ON SUMS OF DILATES

JAVIER CILLERUELO, YAHYA O. HAMIDOUNE, AND ORIOL SERRA

ABSTRACT. For k prime and A a finite set of integers with $|A| \ge 3(k-1)^2(k-1)!$ we prove that $|A + k \cdot A| \ge (k+1)|A| - \lceil k(k+2)/4 \rceil$ where $k \cdot A = \{ka, a \in A\}$. We also describe the sets for which the equality holds.

1. INTRODUCTION

Let k be a positive integer and let $A \subset \mathbb{Z}$. We denote by $k \cdot A = \{ka, a \in A\}$ the k-dilation of A and by $kA = A + \cdots + A$ (k-times) the k-fold sumset of A. We observe that $A + k \cdot A \subset A + kA = (k+1)A$ and that, in general, $A + k \cdot A$ is much smaller than (k+1)A. It is well known that $|(k+1)A| \ge (k+1)|A| - k$ and that the equality holds only if A is an arithmetic progression. Indeed, if A is an arithmetic progression with $|A| \ge k$ one can check that $A + k \cdot A = (k+1)A$. So it is a natural problem to study lower bounds for $|A + k \cdot A|$ as well as the description of the extremal cases.

The case k = 1 is trivial since $|A + A| \ge 2|A| - 1$ and the equality holds for arithmetic progressions. The case k = 2 (see [3]) is also easy since we can split $A = A_1 \cup A_2$ in the two classes (mod 2) and then $|A + 2 \cdot A| = |A_1 + 2 \cdot A| + |A_2 + 2 \cdot A| \ge |A_1| + |2 \cdot A| - 1 + |A_2| + |2 \cdot A| - 1 = 3|A| - 2$. (If A contains only a class we write $A = 2 \cdot A' + i$ and then $|A + 2 \cdot A| = |A' + 2 \cdot A'|$). It is shown in [2] that $|A + 2 \cdot A| = 3|A| - 2$ only when A is an arithmetic progression.

The cases $k \ge 3$ are much more involved. Nathanson [3] proved that $|A + k \cdot A| \ge \lfloor \frac{7}{2}|A| - \frac{5}{2} \rfloor$ for $k \ge 3$ and Bukh [1] proved that $|A + 3 \cdot A| \ge 4|A| - C$ for some constant C. Cilleruelo, Silva and Vinuesa obtained the sharp bound and the description of the extremal cases for k = 3.

Theorem 1 ([2]). For any set of integers A we have $|A+3 \cdot A| \ge 4|A|-4$. Furthermore if $|A+3 \cdot A| = 4|A|-4$ then $A = 3 \cdot \{0, \ldots, n\} + \{0, 1\}$ or $A = \{0, 1, 3\}$ or $A = \{0, 1, 4\}$ or A is an affine transformation of any of these sets.

They proposed the following conjecture:

Conjecture (Cilleruelo–Silva–Vinuesa [2]). For all positive integer k and a finite set of integers A with sufficiently large cardinality we have

$$|A + k \cdot A| \ge (k+1)|A| - [k(k+2)/4]$$

²⁰⁰⁰ Mathematics Subject Classification. 11B60, 11B34, 20D60.

J. C. was supported by Project MTM2008-03880 from MYCIT (Spain) and the joint Madrid Region-UAM project TENU3 (CCG08-UAM/ESP-3906).

Bukh's main Theorem [1] states that for $(\lambda_1, \dots, \lambda_t) \in \mathbb{Z}^t$ with $gcd(\lambda_1, \dots, \lambda_t) = 1$, $|\lambda_1 \cdot A + \dots + \lambda_t \cdot A| \ge (|\lambda_1| + \dots + |\lambda_t|)|A| - o(|A|).$

This general result implies $|A + k \cdot A| \ge (k+1)|A| - o(|A|)$ in our problem. The existence of a simple proof for $|A + k \cdot A| \ge (k+1)|A| - C_k$ for $k \ge 4$ is implicitly asked by Bukh in [1].

When k is prime we give a positive answer to the above questions by proving a precise version of Conjecture above. In addition we characterize the extremal sets A for the lower bound in that conjecture. Since $|A + k \cdot A|$ is invariant by affine transformations we will assume without loss of generality that $0 \in A$ and gcd(A) = 1.

Theorem 2. Let k be a prime and let A be a subset of \mathbb{Z} with $\min A = 0$, gcd(A) = 1and $|A| \ge 3|\hat{A}|^2(k-1)!$, where \hat{A} is the projection of A in \mathbb{Z}_k . Then

(1) $|A + k \cdot A| \ge (k+1)|A| - |\hat{A}|(k+1-|\hat{A}|).$

Furthermore if $|\hat{A}| < k$ equality holds in (1) only if

(2)
$$A = k \cdot \{0, 1, \dots, n\} + \{0, 1, \dots, |A| - 1\}$$

for some n, while if $|\hat{A}| = k$, equality holds in (1) only if A is an arithmetic progression.

If $|\hat{A}| = k$, one can obtain

$$|A+k\cdot A| \ge (k+1)|A|-k,$$

under the weaker hypothesis |A| > k and equality holds only when A is an arithmetic progression. This case is contained in Corollary 5 below.

The following Corollary follows from Theorem 2.

Corollary 3. Let k be a prime and let A be a subset of \mathbb{Z} with $|A| \ge 3(k-1)^2(k-1)!$. Then

(3) $|A + k \cdot A| \ge (k+1)|A| - \lceil k(k+2)/4 \rceil.$

Moreover, up to affine transformations, equality holds in (3) only if

(4)
$$A = k \cdot \{0, 1, \dots, n\} + \{0, 1, \dots, (k-1)/2\}$$

for some n.

Theorem 2 implies in particular that, for k prime and any set A, we have $|A + k \cdot A| \ge (k+1)|A| - C_k$ for a suitable constant C_k . Indeed, Lemma 9 below shows that the inequality holds with $C_k = 3(k-1)!$.

Small sets are more difficult to deal with. For example, in case k = 3, Theorem 2 covers Theorem 1 only when $|A| \ge 24$. Smaller sets have to be analyzed more carefully as it was done in [2] with a distinct approach. Actually the lower bound (1) does not hold for an arbitrary set. In [2] it is shown that there exist small sets A for which $|A + k \cdot A| \le (k+1)|A| - P(k)$ where P is a cubic polynomial.

The paper is organized as follows. We first give some notation and preliminary results in Section 2. We then show in Section 3 that, for the class of so-called k-full sets, which actually contain the extremal ones, Theorem 2 is relatively easy to prove. In Section 4 we give a universal weaker lower bound for the cardinality of $A + k \cdot A$ and we use to show in the final section that, for sufficiently large sets which are not k-full, we get a better lower bound for $|A + k \cdot A|$ than the one in Theorem 2 thus completing its proof.

2. NOTATION AND PRELIMINARY RESULTS

For two finite nonempty sets of integers A and B it is well known that $|A + B| \ge |A| + |B| - 1$, and that equality holds only if either min $\{|A|, |B|\} = 1$ or both A and B are arithmetic progressions with the same common difference. We next give a generalization of the above inequality for $|A + k \cdot B|$.

A maximal subset of $X \subset \mathbb{Z}$, of congruent elements modulo k will be called a k-component of X.

Lemma 4. For arbitrary nonempty sets of integers A and B with |B| > 1, we have

$$|A + k \cdot B| \ge |A| + |\hat{A}|(|B| - 1),$$

where \hat{A} denotes the natural projection of A on $\mathbb{Z}/k\mathbb{Z}$.

Furthermore if the equality holds and A has a k-component C with |C| > 1 then both C and $k \cdot B$ are arithmetic progressions with the same difference.

Proof. Observe that $A + k \cdot B$ is the disjoint union $\bigcup_{i \in \hat{A}} (A_i + k \cdot B)$, where A_i are the distinct k-components of A. Write $A_i = k \cdot X_i + u_i$. We have

$$|A+k \cdot B| = |\cup_{i \in \hat{A}} (k \cdot X_i + u_i + k \cdot B)| = \sum_{i \in \hat{A}} |X_i + B| \ge \sum_{i \in \hat{A}} (|X_i| + |B| - 1) = |A| + |\hat{A}|(|B| - 1).$$

To prove the second part of the statement, suppose that equality holds and let $C = A_r = k \cdot X_r + u_r$. Then $|X_r + B| = |X_r| + |B| - 1$ which implies that both X_r and B are arithmetic progressions with the same difference and the same is true of A_r and $k \cdot B$. \Box

Lemma 4 easily handles the case when $|\hat{A}| = k$ as described in next Corollary.

Corollary 5. Let A be a set of integers with $|\hat{A}| = k$ and |A| > k. Then we have

$$|A + k \cdot A| > (k+1)|A| - k$$

and the equality holds only if A is an arithmetic progression.

Proof. The inequality follows from Lemma 4. For the inverse part, we observe that $|A_r| \geq 2$ for some r, and Lemma 4 implies that the set $k \cdot A$ must be an arithmetic progression. Hence A must be an arithmetic progression as well.

Throughout the paper we use the following notation. For a set A we write $j = |\hat{A}|$, where \hat{A} is the natural projection of A on $\mathbb{Z}/k\mathbb{Z}$ and A_1, \ldots, A_j for the distinct classes modulo k. We also write $A_i = k \cdot X_i + u_i$, $i = 1, \ldots, j$ for some distinct u_i modulo k. Thus,

$$A = \bigcup_{i=1}^{j} A_i = \bigcup_{i=1}^{j} (k \cdot X_i + u_i).$$

We will always assume that $|A_1| \ge |A_2| \ge \cdots \ge |A_j|$. Also we write

$$F = \{i : |\hat{X}_i| = k\}, \qquad A_F = \bigcup_{i \in F} A_i$$
$$E = \{i : 0 < |\hat{X}_i| < k\}, \qquad A_E = \bigcup_{i \in E} A_i.$$

Denote by

$$\Delta_{rs} = (A_r + k \cdot A) \setminus (A_r + k \cdot A_s),$$

so that

(5)
$$|A_r + k \cdot A| = |A_r + k \cdot A_s| + |\Delta_{rs}| = |X_r + k \cdot X_s| + |\Delta_{rs}|.$$

Lemma 6. For each subset $I \subset \{1, 2, \dots, j\}$ and each $r \in \{1, 2, \dots, j\}$, we have

i)
$$\sum_{i \in I} |\Delta_{ii}| \ge |I|(|I|-1),$$

ii) $\sum_{i \in I} |\Delta_{ri}| \ge |I|(|I|-1),$

Proof. Let

$$\Delta_{r,s}^{+} = (A_r + k \cdot A) \setminus (-\infty, \max(A_r + k \cdot A_s)],$$

and

$$\Delta_{r,s}^{-} = (A_r + k \cdot A) \setminus [\min(A_r + k \cdot A_s), \infty),$$

so that

$$|\Delta_{r,s}| \ge |\Delta_{r,s}^+| + |\Delta_{r,s}^-|.$$

Denote by $\Gamma^+(s) = \{h : \max(A_s) < \max(A_h)\}$ and $\Gamma^-(s) = \{h : \min(A_s) > \min(A_h)\}$. Clearly $\max(A_r + k \cdot A_s) < \max(A_r + k \cdot A_h)$, for every $h \in \Gamma^+(s)$. Since, for distinct h, the elements in the right–hand side of the last inequality belong to distinct congruence classes modulo k^2 , we have $|\Delta_{rs}^+| \ge |\Gamma^+(s)|$. By replacing A by -A, we obtain $|\Delta_{rs}^-| \ge |\Gamma^-(s)|$.

Observe that $|\Gamma^+(u)| > |\Gamma^+(v)|$ if $\max(A_u) < \max(A_v)$. In particular, the numbers $|\Gamma^+(u)|, u = 1, \ldots, j$ are pairwise distinct. Since $|\Gamma^+(u)| \le j - 1$ it follows that

$$\{|\Gamma^+(u)|; u = 1, 2, \dots, j\} = \{0, 1, \dots, j-1\}.$$

By replacing A by -A, we get $\{|\Gamma^{-}(u)|; u = 1, 2, ..., j\} = \{0, 1, \cdots, j-1\}$ as well. Therefore,

$$\sum_{i \in I} |\Delta_{ii}| \ge \sum_{i \in I} |\Delta_{ii}^+| + \sum_{i \in I} |\Delta_{ii}^-| \ge \sum_{i \in I} |\Gamma^+(i)| + \sum_{i \in I} |\Gamma^-(i)| \ge |I|(|I| - 1),$$

which proves (i). Similarly

$$\sum_{i \in I} |\Delta_{ri}| \ge \sum_{i \in I} |\Gamma^+(i)| + \sum_{i \in I} |\Gamma^-(i)| \ge |I|(|I| - 1)$$

and (ii) follows.

Lemma 7. Let k be a prime and we assume the notation above. Then

i) If $i \in E$ then $|\Delta_{ii}| \ge |A_s|$ for any $s \ne i$. ii) $\sum_{i \in E} |\Delta_{ii}| \ge (|E|-1)|A_1| + |A_2|$.

ON SUMS OF DILATES

Proof. i) Suppose that $\hat{X}_i + x = \hat{X}_i + y$ for distinct $x, y \in \mathbb{Z}_k$. Then $\hat{X}_i = \hat{X}_i + (y - x) = \hat{X}_i + 2(y - x) = \cdots = \hat{X}_i + (k - 1)(y - x)$ which implies $\hat{X}_i = \mathbb{Z}_k$. Hence, if $i \in E$ and $s \neq i$ then $\hat{X}_i + \hat{u}_s \neq \hat{X}_i + \hat{u}_i$. Thus $|(\hat{X}_i + \hat{u}_s) \setminus (\hat{X}_i + \hat{u}_i)| \ge 1$. Now we have

$$\begin{aligned} |\Delta_{ii}| &= |(A_i + k \cdot A) \setminus (A_i + k \cdot A_i)| \ge |(k \cdot X_i + u_i + k \cdot A_s) \setminus (k \cdot X_i + u_i + k \cdot A_i)| \\ &= |(X_i + A_s) \setminus (X_i + A_i)| = |(X_i + k \cdot X_s + u_s) \setminus (X_i + k \cdot X_i + u_i)| \\ &\ge |X_s||(\hat{X}_i + \hat{u}_s) \setminus (\hat{X}_i + \hat{u}_i)| \ge |X_s| = |A_s|. \end{aligned}$$

ii) We observe that *i*) implies that $|\Delta_{ii}| \ge |A_1|$ for all $i \in E$ except for i = 1 when $1 \in E$. In that case we have $|\Delta_{11}| \ge |A_2|$.

3. Full sets

We say that a set A is k-full if $|\hat{X}_i| = k$ for each i = 1, 2, ..., j. The following Lemma proves Theorem 2 for k-full sets and all k with no condition on their cardinality. Since Corollary 5 proves Theorem 2 for j = k, we can assume that j < k.

Lemma 8. Let A be a finite k-full set of integers with min(A) = 0 and j < k. Then $|A + k \cdot A| \ge (k+1)|A| - j(k-j+1).$

Moreover, equality holds if and only if

$$A = k \cdot \{0, 1, \dots, n\} + \{0, 1, \dots, j - 1\}$$

for some n.

Proof. We apply (5) and Lemma 4 to get, for each s = 1, ..., j,

$$|A + k \cdot A| = \sum_{i=1}^{j} |A_i + k \cdot A|$$

=
$$\sum_{i=1}^{j} (|X_i + k \cdot X_s| + |\Delta_{is}|)$$

$$\geq \sum_{i=1}^{j} (|X_i| + k(|X_s| - 1) + |\Delta_{is}|)$$

$$\geq |A| + kj|X_s| - kj + \sum_{i=1}^{j} |\Delta_{is}|.$$

If we sum in all $s = 1, \ldots, j$ and divide by j we obtain

(7)

$$|A + kA| \geq (k+1)|A| - kj + \frac{1}{j} \sum_{s=1}^{j} \sum_{i=1}^{j} |\Delta_{is}|$$

$$= (k+1)|A| - kj + \frac{1}{j} \sum_{i=1}^{j} \sum_{s=1}^{j} |\Delta_{is}|$$

$$\geq (k+1)|A| - j(k+1-j),$$

due to Lemma 6. This proves the lower bound.

For the inverse part of the Lemma and only till the end of this proof we next order the k-components A_1, A_2, \ldots, A_j of A in such a way that $0 = m_1 < m_2 < \cdots < m_j$, where $m_i = \min(A_i)$ (so we do not assume they are decreasing in cardinality).

Suppose that equality holds in (1). Since there is equality in (6), we have $|X_i + k \cdot X_s| = |X_i| + k(|X_s| - 1)$ for all i, s and, since $|X_i| \ge k$ for all $i = 1, \ldots, j$, Lemma 4 implies that all X_i are arithmetic progressions with the same difference d. So for $i = 1, \ldots, j$ we have

$$A_i = (kd) \cdot \{0, 1, \dots, n_i\} + m_i$$

for some $n_i \ge k - 1$ where $m_i = \min(A_i)$ and $|A| = \sum_{i=1}^{j} (n_i + 1)$.

Observe that, since $n_i \ge k - 1$, we have

$$A_{i} + k \cdot A_{r} = m_{i} + (kd) \cdot \{0, 1, \dots, n_{i}\} + k \cdot (m_{r} + (kd) \cdot \{0, 1, \dots, n_{r}\})$$

$$= m_{i} + km_{r} + (kd) \cdot (\{0, 1, \dots, n_{i}\} + k \cdot \{0, 1, \dots, n_{r}\})$$

$$(8) = m_{i} + km_{r} + (kd) \cdot \{0, 1, \dots, n_{i} + kn_{r}\},$$

so that $A_i + k \cdot A_r$ is an arithmetic progression for each *i* and *r*.

First we will prove that $m_r \equiv 0 \pmod{d}$ for all r. Otherwise if we write R_0 for those r with $m_r \equiv 0 \pmod{d}$ (which contains m_1) and R_1 for those r with $m_r \not\equiv 0 \pmod{d}$ (which is also nonempty by assumption) we have

$$\begin{aligned} |A+k\cdot A| &= \sum_{i=1}^{j} |A_i+k\cdot A| = \sum_{i=1}^{j} \left| \bigcup_r (A_i+kA_r) \right| \\ &= \sum_{i=1}^{j} \left| \bigcup_r \left(m_i + km_r + (kd) \cdot \{0, 1, \dots, n_i + kn_r\} \right) \right| \\ &= \sum_{i=1}^{j} \left| \bigcup_r \left(m_r + d \cdot \{0, 1, \dots, n_i + kn_r\} \right) \right| \\ &= \sum_{i=1}^{j} \left(\left| \bigcup_{r \in R_0} \left(d \cdot \{0, \dots, kn_r + n_i\} + m_r \right) \right| + \left| \bigcup_{r \in R_1} \left(d \cdot \{0, \dots, kn_r + n_i\} + m_r \right) \right| \right) \\ &\geq \sum_{i=1}^{j} (n_i + 1 + k \max_{r \in R_0} n_r) + \sum_{i=1}^{j} (n_i + 1 + k \max_{r \in R_1} n_r) \\ &= 2|A| + kj \left(\max_{r \in R_0} n_r + \max_{r \in R_1} n_r \right) \ge 2|A| + kj \left(k - 1 + \max_r n_r \right) \\ &= 2|A| + kj \left(k - 2 + \max_r (n_r + 1) \right) \ge 2|A| + kj \left(k - 2 + \frac{|A|}{j} \right) \\ &\geq (2+k)|A| > (k+1)|A| \end{aligned}$$

and the equality (1) can not hold.

Now, since gcd(A) = 1 we have that d = 1. It follows, by (8), that

(9)
$$A_i + k \cdot A = \bigcup_{r=1}^{j} (A_i + k \cdot A_r) = \bigcup_{r=1}^{j} (m_i + km_r + k \cdot \{0, 1, \dots, kn_r + n_i\}).$$

By using the notation from the proof of Lemma 6, for each i and for each $r \ge 2$, the set $\Delta_{i,r}^- = (A_i + k \cdot A) \setminus [\min(A_i + k \cdot A_r), \infty)$ clearly contains $m_i + km_1, m_i + km_2, \ldots, m_i + km_{r-1}$. It follows that

$$\sum_{r=1}^{j} |\Delta_{ir}^{-}| \ge \sum_{r=2}^{j} (r-1) = j(j-1)/2.$$

By the analogous argument on -A we also have $\sum_{r=1}^{j} |\Delta_{ir}^{+}| \ge j(j-1)/2$.

Since there is equality in (7) we have $\sum_{s=1}^{j} \Delta_{is} = j(j-1)$ for each *i*. It follows that $\sum_{r=1}^{j} |\Delta_{ir}^{-}| = \sum_{r=1}^{j} |\Delta_{ir}^{+}| = j(j-1)/2$. Hence

(10)
$$\Delta_{ir}^{-} = m_i + k \cdot \{m_1, m_2, \dots, m_{r-1}\}, \ r = 2, 3, \dots, j.$$

We claim that $m_{r-1} + 1 = m_r$ for any $2 \le r \le j$. Suppose, on the contrary, that $m_{r-1} + 1 < m_r$ (we have assumed that $0 = m_1 < \cdots < m_j$). Then $m_i + k(m_{r-1} + 1) < \min(A_i + k \cdot A_r)$. On the other hand, by (9), we have $m_i + k(m_{r-1} + 1) \in m_i + km_r + k \cdot \{0, 1, \ldots, kn_r + n_i\} \subset A_i + k \cdot A$. Thus $m_i + k(m_{r-1} + 1) \in \Delta_{ir}^-$, which is a contradiction because $\max \Delta_{ir}^- = m_i + km_{r-1} < m_i + k(m_{r-1} + 1)$.

Since $m_1 = 0$, we conclude that $m_r = r - 1$ for $r = 1, \ldots, j$.

Putting this in (9) we have

(11)
$$|A_i + k \cdot A| \ge \left| \bigcup_{r=1}^{j} \left(r - 1 + \{0, \dots, kn_r + n_i\} \right) \right| = n_i + 1 + kn_l + l - 1,$$

where $kn_l + l - 1 = \max_r (kn_r + r - 1)$. Since

(12)
$$n_l \ge \begin{cases} n_r & \text{for } r \le l \\ n_r + 1 & \text{for } r > l, \end{cases}$$

we have

(13)
$$jn_l \ge n_1 + \dots + n_l + (n_{l+1} + 1) + \dots + (n_j + 1) = |A| - l.$$

By (11) we have

$$|A + k \cdot A| = \sum_{i=1}^{j} |A_i + k \cdot A| \ge |A| + j(kn_l + l - 1) \ge (k+1)|A| - l(k-j) - j.$$

Since we have assumed that $|A + k \cdot A| = (k+1)|A| - j(k+1-j)$, we have that l = j. Furthermore we can see that all the inequalities, included those of (13) and (12), are equalities, so $n_1 = \cdots = n_j$.

Hence, $A_i = k \cdot \{0, \dots, n\} + i - 1$ for $i = 1, \dots, j$ and we can write $A = \bigcup_{i=1}^r A_i = \{0, 1, \dots, j - 1\} + k \cdot \{0, 1, \dots, n\},$

for some $n \ge k - 1$. This completes the proof.

4. A GENERAL LOWER BOUND

In this Section we give a weaker lower bound for $|A + k \cdot A|$ valid for every finite set A of integers and k prime.

Lemma 9. Let k be a prime and let A be a finite nonempty subset of \mathbb{Z} . We have (14) $|A + k \cdot A| \ge (k+1)|A| - 3(k-1)!$

Proof. Let t be the largest integer such that, for every finite set X of integers,

$$|X + k \cdot X| \ge (t+1)|X| - 3(t-1)!.$$

Suppose that t < k and let A be a critical set, verifying $|A + k \cdot A| \leq (t+2)|A| - 3t!$. Without loss of generality we may assume that $0 \in A_1$ and gcd(A) = 1. In particular $j = |\hat{A}| \geq 2$.

Lemma 4 gives $|A + k \cdot A| \ge (j+1)|A| - j$. Therefore $t \ge j+1$.

We have

(15)
$$|A + k \cdot A| = \sum_{i \in F} |A_i + k \cdot A| + \sum_{i \in E} |A_i + k \cdot A|.$$

We have

(16)

$$\begin{split} \sum_{i \in F} |A_i + k \cdot A| &\geq \sum_{i \in F} |A_i + k \cdot A_1| \\ &= \sum_{i \in F} |X_i + k \cdot X_1| \\ (by \ Lemma \ 4) &\geq \sum_{i \in F} (|X_i| + k(|X_1| - 1)) \\ &= \sum_{i \in F} (|A_i| + k(|A_1| - 1)) \\ (since \ t \leq k - 1) &\geq |A_F| + (t + 1)|F|(|A_1| - 1) \\ (since \ t|A_1||F| \geq t|A_F|) &\geq (t + 1)|A_F| + |F||A_1| - (t + 1)|F|. \end{split}$$

On the other hand, by (5), induction hypothesis and Lemma 7-ii),

(17)

$$\sum_{i \in E} |A_i + k \cdot A| = \sum_{i \in E} (|A_i + k \cdot A_i| + |\Delta_{ii}|)$$

$$\geq \sum_{i \in E} ((t+1)|A_i| - 3(t-1)!) + \sum_{i \in E} \Delta_{ii}$$

$$\geq (t+1)|A_E| - 3|E|(t-1)! + (|E|-1)|A_1| + |A_2|$$

By substitution of (16) and (17) in (15) we get

$$\begin{aligned} |A+k\cdot A| &\geq (t+1)|A| + (|F|+|E|-1)|A_1| + |A_2| - (t+1)|F| - 3|E|(t-1)! \\ &\geq (t+2)|A| - (t+1)|F| - 3|E|(t-1)!, \end{aligned}$$

since $(|F| + |E| - 1)|A_1| + |A_2| = (j - 1)|A_1| + |A_2| \ge |A_1| + |A_2| + \dots + |A_j| = |A|$. Finally, since $|E| + |F| = j \le t$, we have

 $3|E|(t-1)! + (t+1)|F| \le 3(t-|F|)(t-1)! + (t+1)|F| \le 3t! + |F|(t+1-3(t-1)!) \le 3t!,$ which contradicts our choice of A. This contradiction proves the statement. \Box

ON SUMS OF DILATES

5. Proof of theorem 2

Suppose now that $|A| \ge 3j^2(k-1)!$. By Lemma 8 and Corollary 5 we may assume $E \ne \emptyset$ and j < k.

Case 1: There is $s \ge 2$ with $s \in E$.

By (5), Lemma 9 and Lemma 7-*i*), we obtain

$$\begin{aligned} |A+k\cdot A| &= |A_s+k\cdot A| + \sum_{i\neq s} |A_i+k\cdot A| \\ &\ge |X_s+k\cdot X_s| + \Delta_{ss} + \sum_{i\neq s} |X_i+k\cdot X_i| \\ &\ge (k+1)|A_s| - 3(k-1)! + |A_1| + \sum_{i\neq s} ((k+1)|A_i| - 3(k-1)!) \\ &\ge (k+1)|A| - 3j(k-1)! + \frac{|A|}{j} \\ &\ge (k+1)|A|, \end{aligned}$$

since $|A| \ge 3j^2(k-1)!$.

Case 2: $E = \{1\}.$

In this case, since $|\hat{X}_2| = k$, Lemma 4 implies that

(18)
$$|X_2 + k \cdot X_1| \ge |X_2| + k(|X_1| - 1) = |A_2| + k|A_1| - k.$$

We observe also (by Lemma 7-*i*)) that $|\Delta_{11}| \ge |A_2|$.

Then, by
$$(5)$$
, Lemma 9, Lemma 7- i) and (18) we have

$$\begin{aligned} |A+k\cdot A| &= |A_1+k\cdot A| + |A_2+k\cdot A| + \sum_{i\geq 3} |A_i+k\cdot A| \\ &\geq |X_1+k\cdot X_1| + \Delta_{11} + |X_2+k\cdot X_1| + \sum_{3\leq i\leq j} |X_i+k\cdot X_i| \\ &\geq (k+1)|A_1| - 3(k-1)! + |A_2| + (|A_2|+k|A_1|-k) + \sum_{3\leq i\leq j} ((k+1)|A_i| - 3(k-1)!) \\ &\geq |A_1| + (k+1)|A| - 3(j-1)(k-1)! - k \\ &\geq \frac{|A|}{j} + (k+1)|A| - 3j(k-1)! \\ &\geq (k+1)|A|, \end{aligned}$$

since $|A| \ge 3j^2(k-1)!$.

This completes the proof.

References

- [1] B. Bukh, Sums of Dilates. Combinatorics, Probability and Computing, vol. 17, 2008
- [2] J. Cilleruelo, M. Silva and C. Vinuesa, A sumset problem, preprint.
- [3] M. B. Nathanson, Inverse problems for linear forms over finite sets of integers, arXiv:0708.2304.

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049-Madrid, Spain

E-mail address: franciscojavier.cilleruelo@uam.es

UPMC UNIV PARIS 06, E. COMBINATOIRE, CASE 189, 4 PLACE JUSSIEU, 75005 PARIS, FRANCE.

E-mail address: hamidoune@math.jussieu.fr

UNIVERSITAT POLITÉCNICA DE CATALUNYA, JORDI GIRONA, 1, E-08034 BARCELONA, SPAIN.

E-mail address: oserra@ma4.upc.edu