AN UPPER BOUND FOR $B_{2}[2]$ SEQUENCES

JAVIER CILLERUELO
Departamento de Matemáticas. Universidad Autonóma de Madrid
28049 Madrid, Spain
e-mail: franciscojavier.cilleruelo@uam.es

Abstract. We introduce a new counting method to deal with $B_{2}[2]$ sequences, getting a new upper bound for the size of these sequences, $F(N, 2) \leq \sqrt{6 N}+1$.

Introduction and Notation

For a sequence of positive integers A, the functions $r(n), r^{\prime}(n), d(n)$ denote the number of solutions of

$$
\begin{array}{lll}
n=b+a, & a \leq b, & a, b \in A . \\
n=b+a, & a<b, & a, b \in A . \\
n=b-a, & a<b, & a, b \in A .
\end{array}
$$

We say that a sequence of integers A belongs to the class of $B_{2}[g]$ sequences if $r(n) \leq g$ for any integer n.

To find $B_{2}[g]$ sequences as dense as possible is a standard problem in additive number theory $([2],[5],[6],[7])$. We define $F(N, g)=\max \{|A|, A \subset[1, N], A \in$ $\left.B_{2}[g]\right\}$. One is interested in finding precise bounds of $F(N, g)$

For finite $B_{2}[g]$ sequences we have the following simple argument. Let $A \subset[1, N]$, be A a $B_{2}[g]$ sequence. Then

$$
\binom{|A|+1}{2}=\sum_{n=1}^{2 N} r(n) \leq 2 N g
$$

which yields $F(N, g) \leq 2 \sqrt{g N}$.
$B_{2}[1]$ sequences are usually called Sidon sequences. It is easy to see that these sequences also satisfy that $d(n) \leq 1$ for any integer $n \geq 1$. This special property of the differences makes it easier to get a better upper bound for the size of finite Sidon sequences. Erdős [3] used this fact to prove that

$$
F(N, 1)=F(N)=\sqrt{N}(1+o(1)) \quad \text { as } N \rightarrow \infty
$$

Unfortunatly, the function $d(n)$ is not bounded for $B_{2}[g]$ sequences if $g>1$ and Erdős argument does not apply. Recently, I.Ruzsa, C.Trujillo and the author [1], using a density argument, have proved that $F(N, g) \leq 1.864 \sqrt{g N}$.

In this paper we use a new combinatorial argument which allows us to take advantage of average behaviour of the differences for $B_{2}[2]$ sequences.
Theorem 1. $F(N, 2) \leq \sqrt{6 N}+1$.
On the other hand, it is known [1] that $F(N, 2) \geq(3 / 2+o(1)) \sqrt{N}$.
Theorem 1 improves the above result for $g=2$ and the proof is completely different and easier.

Proof of theorem 1

Lemma 1. For any finite sequence A of positive integers we have
i) $\binom{|A|}{2}=\sum_{n \geq 1} r^{\prime}(n)$
ii) $\binom{|A|}{2}=\sum_{n \geq 1} d(n)$

Proof. Obvious.
Let A a $B_{2}[2]$ sequence, $A \subset[1, N]$ and we define $R_{j}=\{n \notin 2 \times A ; r(n)=j\}$ and $R_{j}^{\prime}=\{n \in 2 \times A ; r(n)=j\}$, for $j=0,1,2$. where $2 \times A$ denotes the set $\{2 a ; a \in A\}$.
Lemma 2. If A is a $B_{2}[2]$ sequence then

$$
\sum_{n \geq 1}\binom{d(n)}{2}=2\left|R_{2}\right|+\left|R_{2}^{\prime}\right|
$$

Proof. We associate, for each $m \in R_{2}$, the unique 4-tupla (a, b, c, d) such that

$$
a<b<c<d \text { and } a+d=b+c=m .
$$

Conversely, each 4-tupla $(a, b, c, d), a<b<c<d, a+d=b+c$ corresponds to a unique integer $m \in R_{2}$.

Similary, for each $m \in R_{2}^{\prime}$, we associate the 4-tupla (a, b, b, d), $a<b<d$ such that $a+d=b+b$. Again, each 4-tupla (a, b, b, d), $a<b<d, a+d=b+b$ corresponds to an unique integer $m \in R_{2}^{\prime}$.

Now, for each positive integer n and for each pair $(b, a),(d, c), a<c$ of different solutions of $x-y=n$, we consider the 4 -tupla (a, b, c, d) if $b<c$, the 4-tupla (a, c, b, d) if $c<b$ and the 4 -upla (a, b, b, d) if $b=c$.

Then, each 4-tupla (a, b, c, d), $a<b<c<d, a+d=b+c$ comes from the pair of solutions $(b, a),(d, c)$ of $x-y=b-a$ and from the pair of solutions $(c, a),(d, b)$ of $x-y=c-a$.

Then, each $m \in R_{2}$ is counted exactly twice in the sum $\sum_{n \geq 1}\binom{d(n)}{2}$.
Similary, each 4-tupla $(a, b, b, d), a<b<d, a+d=b+b$ comes only from the unique pair of solutions $(b, a),(d, b)$ of $x-y=b-a$.

Then, each $m \in R_{2}^{\prime}$ is counted once in the sum $\sum_{n \geq 1}\binom{d(n)}{2}$.
Lemma 3. $\sum_{n \geq 1}\binom{d(n)}{2} \leq\binom{|A|}{2}$
Proof. Observe that Lemma 1, i) can be written as $\binom{|A|}{2}=2\left|R_{2}\right|+\left|R_{2}^{\prime}\right|+\left|R_{1}\right|$

Proof of theorem 1.

From lemma 3 and lemma 1, ii) we have

$$
\sum_{n \geq 1} d^{2}(n)=\sum_{n \geq 1} d(n)+2\binom{|A|}{2}-2\left|R_{1}\right| \leq 3\binom{|A|}{2}
$$

On the other hand

$$
\binom{|A|}{2}^{2}=\left(\sum_{n \geq 1} d(n)\right)^{2} \leq N \sum_{n \geq 1} d^{2}(n)
$$

Then

$$
\binom{|A|}{2} \leq 3 N
$$

and $|A| \leq \sqrt{6 N}+1$.
Note. M.Helm [4] has proved independently and in a different way the upper bound $F(N, 2) \leq \sqrt{(} 6 N)+O(1)$.

References

[1] J. Cilleruelo, I. Ruzsa, C. Trujillo, "Upper and lower bounds for finite $B_{h}[g]$ sequences, $g>1$ ". Preprint.
[2] P.Erdős and R.Freud, "On Sidon-sequences and related problems", Mat. Lapok 1 (1994).
[3] P.Erdős and P.Turan, "On a problem of Sidon in additive number theory and some related problems".J.London. Math. Soc. 16 (1941) 212-215.
[4] M.Helm, "Upper bounds for $B_{2}[g]$-sets", preprint.
[5] M.N.Kolountzakis, "The density of $B_{h}[g]$ sequences and the minimun of dense cosine sums". Journal of Number Theory 56, 4-11 (1996).
[6] M.N.Kolountzakis, "Some applications of probability to additive number theory and harmonic analysis". Number Theory, New York Seminar 1991-1995. Springer
[7] A.Sarközy and V.T.Sos, "On Additive Representation Functions". The Mathematics of Paul Erdös I, Algorithms and Combinatorics 13 (1996). Springer.

