right\} \tag{8}
\end{align*}
$$

so that $A_{i}+k \cdot A_{r}$ is an arithmetic progression for each i and r.
First we will prove that $m_{r} \equiv 0(\bmod d)$ for all r. Otherwise if we write R_{0} for those r with $m_{r} \equiv 0(\bmod d)\left(\right.$ which contains $\left.m_{1}\right)$ and R_{1} for those r with $m_{r} \not \equiv 0(\bmod d)$ (which is also nonempty by assumption) we have

$$
\begin{aligned}
|A+k \cdot A| & =\sum_{i=1}^{j}\left|A_{i}+k \cdot A\right|=\sum_{i=1}^{j}\left|\bigcup_{r}\left(A_{i}+k A_{r}\right)\right| \\
& =\sum_{i=1}^{j}\left|\bigcup_{r}\left(m_{i}+k m_{r}+(k d) \cdot\left\{0,1, \ldots, n_{i}+k n_{r}\right\}\right)\right| \\
& =\sum_{i=1}^{j}\left|\bigcup_{r}\left(m_{r}+d \cdot\left\{0,1, \ldots, n_{i}+k n_{r}\right\}\right)\right| \\
& =\sum_{i=1}^{j}\left(\left|\bigcup_{r \in R_{0}}\left(d \cdot\left\{0, \ldots, k n_{r}+n_{i}\right\}+m_{r}\right)\right|+\left|\bigcup_{r \in R_{1}}\left(d \cdot\left\{0, \ldots, k n_{r}+n_{i}\right\}+m_{r}\right)\right|\right) \\
& \geq \sum_{i=1}^{j}\left(n_{i}+1+k \max _{r \in R_{0}} n_{r}\right)+\sum_{i=1}^{j}\left(n_{i}+1+k \max _{r \in R_{1}} n_{r}\right) \\
& =2|A|+k j\left(\max _{r \in R_{0}} n_{r}+\max _{r \in R_{1}} n_{r}\right) \geq 2|A|+k j\left(k-1+\max _{r} n_{r}\right) \\
& =2|A|+k j\left(k-2+\max _{r}\left(n_{r}+1\right)\right) \geq 2|A|+k j\left(k-2+\frac{|A|}{j}\right) \\
& \geq(2+k)|A|>(k+1)|A|
\end{aligned}
$$

and the equality (1) can not hold.
Now, since $\operatorname{gcd}(A)=1$ we have that $d=1$. It follows, by (8), that

$$
\begin{equation*}
A_{i}+k \cdot A=\bigcup_{r=1}^{j}\left(A_{i}+k \cdot A_{r}\right)=\bigcup_{r=1}^{j}\left(m_{i}+k m_{r}+k \cdot\left\{0,1, \ldots, k n_{r}+n_{i}\right\}\right) \tag{9}
\end{equation*}
$$

By using the notation from the proof of Lemma 6, for each i and for each $r \geq 2$, the set $\Delta_{i, r}^{-}=\left(A_{i}+k \cdot A\right) \backslash\left[\min \left(A_{i}+k \cdot A_{r}\right), \infty\right)$ clearly contains $m_{i}+k m_{1}, m_{i}+k m_{2}, \ldots, m_{i}+$ $k m_{r-1}$. It follows that

$$
\sum_{r=1}^{j}\left|\Delta_{i r}^{-}\right| \geq \sum_{r=2}^{j}(r-1)=j(j-1) / 2
$$

By the analogous argument on $-A$ we also have $\sum_{r=1}^{j}\left|\Delta_{i r}^{+}\right| \geq j(j-1) / 2$.
Since there is equality in (7) we have $\sum_{s=1}^{j} \Delta_{i s}=j(j-1)$ for each i. It follows that $\sum_{r=1}^{j}\left|\Delta_{i r}^{-}\right|=\sum_{r=1}^{j}\left|\Delta_{i r}^{+}\right|=j(j-1) / 2$. Hence

$$
\begin{equation*}
\Delta_{i r}^{-}=m_{i}+k \cdot\left\{m_{1}, m_{2}, \ldots, m_{r-1}\right\}, r=2,3, \ldots, j \tag{10}
\end{equation*}
$$

We claim that $m_{r-1}+1=m_{r}$ for any $2 \leq r \leq j$. Suppose, on the contrary, that $m_{r-1}+1<m_{r}$ (we have assumed that $0=m_{1}<\cdots<m_{j}$). Then $m_{i}+k\left(m_{r-1}+1\right)<$ $\min \left(A_{i}+k \cdot A_{r}\right)$. On the other hand, by (9), we have $m_{i}+k\left(m_{r-1}+1\right) \in m_{i}+k m_{r}+k$. $\left\{0,1, \ldots, k n_{r}+n_{i}\right\} \subset A_{i}+k \cdot A$. Thus $m_{i}+k\left(m_{r-1}+1\right) \in \Delta_{i r}^{-}$, which is a contradiction because $\max \Delta_{i r}^{-}=m_{i}+k m_{r-1}<m_{i}+k\left(m_{r-1}+1\right)$.

Since $m_{1}=0$, we conclude that $m_{r}=r-1$ for $r=1, \ldots, j$.
Putting this in (9) we have

$$
\begin{equation*}
\left|A_{i}+k \cdot A\right| \geq\left|\bigcup_{r=1}^{j}\left(r-1+\left\{0, \ldots, k n_{r}+n_{i}\right\}\right)\right|=n_{i}+1+k n_{l}+l-1 \tag{11}
\end{equation*}
$$

where $k n_{l}+l-1=\max _{r}\left(k n_{r}+r-1\right)$. Since

$$
n_{l} \geq \begin{cases}n_{r} & \text { for } r \leq l \tag{12}\\ n_{r}+1 & \text { for } r>l\end{cases}
$$

we have

$$
\begin{equation*}
j n_{l} \geq n_{1}+\cdots+n_{l}+\left(n_{l+1}+1\right)+\cdots+\left(n_{j}+1\right)=|A|-l . \tag{13}
\end{equation*}
$$

By (11) we have

$$
|A+k \cdot A|=\sum_{i=1}^{j}\left|A_{i}+k \cdot A\right| \geq|A|+j\left(k n_{l}+l-1\right) \geq(k+1)|A|-l(k-j)-j
$$

Since we have assumed that $|A+k \cdot A|=(k+1)|A|-j(k+1-j)$, we have that $l=j$. Furthermore we can see that all the inequalities, included those of (13) and (12), are equalities, so $n_{1}=\cdots=n_{j}$.

Hence, $A_{i}=k \cdot\{0, \ldots, n\}+i-1$ for $i=1, \ldots, j$ and we can write

$$
A=\bigcup_{i=1}^{r} A_{i}=\{0,1, \ldots, j-1\}+k \cdot\{0,1, \ldots, n\}
$$

for some $n \geq k-1$. This completes the proof.

4. A GENERAL LOWER BOUND

In this Section we give a weaker lower bound for $|A+k \cdot A|$ valid for every finite set A of integers and k prime.

Lemma 9. Let k be a prime and let A be a finite nonempty subset of \mathbb{Z}. We have

$$
\begin{equation*}
|A+k \cdot A| \geq(k+1)|A|-3(k-1)! \tag{14}
\end{equation*}
$$

Proof. Let t be the largest integer such that, for every finite set X of integers,

$$
|X+k \cdot X| \geq(t+1)|X|-3(t-1)!.
$$

Suppose that $t<k$ and let A be a critical set, verifying $|A+k \cdot A| \leq(t+2)|A|-3 t$!. Without loss of generality we may assume that $0 \in A_{1}$ and $\operatorname{gcd}(A)=1$. In particular $j=|\hat{A}| \geq 2$.

Lemma 4 gives $|A+k \cdot A| \geq(j+1)|A|-j$. Therefore $t \geq j+1$.
We have

$$
\begin{equation*}
|A+k \cdot A|=\sum_{i \in F}\left|A_{i}+k \cdot A\right|+\sum_{i \in E}\left|A_{i}+k \cdot A\right| \tag{15}
\end{equation*}
$$

We have

$$
\begin{align*}
\sum_{i \in F}\left|A_{i}+k \cdot A\right| & \geq \sum_{i \in F}\left|A_{i}+k \cdot A_{1}\right| \\
& =\sum_{i \in F}\left|X_{i}+k \cdot X_{1}\right| \\
(\text { by Lemma 4) } & \geq \sum_{i \in F}\left(\left|X_{i}\right|+k\left(\left|X_{1}\right|-1\right)\right) \\
& =\sum_{i \in F}\left(\left|A_{i}\right|+k\left(\left|A_{1}\right|-1\right)\right) \\
\quad(\text { since } t \leq k-1) & \geq\left|A_{F}\right|+(t+1)|F|\left(\left|A_{1}\right|-1\right) \\
\text { (since } \left.\quad t\left|A_{1}\right||F| \geq t\left|A_{F}\right|\right) & \geq(t+1)\left|A_{F}\right|+|F|\left|A_{1}\right|-(t+1)|F| \tag{16}
\end{align*}
$$

On the other hand, by (5), induction hypothesis and Lemma 7-ii),

$$
\begin{align*}
\sum_{i \in E}\left|A_{i}+k \cdot A\right| & =\sum_{i \in E}\left(\left|A_{i}+k \cdot A_{i}\right|+\left|\Delta_{i i}\right|\right) \\
& \geq \sum_{i \in E}\left((t+1)\left|A_{i}\right|-3(t-1)!\right)+\sum_{i \in E} \Delta_{i i} \\
& \geq(t+1)\left|A_{E}\right|-3|E|(t-1)!+(|E|-1)\left|A_{1}\right|+\left|A_{2}\right| \tag{17}
\end{align*}
$$

By substitution of (16) and (17) in (15) we get

$$
\begin{aligned}
|A+k \cdot A| & \geq(t+1)|A|+(|F|+|E|-1)\left|A_{1}\right|+\left|A_{2}\right|-(t+1)|F|-3|E|(t-1)! \\
& \geq(t+2)|A|-(t+1)|F|-3|E|(t-1)!
\end{aligned}
$$

since $(|F|+|E|-1)\left|A_{1}\right|+\left|A_{2}\right|=(j-1)\left|A_{1}\right|+\left|A_{2}\right| \geq\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{j}\right|=|A|$. Finally, since $|E|+|F|=j \leq t$, we have
$3|E|(t-1)!+(t+1)|F| \leq 3(t-|F|)(t-1)!+(t+1)|F| \leq 3 t!+|F|(t+1-3(t-1)!) \leq 3 t!$,
which contradicts our choice of A. This contradiction proves the statement.

5. Proof of theorem 2

Suppose now that $|A| \geq 3 j^{2}(k-1)$!. By Lemma 8 and Corollary 5 we may assume $E \neq \emptyset$ and $j<k$.

Case 1: There is $s \geq 2$ with $s \in E$.
By (5), Lemma 9 and Lemma 7-i), we obtain

$$
\begin{aligned}
|A+k \cdot A| & =\left|A_{s}+k \cdot A\right|+\sum_{i \neq s}\left|A_{i}+k \cdot A\right| \\
& \geq\left|X_{s}+k \cdot X_{s}\right|+\Delta_{s s}+\sum_{i \neq s}\left|X_{i}+k \cdot X_{i}\right| \\
& \geq(k+1)\left|A_{s}\right|-3(k-1)!+\left|A_{1}\right|+\sum_{i \neq s}\left((k+1)\left|A_{i}\right|-3(k-1)!\right) \\
& \geq(k+1)|A|-3 j(k-1)!+\frac{|A|}{j} \\
& \geq(k+1)|A|
\end{aligned}
$$

since $|A| \geq 3 j^{2}(k-1)$!.

Case 2: $E=\{1\}$.
In this case, since $\left|\hat{X}_{2}\right|=k$, Lemma 4 implies that

$$
\begin{equation*}
\left|X_{2}+k \cdot X_{1}\right| \geq\left|X_{2}\right|+k\left(\left|X_{1}\right|-1\right)=\left|A_{2}\right|+k\left|A_{1}\right|-k \tag{18}
\end{equation*}
$$

We observe also (by Lemma 7-i)) that $\left|\Delta_{11}\right| \geq\left|A_{2}\right|$.
Then, by (5), Lemma 9, Lemma 7-i) and (18) we have

$$
\begin{aligned}
|A+k \cdot A| & =\left|A_{1}+k \cdot A\right|+\left|A_{2}+k \cdot A\right|+\sum_{i \geq 3}\left|A_{i}+k \cdot A\right| \\
& \geq\left|X_{1}+k \cdot X_{1}\right|+\Delta_{11}+\left|X_{2}+k \cdot X_{1}\right|+\sum_{3 \leq i \leq j}\left|X_{i}+k \cdot X_{i}\right| \\
& \geq(k+1)\left|A_{1}\right|-3(k-1)!+\left|A_{2}\right|+\left(\left|A_{2}\right|+k\left|A_{1}\right|-k\right)+\sum_{3 \leq i \leq j}\left((k+1)\left|A_{i}\right|-3(k-1)!\right) \\
& \geq\left|A_{1}\right|+(k+1)|A|-3(j-1)(k-1)!-k \\
& \geq \frac{|A|}{j}+(k+1)|A|-3 j(k-1)! \\
& \geq(k+1)|A|
\end{aligned}
$$

since $|A| \geq 3 j^{2}(k-1)$!.
This completes the proof.

References

[1] B. Bukh, Sums of Dilates. Combinatorics, Probability and Computing, vol. 17, 2008
[2] J. Cilleruelo, M. Silva and C. Vinuesa, A sumset problem, preprint.
[3] M. B. Nathanson, Inverse problems for linear forms over finite sets of integers, arXiv:0708.2304.

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049-Madrid, Spain

E-mail address: franciscojavier.cilleruelo@uam.es

UPMC Univ Paris 06, E. Combinatoire, Case 189, 4 Place Jussieu, 75005 Paris, France.
E-mail address: hamidoune@math.jussieu.fr

Universitat Politécnica de Catalunya, Jordi Girona, 1, E-08034 Barcelona, Spain.
E-mail address: oserra@ma4.upc.edu

[^0]: 2000 Mathematics Subject Classification. 11B60, 11B34, 20 D60.

