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Abstract. We investigate sequences of real numbers and p-adic numbers with the
property that sums of pairs are always far apart.

1. Introduction

A set A (typically of integers) is called a Sidon set, if for every s the equation x+y = s
has at most one solution (up to ordering) with x, y ∈ A. It is a famous problem to decide
how fast a Sidon sequence of integers must grow.

We investigate an analogous question for sequences of real numbers and p-adic inte-
gers. Here the requirement that sums of pairs are different is almost vacuous; we shall
replace it by measuring how far they are apart.

Let a1, a2, . . . be a sequence of real numbers modulo one and put

(1.1) δn = min
j,k,u,v≤n

‖aj + al − au − av‖,

where the quadruples u = j, v = k and u = k, v = j are excluded, and ‖ . . . ‖ denotes the
distance from the nearest integer. By considering the differences aj − au, 1 ≤ j, u ≤ n,
j 6= u, and 0 as the common value of aj − aj, we immediately see that

δn ≤ 1

n(n− 1) + 1
.

For a fixed n this is best possible, at least for certain values of n. Indeed, if n = q − 1
with a prime-power q, then by taking a perfect difference set modulo m = q2 + q + 1 =
n(n− 1) + 1 and dividing the elements by m we obtain examples of equality.

We get a slightly different question (analogous to finite Sidon sets of integers in an
interval) if we assume that the aj are real numbers in [0, 1] and we consider the usual
distance

(1.2) δ∗n = min
j,k,u,v≤n

|aj + al − au − av|,
which satisfies δn ≤ δ∗n. It is less obvious to estimate δ∗n than δn.

Theorem 1.

δ∗n ≤
1

n(n− 2
√

n)
.

Problem 1. Is

δ∗n ≤
1

n(n− o(
√

n))

true ?
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A positive answer (or even any improvement of the coefficient 2 of
√

n in the theorem)
would improve the best known upper bound |A| ≤ N1/2 + N1/4 + 1 for classical Sidon
sets.

Problem 2. Let an be an infinite sequence of reals modulo one. Does

lim inf n2δn = 0

necessarily hold?

A positive answer would be analogous to the classical theorem of Erdős asserting that
an infinite Sidon sequence an of integers satisfies

lim sup an/n
2 = ∞.

One can ask the same question for δ∗n. The two problems are equivalent, since given
a sequence an which has large δ∗n one can take the sequence an/2 to show a sequence
with δn ≥ δ∗n/2. However, if the answer is negative, then there is no obvious connection
between the extremal values.

We exhibit an infinite sequence of real numbers for which the order of magnitude of
δn is only slightly smaller.

Theorem 2. There is an infinite sequence an of real numbers modulo one such that the
quantity δn defined by (??) satisfies

(1.3) δn ≥ c

(n log n)2

with some positive absolute constant c.

Problem 3. Can the sequence an in Theorem 2 be chosen to be a sequence of rational
numbers?

Let now aj be a sequence of p-adic integers for some prime p, and define δn by the
same formula (??), with the modification that ‖ . . . ‖ now means the p-adic norm, that
is, ‖x‖ = p−k if pk|x but pk+1 - x. If we define k by pk ≤ n(n− 1) < pk+1, then similarly
we find that all the differences ai − aj, i, j ≤ n cannot be distinct modulo pk, which
yields

δn ≤ p−k ≤ C/n2

with some positive constant C (which depends on the prime p).
We have analogous problems and results to the real case.

Problem 4. Let an be an infinite sequence of p-adic integers. Does

lim inf n2δn = 0

necessarily hold?

Theorem 3. There is an infinite sequence an of p-adic integers such that the quantity
δn defined by (??) satisfies

(1.4) δn ≥ c

(n log n)2

with some positive constant c, which depends on the prime p but not on n.

Problem 5. Can the sequence an in Theorem 3 be chosen to be a sequence of ordinary
integers?
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In the construction of a dense Sidon sequence of integers by the second author [] the
starting point was that the sequence an = log pn, where pn is the n-th prime, satisfies
(??). It is unbounded and the fractional parts do not have this property, which caused
some difficulty. The proof can be simplified by using any of the sequences given in
Theorem 2 or Theorem 3 instead.

2. The finite estimate

In this section we prove Theorem 1. Any proof used to estimate finite integer Sidon
sets can be adapted to this situation; perhaps the most natural is Lindström’s [?].

Let the numbers be 0 ≤ a1 < · · · < an ≤ 1, write δ = δn and consider the sum

S =
∑

i<j≤n,j−i≤k

(aj − ai)

for a positive integer k to be specified later. On one hand, S is the sum of

N = (n− 1) + (n− 2) + .. + (n− k) =
k(2n− k − 1)

2
distinct differences, the smallest of which is ≥ δ, the second is ≥ 2δ and so on, hence

S ≥ δ(1 + 2 + · · ·+ N) > δN2/2.

On the other hand after the cancellations this sum becomes

S = (an − a1) + 2(an−1 − a2) + · · ·+ k(an−k+1 − ak) ≤ k(k + 1)

2
.

A comparison of these inequalities yields

δ <
k(k + 1)

N2
=

4(k + 1)

k(2n− k − 1)2
.

The theorem follows by putting k = [
√

n].

3. The real construction

In this section we prove Theorem 2.
We will contstruct a sequence of complex numbers of modulus 1 such that the pairwise

products are far apart, and this will then give a sequence of reals in a natural way.
Let q1 = 5 < q2 < . . . be the sequence of primes ≡ 1 (mod 4), and write each in the

form qj = ρjρj with a Gaussian prime ρj. Now consider the numbers αj = ρj/ρj. We
estimate the difference of products. We have

αjαk − αuαv =
ρjρkρuρv − ρuρvρjρk

ρjρkρuρv

.

The enumerator is a Gaussian integer, not zero by the unique factorization, hence its
modulus is ≥ 1. We obtain

|αjαk − αuαv| ≥ 1

|ρjρkρuρv| =
1√

pjpkpupv

≥ c

(n log n)2

withe a positive constant c if j, k, u, v ≤ n.
Now define aj by αj = e2πiaj . We have

|αjαk − αuαv| = |1− αuαv/(αjαk)| = |1− e2πi(au+av−aj−ak)| ≤ 2π|aj + ak − au − av|.
On substituting this into the previous inequality we obtain the claim of the theorem.
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4. The p-adic construction

We prove Theorem 3.
Put P = p if p is odd, and P = 4 if p = 2. Let q1 < q2 < . . . be the sequence of

primes ≡ 1 (mod P ). We will use the p-adic logarithm, defined by the usual power
series

log(1 + t) = t− t2

2
+

t3

3
− . . .

This series is convergent when ‖t‖ < 1, it has the usual additivity property and it
satisfies

‖ log(1 + t)− t‖ < ‖t‖
and consequently

‖ log(1 + t)‖ = ‖t‖
whenever ‖t‖ ≤ 1/P .

We put now aj = log qj. We have

aj + ak − au − av = log
qjqk

quqv

= log(1 + t),

where

t =
qjqk − quqv

quqv

.

The denominator clearly has norm 1. The enumerator is nonzero, it is a multiple of P
by the assumption qj ≡ 1 (mod P ), and it is an integer of absolute value < C(n log n)2

if j, k, u, v ≤ n, hence
c

(n log n)2
≤ ‖t‖ ≤ 1

P
.

Consequently

‖aj + ak − au − av‖ = ‖t‖ ≥ c

(n log n)2

as claimed.

5. Concluding remarks

A positive answer to problem 2 and the construction in Theorem 2 would give an
indirect proof that the primes ≡ 1 (mod 4) have density zero. An answer to Promlem
4 would have similar consequences.
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