ON SUMS OF DILATES
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ABSTRACT. For k prime and A a finite set of integers with |A| > 3(k — 1)2(k — 1)!
we prove that |[A+ k- A| > (k+1)|A| — [k(k + 2)/4] where k- A = {ka, a € A}. We
also describe the sets for which the equality holds.

1. INTRODUCTION

Let k be a positive integer and let A C Z. We denote by k- A = {ka, a € A} the
k—dilation of A and by kA= A+ ---+ A (k-times) the k—fold sumset of A. We observe
that A+k-AC A+kA = (k+1)A and that, in general, A+ k- A is much smaller than
(k+1)A. Tt is well known that |(k+ 1)A| > (k4 1)|A| — k and that the equality holds
only if A is an arithmetic progression. Indeed, if A is an arithmetic progression with
|A] > k one can check that A+ k- A = (k+ 1)A. So it is a natural problem to study
lower bounds for |A + k - A| as well as the description of the extremal cases.

The case k = 1 is trivial since |[A+ A| > 2|A| — 1 and the equality holds for arithmetic
progressions. The case k = 2 (see [3]) is also easy since we can split A = A; U Ay in the
two classes (mod 2) and then |A+2-A|=|A1+2-A|+|42+2-A| > |A1|+ |2 - A] -
1+ |As]+1]2- Al —1=3|A4| — 2. (If A contains only a class we write A =2- A’ + ¢ and
then |[A+2-A| =|A"+2- A’|). It is shown in [2] that |[A + 2 A|] = 3|A| — 2 only when
A is an arithmetic progression.

The cases k > 3 are much more involved. Nathanson [3] proved that |[A + k- A] >
| Z|A| = 3] for k > 3 and Bukh [1] proved that |[A + 3 - A| > 4|A| — C for some constant
C. Cilleruelo, Silva and Vinuesa obtained the sharp bound and the description of the
extremal cases for k = 3.

Theorem 1 ([2]). For any set of integers A we have |A+3- A| > 4|A| — 4. Furthermore
if [ A+3-Al=4|A] —4 then A=3-{0,...,n} +{0,1} or A={0,1,3} or A=1{0,1,4}

or A is an affine transformation of any of these sets.

They proposed the following conjecture:

Conjecture (Cilleruelo—Silva—Vinuesa [2]). For all positive integer k and a finite set of
integers A with sufficiently large cardinality we have

|[A+ k- Al > (k+1)|A|l - [k(k+2)/4].
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Bukh’s main Theorem [1] states that for (Ay,---,\;) € Z" with ged(Ag, -+, \) = 1,
Ar- At A A= (M| -+ [ADIA] = o(JAD).

This general result implies |A + k- A] > (k + 1)|A| — o(|A]) in our problem. The
existence of a simple proof for [A+ k- A| > (k+ 1)|A| — Cy for k > 4 is implicitly asked
by Bukh in [1].

When £ is prime we give a positive answer to the above questions by proving a precise
version of Conjecture above. In addition we characterize the extremal sets A for the
lower bound in that conjecture. Since |A 4 k - A| is invariant by affine transformations
we will assume without loss of generality that 0 € A and ged(A) = 1.

Theorem 2. Let k be a prime and let A be a subset of Z with min A = 0, ged(A) =1
and |A| > 3|A|?(k — 1), where A is the projection of A in Zy. Then

(1) |A+k-Al > (k+1)|A| - |A|(k+1—|A]).
Furthermore if \fl| < k equality holds in (1) only if
(2) A=k-{0,1,...,n} +{0,1,...,|A] -1}

for some n, while if |/1\ =k, equality holds in (1) only if A is an arithmetic progression.

If |A| = k, one can obtain
|A+k-Al > (k+1)|A] —F,
under the weaker hypothesis |A| > k and equality holds only when A is an arithmetic

progression. This case is contained in Corollary 5 below.

The following Corollary follows from Theorem 2.

Corollary 3. Let k be a prime and let A be a subset of Z with |A| > 3(k — 1)%(k — 1)L
Then

3) A+ k- Al > (k4 1)|A| - Tk(k +2)/4].
Moreover, up to affine transformations, equality holds in (3) only if
(4) A=Ek-{0,1,...,n} +{0,1,...,(k—1)/2}
for some n.

Theorem 2 implies in particular that, for k& prime and any set A, we have |[A+k- A| >
(k 4+ 1)|A| — Cy for a suitable constant Cj. Indeed, Lemma 9 below shows that the
inequality holds with Cy = 3(k — 1)!.

Small sets are more difficult to deal with. For example, in case k = 3, Theorem 2
covers Theorem 1 only when |A| > 24. Smaller sets have to be analyzed more carefully
as it was done in [2] with a distinct approach. Actually the lower bound (1) does not
hold for an arbitrary set. In [2] it is shown that there exist small sets A for which
|[A+E-A| < (k+1)|A| — P(k) where P is a cubic polynomial.

The paper is organized as follows. We first give some notation and preliminary results
in Section 2. We then show in Section 3 that, for the class of so—called k—full sets, which
actually contain the extremal ones, Theorem 2 is relatively easy to prove. In Section 4
we give a universal weaker lower bound for the cardinality of A + k- A and we use to
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show in the final section that, for sufficiently large sets which are not k—full, we get a
better lower bound for |A + k - A| than the one in Theorem 2 thus completing its proof.

2. NOTATION AND PRELIMINARY RESULTS

For two finite nonempty sets of integers A and B it is well known that |A + B| >
|A]4|B|—1, and that equality holds only if either min{|A|,|B|} = 1 or both A and B are
arithmetic progressions with the same common difference. We next give a generalization
of the above inequality for |A + k - B).

A maximal subset of X C Z, of congruent elements modulo k£ will be called a k-
component of X.

Lemma 4. For arbitrary nonempty sets of integers A and B with |B| > 1, we have
|A+ k- B| > |A| + |A|(|B| - 1),
where A denotes the natural projection of A on Z/kZ.

Furthermore if the equality holds and A has a k—component C' with |C| > 1 then both
C and k - B are arithmetic progressions with the same difference.

Proof. Observe that A + k- B is the disjoint union U,  4(A; + k - B), where A; are the

distinct k—components of A. Write A; = k - X; + u;. We have

|A+k-B| = U, 4 (k- Xitui+k-B)| = > |Xi+B| > > (|1X;|+|B|-1) = |A|+|A[(|B|-1).
icA icA

To prove the second part of the statement, suppose that equality holds and let C = A, =

k- X, + ur. Then |X, + B| = |X,| + |B| — 1 which implies that both X, and B are
arithmetic progressions with the same difference and the same is true of A, and k-B. 0O

Lemma 4 easily handles the case when |A| = k as described in next Corollary.

Corollary 5. Let A be a set of integers with |A| = k and |A| > k. Then we have
[A+E-Al > (k+1)|A] -k

and the equality holds only if A is an arithmetic progression.

Proof. The inequality follows from Lemma 4. For the inverse part, we observe that
|A,| > 2 for some r, and Lemma 4 implies that the set k- A must be an arithmetic
progression. Hence A must be an arithmetic progression as well. (I

Throughout the paper we use the following notation. For a set A we write j = |121|,
where A is the natural projection of A on Z/kZ and A,,...,A; for the distinct classes
modulo k. We also write 4; = k- X; +u;, i = 1,...,7 for some distinct u; modulo k.
Thus,

—-

A:O&:

=1 =1
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We will always assume that |A;| > |Ag| > -+ > |A;]. Also we write

F = {i:|Xi| =k}, Ap =] 4
i€EF
E = {Z'ZO<‘X1‘|<]€}, AE:UAZ
i€ER
Denote by
Ars=(A+Ek-A)\ (A + k- Ay),
so that
(5) |Ar + k- Al =4, + k- As| + |Avs| = | X + k- X+ |Ars]

Lemma 6. For each subset I C {1,2,...,5} and each r € {1,2,...,j}, we have

i) Yier [Bal 2 1111 - 1),
i) ey Al > 11T - 1),

Proof. Let
Aly=(Ar 4+ k- A)\ (oo, max(A, + k- A,)],
and
A= (Ar+Fk-A)\ [min(A, + k- As), 00),
so that

Ars| > (AL + AL

Denote by I't(s) = {h : max(A4;s) < max(Ay)} and I'"(s) = {h : min(A,) > min(A4)}.
Clearly max(A,+k-Ay) < max(A,+k-Ap), for every h € I'"(s). Since, for distinct h, the
elements in the right-hand side of the last inequality belong to distinct congruence classes
modulo k2, we have |Af,| >[I (s)|. By replacing A by —A, we obtain |A,| > [T~ (s)|.

Observe that [T (u)] > [T (v)| if max(A,) < max(A,). In particular, the numbers
T (u)|, w=1,...,j are pairwise distinct. Since |[I'"(u)| < j — 1 it follows that
{It*(u);u=1,2,...,5} ={0,1,--- ,j —1}.
By replacing A by —A, we get {|T (u)|;u = 1,2,...,5} = {0,1,--- ,j — 1} as well.
Therefore,
Do1Aul =D IALH Y AL =D [THE [+ YT @) = (1] - 1),
iel iel iel iel icl
which proves (i). Similarly
oA = D@+ I @)] = (1] - 1)
iel i€l i€l
and (ii) follows. O

Lemma 7. Let k be a prime and we assume the notation above. Then

i) If i € E then |Ay| > |As| for any s # i.
i) Yiep |Bil = (|E] = 1)[A1] + |Az].
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Proof. i) Suppose that X, 4+ = X, +y for distinct z,y € Zj,. Then X; = X; + (y—z) =

X;+2(y—xz)=--- = X; 4 (k — 1)(y — ) which implies X; = Z;. Hence, if i € E and
s # 4 then X; + 45 # X; + @;. Thus |(X; + 4s) \ (X; + 4;)| > 1. Now we have

= [(Xi+A)\(Xi + A)| = [(Xi + k- Xs+us) \ (Xi + k- Xi + )
|XSH(X1 +a8) \ (Xz +'&l)| > |XS| = |AS|~

Y

i1) We observe that i) implies that |A;;| > |A;| for all i € E except for ¢ = 1 when
1 € E. In that case we have |Aj;| > |As|. O

3. FULL SETS

We say that a set A is k—full if |X’l| =k foreachi=1,2,...,j. The following Lemma
proves Theorem 2 for k—full sets and all k£ with no condition on their cardinality. Since
Corollary 5 proves Theorem 2 for j = k, we can assume that j < k.

Lemma 8. Let A be a finite k—full set of integers with min(A) =0 and j < k. Then
[A+k-Al>(k+1)A —jk—7+1).

Moreover, equality holds if and only if
A=k-{0,1,...,n} +{0,1,...,5 — 1}

for some n.

Proof. We apply (5) and Lemma 4 to get, for each s =1,...,7,

M-

A+k-A = 1A+ k- Al

i=1

(IXi + & - Xs| +|Aus])

I
'M‘*

=1

=
W
M\L

i=1

Y

J
Al + k| X = ki + D |Aul.

i=1
If we sum in all s =1,...,j and divide by j we obtain

1j J
|A+EkA| > (k+1)|A\—kj+EZZIAiSI

s=1i=1

' 1 J J
(k+DIAl —kj + EZZIAiSI
i=1 s=1

> (k+DIA[ = j(k+1-7),

due to Lemma 6. This proves the lower bound.

(7)
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For the inverse part of the Lemma and only till the end of this proof we next order
the k—components Aj, Ay,..., A; of A in such a way that 0 = m; < mp < --- < my,
where m; = min(4;) (so we do not assume they are decreasing in cardinality).

Suppose that equality holds in (1). Since there is equality in (6), we have | X;+k-X,| =
| Xi| + k(| Xs| —1) for all 4, s and, since |X;| > k for alli = 1,...,j, Lemma 4 implies that
all X; are arithmetic progressions with the same difference d. So for i = 1,...,j we have
for some n; > k — 1 where m; = min(4;) and |A| = S7_. (n; +1).

i=1

Observe that, since n; > k — 1, we have

Ai+k-A. = my+(kd)-{0,1,...n;} + k- (m, + (kd) - {0,1,...,n.})
= mz+kmr+(kd)({0a1’an2}+k{0a177nr})
(8) = m; +km, + (kd)-{0,1,...,n; + kn.},

so that A; + k- A, is an arithmetic progression for each ¢ and r.

First we will prove that m, =0 (mod d) for all r. Otherwise if we write Ry for those
r with m, = 0 (mod d) (which contains m,) and Ry for those r with m, # 0 (mod d)
(which is also nonempty by assumption) we have

J

J
S Ai+k-Al=)
i=1

|A+k- Al i + kA,)

s

i=1

|
Mh

U(mri—k‘mr—l—(kd)-{0,1,...,ni+knr})‘

=11 r
J
- ZU(m,+d.{071,...7ni—|—knr})‘
=11 r
J
= Z( U (d-{0,...,kn. +n;} +m,)| + U (d-{O,...,knr—i—ni}—&—mr))
=1 reRo reR,
J J
> % 1 k r 4 1 k r
> ;(n+ + 2&}%71)4-;@4— + gé?}gfn)
= 2/A|+kj (maxnr + maxn,) > 2|A| + kj (k; -1 —|—maxn,.>
r€Ry reR; T
. , |A]
- 2\A|+kj(k—2+max(nr+1))22|A\+k:j o2
T
> (24 k)A] > (k+ D|A]

and the equality (1) can not hold.

Now, since ged(A) = 1 we have that d = 1. Tt follows, by (8), that

J J
9  Ai+k-A=]J(Ai+k-A) =] (mi+km+k-{0,1,... kn, +n;}).

r=1 r=1
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By using the notation from the proof of Lemma 6, for each i and for each r > 2, the set
A= (A;+k-A)\ [min(A; + k- A,.), ) clearly contains m; + kmy, m; +kma, ..., m; +
km,_1. It follows that

STIALI =D (r—1)=4(j —1)/2.

By the analogous argument on —A we also have 21:1 AT >4 —1)/2.

Since there is equality in (7) we have Z‘Z:l A;s = j(j — 1) for each i. Tt follows that

T 1AL =30 1AL = (j — 1)/2. Hence
(10) AL =mi+k-{mi,mo,...,my_1}, r=2,3,...,].

We claim that m,_1 + 1 = m, for any 2 < r < j. Suppose, on the contrary, that
my—1 + 1 < m, (we have assumed that 0 = m; < --- < m;). Then m; + k(m,_1 +1) <
min(4; + k- A,). On the other hand, by (9), we have m; + k(m,_1+1) € m; +km, + k-

{0,1,...,kn, +n;} C A; + k- A. Thus m; + k(m,_1 +1) € A, which is a contradiction
because max A} = m; + km,_1 < m; + k(m,_1 +1).

Since m; = 0, we conclude that m,, =r—1forr=1,...,7.

Putting this in (9) we have

(11) |A; + k- Al >

J
U(r1+{0,...,knr+ni})|—ni+1+knl+l1,

r=1

where kn; + 1 — 1 = max, (kn, +r — 1). Since

(12) > n, for r <1
b= n.+1 forr>1I

(13) Ju=zmng 4+t (g 1)+ (ny+ 1) =[A] - L
By (11) we have
J
A+k-Al =D |Ai+k-Al > Al + j(kn +1-1) > (k+ 1)|A| = 1(k — j) — j.
=1

Since we have assumed that |[A+ k- A| = (k+ 1)|A] — j(k + 1 — j), we have that | = j.
Furthermore we can see that all the inequalities, included those of (13) and (12), are
equalities, so ny = --- = n;.

Hence, A; =k-{0,...,n}+i—1fori=1,...,j and we can write
A=JAi={0,1,....5-1}+k-{0,1,...,n},
i=1

for some n > k — 1. This completes the proof. O
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4. A GENERAL LOWER BOUND

In this Section we give a weaker lower bound for |A + k - A| valid for every finite set
A of integers and k prime.

Lemma 9. Let k be a prime and let A be a finite nonempty subset of Z.. We have
(14) [A+k-Al > (E+1)|A] —3(k—1)!

Proof. Let t be the largest integer such that, for every finite set X of integers,
IX+k-X|>@t+1)|X|-3¢t—-1).

Suppose that t < k and let A be a critical set, verifying |A + k- A] < (¢t + 2)| 4] — 3¢t!.
Without loss of generality we may assume that 0 € A; and ged(A4) = 1. In particular
i=14]>2.

Lemma 4 gives |A+ k- A| > (j + 1)|4| — j. Therefore t > j + 1.

We have
(15) Atk A= |Ai+k-Al+> |Ai+k-Al
ieF S
We have
SlAi+k-Al = D |Ai+k- A
icF i€F
= > Xtk X
i€F
(by Lemma 4) > Z(\Xﬁ + k(1 Xa[ = 1))
i€F
= D (1Al + k(A - 1))
i€F
(since t<k—1) =z |Ap[+ (¢ +1|F|(JA1] = 1)
(16)  (since tlA|IFI=tAp]) = (t+D)|Ap|+[FllA - (¢4 DIF.

On the other hand, by (5), induction hypothesis and Lemma 7-ii),

SlAi+k-Al = D (Ai+k- Al +]Ax])
eFE i1eFE
> Z((t+1)|f4i|*3(t*1)!)+ZAM‘
i€l el
(17) > (t+1)|Ap| = 3|E|(t — 1)+ (|E| — 1)|Ay] + |As].

By substitution of (16) and (17) in (15) we get
A+ k- Al E+ DAL+ (1F]+ B[ = D]AL] + [A2] = (¢ + D|F| = 3|E|(t — 1)!
(t+2)|Al — (t+1)|F| = 3|E|(t— 1),

since (|F| + |B| = D|Ai] 4 [A2] = (G = DIAs| + [A2] = [Ar] + [Az] + -~ + [4;] = [A].
Finally, since |E| + |F| = j < t, we have

3E|(t— 1)+ (t+ )| F| < 3(t— [F|)(t— 1)+ (t+1)|F| < 3¢1+ |F|(t+1—3(t— 1)!) < 3¢1,

(AVARLYS

which contradicts our choice of A. This contradiction proves the statement. (Il
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5. PROOF OF THEOREM 2

Suppose now that|A| > 3j2(k — 1)!. By Lemma 8 and Corollary 5 we may assume
E#pand j<k.

Case 1: There is s > 2 with s € E.

By (5), Lemma 9 and Lemma 7-i), we obtain

A+ k-Al = |Ai+k A+ |Ai+k-Al
i#s
> [ Xot ke X+ A+ DX+ k- X
i#£s
> (k+1)[A] =3k —1)!+ A+ > ((k+ 1)|4] = 3(k — 1))
i#£s
_git— 14 Al
> (k+1)|A| - 3j(k 1).+j
> (k+1)]4],

since |A| > 352(k — 1)!.

Case 2: F = {1}.

In this case, since |X2| =k, Lemma 4 implies that
(18) | Xo + k- Xq| > | Xo| + k(| X1| — 1) = |Ag| + k|A1] — k.
We observe also (by Lemma 7-7)) that |Aq1| > | A2

Then, by (5), Lemma 9, Lemma 7-i) and (18) we have

A+k-Al = |Ai+k-Al+[Ay+k-Al+) |Ai+k-A
i>3
> [ Xi+k-Xa|+An+ [ Xo+ k- X+ D X+ k- X
3<i<y
> (k4 1AL = 3(k — 1)+ [Ag| + (|A2| + K| A1 = k) + > ((k+1)|Ai] = 3(k — 1))
3<i<;
> A+ (k+1D]A=3G - D(k—-1)—k
A
> |j|+(k+1)|A|—3j(k—1)!
> (k+1)A]

since |A| > 352(k — 1)\

This completes the proof.
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