DISCREPANCY IN GENERALIZED ARITHMETIC PROGRESSIONS

JAVIER CILLERUELO AND NILS HEBBINGHAUS

Abstract

Estimating the discrepancy of the set of all arithmetic progressions in the first N natural numbers was one of the famous open problem in combinatorial discrepancy theory for a long time, successfully solved by K. Roth (lower bound) and Beck (upper bound). They proved that $D(N)=\min _{\chi} \max _{A}\left|\sum_{x \in A} \chi(x)\right|=$ $\Theta\left(N^{1 / 4}\right)$, where the minimum is taken over all colorings $\chi:[N] \rightarrow\{-1,1\}$ and the maximum over all arithmetic progressions in $[N]=\{0, \ldots, N-1\}$.

Sumsets of k arithmetic progressions, $A_{1}+\cdots+A_{k}$, are called k-arithmetic progressions and they are important objects in additive combinatorics. We define $D_{k}(N)$ the discrepancy of the set $\{P \cap[N]: P$ is a k-arithmetic progression $\}$. The second author proved that $D_{k}(N)=\Omega\left(N^{k /(2 k+2)}\right)$ and Přívětivý improved it to $\Omega\left(N^{1 / 2}\right)$ for all $k \geq 3$. Since the probabilistic argument gives $D_{k}(N)=O\left((N \log N)^{1 / 2}\right)$ for all fixed k, the case $k=2$ remained the only case with a large gap between the known upper and lower bound. We bridge this gap (up to a logarithmic factor) by proving that $D_{k}(N)=\Omega\left(N^{1 / 2}\right)$ for all $k \geq 2$.

Indeed we prove the multicolor version of this result.

1. Introduction

Sumsets of k arithmetic progressions, $A_{1}+\cdots+A_{k}$, are called k-arithmetic progressions and they are important objects in additive combinatorics.

Let P a k-arithmetic progression and $[N]=\{0, \ldots, N-1\}$. The imbalance of P due to the coloring $\chi:[N] \rightarrow\{-1,1\}$ is defined by $\chi(P)=\sum_{x \in P} \chi(x)$ where $\chi(x)=0$ if $x \notin[N]$. The discrepancy of the set of k -arithmetic in $[N]$ is defined by

$$
\begin{equation*}
D_{k}(N)=\min _{\chi} \max _{P}\left|\sum_{x \in P} \chi(x)\right| \tag{1}
\end{equation*}
$$

where the minimum is taken over all possible colorings $\chi:[N] \rightarrow\{-1,1\}$ and the maximum over all k-arithmetic progressions.

Thus, $D_{k}(N)$ is the least possible imbalance of any k-arithmetic progression that can not be avoided under any coloring $\chi:[N] \rightarrow\{-1,1\}$. For short we write $D(N)$ when $k=1$.

One of the most famous open problem in (combinatorial) discrepancy theory was to determine the right order for the discrepancy of the set of arithmetic progressions in the first N natural numbers. That is, the order for $D(N)$.

In 1964, Roth [8] proved $D(N)=\Omega\left(N^{1 / 4}\right)$. Using a random coloring of $[N]$, one can easily show that $D(N)=O\left((N \log N)^{1 / 2}\right)$. The first non-trivial upper bound is due to Sárközy [9]. In 1973 he proved that $D(N)=O\left((N \log N)^{1 / 3}\right)$. A sketch of his beautiful proof can be found in [3]. Inventing the famous partial coloring method,

[^0]Beck [1] showed in 1981 that Roth's lower bound is nearly sharp. His upper bound of order $O\left(N^{1 / 4} \log ^{5 / 4} N\right)$ was finally improved by Matoušek and Spencer [6] in 1996. They showed by a refinement of the partial coloring method - the entropy method - that $D(N)=O\left(N^{1 / 4}\right)$.

After 32 years, this open problem was solved. In the next years several extensions of this discrepancy problem were studied. For example, Doerr, Srivastav and Wehr [2] determined the discrepancy of cartesian product of arithmetic progressions, those of the form $\left(A_{1}, \ldots, A_{d}\right) \subset[N]^{d}$ where all A_{i} are arithmetic progressions. They proved that, in this case, the discrepancy is $\Theta\left(N^{d / 4}\right)$. Another related discrepancy concerning to 1 -dimensional arithmetic progressions in the grid $[N]^{d}$ was studied by Valkó [10]. He proved for the discrepancy in these sets a lower bound of order $\Omega\left(N^{d /(2 d+2)}\right)$ and an upper bound of order $O\left(N^{d /(2 d+2)} \log ^{5 / 2} N\right)$.

Here we deal with the discrepancy of k-arithmetic progressions in $[N]$. We observe that, since any k-arithmetic progression is a $(k+1)$-arithmetic progression, we have

$$
\begin{equation*}
D(N)=D_{1}(N) \leq D_{2}(N) \leq D_{3}(N) \leq \cdots \leq D_{k}(N) \leq D_{k+1}(N) \leq \cdots \tag{2}
\end{equation*}
$$

The second author [4] proved that $D_{k}(N)=\Omega\left(N^{k /(2 k+2)}\right)$. But there remained a large gap between this bound and the upper bound $D_{k}(N)=O\left((N \log N)^{1 / 2}\right)$ obtained from the random coloring. In 2006 Přívětivý [7] almost closed this gap for $k \geq 3$ by proving $D_{3}(N)=\Omega\left(N^{1 / 2}\right)$. This lower bound clearly implies $D_{k}(N)=\Omega\left(N^{1 / 2}\right)$ for all $k \geq 3$. Thus the case $k=2$ was the last case with a large gap between the lower and the upper bound for $D_{k}(N)$.

In this paper we improve the lower bound for $D_{2}(N)$ from $\Omega\left(N^{1 / 3}\right)$ to $\Omega\left(N^{1 / 2}\right)$.
The multicolor version of discrepancies has only been recently investigated. We state our main result in its general multicolor version.

Theorem 1. For all $c \geq 2$ and all $k \geq 2$ we obtain the bound

$$
D_{k}(N, c)=\Omega\left(N^{1 / 2}\right)
$$

for

$$
D_{k}(N, c)=\min _{\chi} \max _{i=1, \ldots, c} \max _{A}| | \chi^{-1}(i) \cap A\left|-\frac{|A \cap[N]|}{c}\right|,
$$

where the minimum is taken over all colorings $\chi:[N] \rightarrow\{1, \ldots, c\}$ and the maximum is taken over all colors and k-arithmetic progressions.

It should be noted that $D_{k}(N)=2 D_{k}(N, 2)$. Theorem 1 above shows that the upper bound $D_{k}(N, c)=O\left((N \log N)^{1 / 2}\right)$, coming from probabilistic arguments, is nearly sharp for all fixed $k \geq 2$. Theorem 1 above follows immediately from (2) and Theorem 2 below.

Theorem 2. For any coloring $\chi:[N] \rightarrow\{1, \ldots, c\}$ there exists a 2-arithmetic progression P and some $i \in\{1, \ldots, c\}$ such that

$$
\left|\left|\chi^{-1}(i) \cap P\right|-\frac{|P \cap[N]| \mid}{c}\right| \geq \frac{N^{1 / 2}}{800 c^{1 / 2}}
$$

Acknowledgements: This paper is a follow up of Hebbinghaus [5] where the main result was already stated and proved for $c=2$. The present version contains a simplified version of the original proof and the extension for all $c \geq 2$.

2. Proof of theorem 2

2.1. Discrete Fourier Analysis in \mathbb{Z}_{p}. : Let p be a prime. For any function $f: \mathbb{Z} \rightarrow \mathbb{C}$ we define $\hat{f}: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ by

$$
\hat{f}(a)=\sum_{x \in \mathbb{Z}} f(x) \omega^{a x}
$$

where $\omega=e^{\frac{2 \pi i}{p}}$. The convolution of two functions $f * g$ is defined by

$$
(f * g)(x)=\sum_{y \in \mathbb{Z}} f(y) g(x-y)
$$

and it satisfies $\widehat{f * g}=\hat{f} \hat{g}$.
Lemma 1 (Folklore). If $\operatorname{supp}(f) \subset\left\{-\frac{p-1}{2}, \ldots, \frac{p-1}{2}\right\}$ then

$$
\sum_{x \in \mathbb{Z}}|f(x)|^{2}=\frac{1}{p} \sum_{x \in \mathbb{Z}_{p}}|\hat{f}(x)|^{2}
$$

2.2. Proper 2-arithmetic progressions. A 2-arithmetic progression is a set of the form

$$
P=\left\{a+\delta_{1} j_{1}+\delta_{2} j_{2}: j_{1} \in\left[L_{1}\right], j_{2} \in\left[L_{2}\right]\right\}
$$

for some $a \in \mathbb{Z}$ and some $\delta_{1}, \delta_{2}, L_{1}, L_{2} \in \mathbb{N}$. We say that P is proper if all elements $a+\delta_{1} j_{1}+\delta_{2} j_{2}$ are distinct.

Lemma 2. If $\left(\delta_{1}, \delta_{2}\right)=1$ and $L_{1} \leq \delta_{2}$ then P is proper.
Proof. Otherwise, $\delta_{1} j_{1}+\delta_{2} j_{2}=\delta_{1} j_{1}^{\prime}+\delta_{2} j_{2}^{\prime} \Longrightarrow \delta_{1}\left(j_{1}-j_{1}^{\prime}\right)=\delta_{2}\left(j_{2}^{\prime}-j_{2}\right)$ and then (since $\left.\left(\delta_{1}, \delta_{2}\right)=1\right) \delta_{2} \mid\left(j_{1}-j_{1}^{\prime}\right)$, in particular $\delta_{2}<L_{1}$.

Lemma 3. For all $a \in \mathbb{Z}_{p}$ there exists a proper 2-arithmetic progression

$$
P_{a}=\left\{\delta_{1} j_{1}+\delta_{2} j_{2}: j_{i} \in\left[L_{i}\right], \quad i=1,2\right\} \subset[N]
$$

such that $\left|\hat{1}_{-P_{a}}(a)\right| \geq p / 400$.
Proof. For $a=0$ we take $P_{0}=[N]$ and it is clear that $\left|\hat{1}_{-P_{0}}(0)\right|=N \geq p / 4$. For $a \not \equiv 0$ $(\bmod p)$, let δ_{1} be the least positive integer such that

$$
\begin{equation*}
a \delta_{1}=r_{1}+a_{1} p, \quad 1 \leq r_{1}<\sqrt{p} \tag{3}
\end{equation*}
$$

for some integer a_{1}. Using the pigeonhole principle we can check that $1 \leq \delta_{1} \leq \sqrt{p}$. Then $m=\max \left\{r_{1}, \delta_{1}\right\} \leq \sqrt{p}$. Sometimes we will use that $m \leq p / m$.

Let δ_{1}^{*} be the solution of the congruence $a_{1} x \equiv-1\left(\bmod \delta_{1}\right)$ in $\left[\delta_{1}\right]$. Then

$$
\begin{equation*}
a_{1}^{*} \delta_{1}-\delta_{1}^{*} a_{1}=1, \quad 0 \leq \delta_{1}^{*}<\delta_{1} \tag{4}
\end{equation*}
$$

for some positive integer a_{1}^{*}. We define $L_{1}=\left\lceil\frac{p}{16 m}\right\rceil, L_{2}=\left\lceil\frac{m}{16}\right\rceil, k=\left\lceil\frac{p}{\delta_{1} m}\right\rceil$ and

$$
\begin{equation*}
\delta_{2}=\delta_{1}^{*}+\delta_{1} k \tag{5}
\end{equation*}
$$

We claim that the 2-progression $P_{a}=\left\{\delta_{1} j_{1}+\delta_{2} j_{2}: j_{i} \in\left[L_{i}\right], i=1,2\right\}$ satisfies the conditions of Lemma 3. To see that $P_{a} \subset[N]$ we observe that

$$
0 \leq \delta_{2} \leq \delta_{1}^{*}+\delta_{1}\left(\frac{p}{\delta_{1} m}+1\right) \leq \frac{p}{m}+2 \delta_{1} \leq \frac{p}{m}+2 m \leq \frac{p}{m}+\frac{2 p}{m}=\frac{3 p}{m}
$$

so the largest element in P_{a} is

$$
\delta_{1}\left(L_{1}-1\right)+\delta_{2}\left(L_{2}-1\right) \leq m \frac{p}{16 m}+\frac{3 p}{m} \frac{m}{16} \leq \frac{p}{4}<N .
$$

To see that P_{a} is proper we observe that relations (4) and (5) imply that $\left(\delta_{1}, \delta_{2}\right)=1$.
On the other hand if $L_{1}>\delta_{2}$ then $1+\frac{p}{16 m} \geq \delta_{1} k \geq \frac{p}{m} \Longrightarrow 1 \geq \frac{15 p}{16 m} \geq \frac{15 \sqrt{p}}{16} \Longrightarrow p \leq 1$.
So $L_{1} \leq \delta_{2}$ and we use Lemma 2 to conclude that P_{a} is proper.
Since P_{a} is proper we can write

$$
\begin{equation*}
\hat{1}_{-P_{a}}(a)=\sum_{x \in P_{a}} \omega^{-a x}=\left(\sum_{j_{1} \in\left[L_{1}\right]} \omega^{-a \delta_{1} j_{1}}\right)\left(\sum_{j_{2} \in\left[L_{2}\right]} \omega^{-a \delta_{2} j_{2}}\right) . \tag{6}
\end{equation*}
$$

Since $\left|r_{1}\left(L_{1}-1\right)\right| \leq r_{1} p /(16 m) \leq p / 16$ we have

$$
\begin{equation*}
\left|\sum_{j_{1} \in\left[L_{1}\right]} \omega^{-a \delta_{1} j_{1}}\right| \geq \mathcal{R}\left(\sum_{j_{1} \in\left[L_{1}\right]} \omega^{-r_{1} j_{1}}\right) \geq L_{1} \min _{j_{1} \in\left[L_{1}\right]} \cos \left(2 \pi r_{1} j_{1} / p\right) \geq L_{1} \cos (\pi / 8) . \tag{7}
\end{equation*}
$$

We observe that

$$
\begin{aligned}
a \delta_{2} & \equiv a\left(\delta_{1}^{*}+\delta_{1} k\right) \equiv a \delta_{1}^{*}+r_{1} k \equiv\left(\frac{r_{1}+a_{1} p}{\delta_{1}}\right) \delta_{1}^{*}+r_{1} k \equiv \frac{r_{1} \delta_{1}^{*}+\left(a_{1}^{*} \delta_{1}-1\right) p}{\delta_{1}}+r_{1} k \\
& \equiv \frac{r_{1} \delta_{1}^{*}-p}{\delta_{1}}+r_{1} k \equiv \frac{r_{1} \delta_{1}^{*}-p+r_{1} p / m}{\delta_{1}}+r_{1}\left(1-\left\{\frac{p}{\delta_{1} m}\right\}\right)(\bmod p)
\end{aligned}
$$

We write r_{2} for the last long expression. Since $r_{1} \leq m$ and $\delta_{1}^{*}<\delta_{1}$ we have that $r_{2} \leq 2 r_{1} \leq 2 m \leq 2 p / m$. If $m=r_{1}$ then $0 \leq r_{2}$. If $m=\bar{\delta}_{1}$ then $r_{2} \geq-p / \delta_{1}=-p / m$. In any case we have $\left|r_{2}\right| \leq 2 p / m$, so $\left|r_{2}\left(L_{2}-1\right)\right| \leq(2 p / m)(m / 16) \leq p / 8$. Thus,

$$
\begin{equation*}
\left|\sum_{j_{2} \in\left[L_{2}\right]} \omega^{-a \delta_{2} j_{2}}\right| \geq \mathcal{R}\left(\sum_{j_{2} \in\left[L_{2}\right]} \omega^{-r_{2} j_{2}}\right) \geq L_{2} \min _{j_{2} \in\left[L_{2}\right]} \cos \left(2 \pi r_{2} j_{2} / p\right) \geq L_{2} \cos (\pi / 4) \tag{8}
\end{equation*}
$$

Finally, (6), (7) and (8) give $\left|\hat{1}_{-P_{a}}(a)\right| \geq L_{1} \cos (\pi / 8) L_{2} \cos (\pi / 4) \geq p / 400$.
2.3. End of the proof. For any coloring $\chi:[N] \rightarrow\{1, \ldots, c\}$ we consider the functions $f_{i}: \mathbb{Z} \rightarrow \mathbb{C}, i=1, \ldots, c$ defined by

$$
f_{i}(x)= \begin{cases}1-\frac{1}{c} & \text { if } x \in \chi^{-1}(i) \cap[N] \\ -\frac{1}{c} & \text { if } x \in[N] \backslash \chi^{-1}(i) \\ 0 & \text { otherwise }\end{cases}
$$

For any set $P \subset \mathbb{Z}$ we write $f(P)=\sum_{x \in P} f(x)$. We observe that for any set P,

$$
f_{i}(P)=\sum_{x \in P} f_{i}(x)=\left|\chi^{-1}(i) \cap P\right|-\frac{|P \cap[N]|}{c} .
$$

If we write 1_{P} for the characteristic function of the set P, we can see easily that

$$
f_{i}(a+P)=f_{i} * 1_{-P}(a) .
$$

Now we take a prime p such that $2 N<p<4 N$. We observe that if $P \subset[N]$ and $a \notin\left\{-\frac{p-1}{2}, \ldots, \frac{p-1}{2}\right\}$ then $f_{i}(a+P)=0$ and we can apply Lemma 1 to the function
$f_{i} * 1_{-P}$ to get

$$
\sum_{a \in \mathbb{Z}}\left|f_{i} * 1_{-P}(a)\right|^{2}=\frac{1}{p} \sum_{a \in \mathbb{Z}_{p}}\left|\widehat{f_{i} * 1_{-P}}(a)\right|^{2}=\frac{1}{p} \sum_{a \in \mathbb{Z}_{p}}\left|\hat{f}_{i}(a)\right|^{2}\left|\hat{1}_{-P}(a)\right|^{2}
$$

By Lemma 3 we can select, for any $a \in \mathbb{Z}_{p}$, a proper 2-arithmetic progression P_{a} such that $\left|\hat{1}_{-P_{a}}(a)\right| \geq p / 400$. Thus,

$$
\begin{aligned}
\sum_{x \in \mathbb{Z}_{p}-\frac{p-1}{2} \leq a \leq \frac{p-1}{2}}\left|f_{i}\left(a+P_{x}\right)\right|^{2} & =\sum_{x \in \mathbb{Z}_{p}} \sum_{a \in \mathbb{Z}}\left|f_{i} * 1_{-P_{x}}(a)\right|^{2} \\
& =\frac{1}{p} \sum_{a \in \mathbb{Z}_{p}}\left|\hat{f}_{i}(a)\right|^{2} \sum_{x \in \mathbb{Z}_{p}}\left|\hat{1}_{-P_{x}}(a)\right|^{2} \geq \frac{1}{p} \sum_{a \in \mathbb{Z}_{p}}\left|\hat{f}_{i}(a)\right|^{2}\left|\hat{1}_{-P_{a}}(a)\right|^{2} \\
& \geq\left(\frac{p}{400}\right)^{2} \frac{1}{p} \sum_{a \in \mathbb{Z}_{p}}\left|\hat{f}_{i}(a)\right|^{2}=\left(\frac{p}{400}\right)^{2} \sum_{a \in \mathbb{Z}_{p}}\left|f_{i}(a)\right|^{2} \\
& =\left(\frac{p}{400}\right)^{2}\left(\left(1-\frac{1}{c}\right)^{2}\left|\chi^{-1}(i)\right|+\frac{1}{c^{2}}\left(N-\left|\chi^{-1}(i)\right|\right)\right) \\
& =\left(\frac{p}{400}\right)^{2}\left(\left(1-\frac{2}{c}\right)\left|\chi^{-1}(i)\right|+\frac{1}{c^{2}} N\right) .
\end{aligned}
$$

Summing in all colors we obtain

$$
\sum_{i=1}^{c} \sum_{x \in \mathbb{Z}_{p}} \sum_{a \in\left\{-\frac{p-1}{2}, \ldots, \frac{p-1}{2}\right\}}\left|f_{i}\left(a+P_{x}\right)\right|^{2} \geq\left(\frac{p}{400}\right)^{2}\left(1-\frac{1}{c}\right) N \geq \frac{p^{3}}{8(400)^{2}}
$$

Thus, there exists $a+P_{x}$ and a color i such that $\left|f_{i}\left(a+P_{x}\right)\right| \geq \frac{\sqrt{p}}{(8 c)^{1 / 2} 400} \geq \frac{\sqrt{N}}{c^{1 / 2} 800}$ which completes the proof of Theorem 2.

References

[1] J. Beck, Roth's estimate of the discrepancy of integer sequences is nearly sharp, Combinatorica, 1(4) (1981), 319-325.
[2] B. Doerr, A. Srivastav and P. Wehr, Discrepancies of cartesian products of arithmetic progressions, Electronic Journal of Combinatorics. 11 (1) (2004), R5.
[3] P. Erdős and J. Spencer, Probabilistic methods in Combinatorics, Akademia Kiado, Budapest, 1974.
[4] N. Hebbinghaus, Discrepancy of sums of arithmetic progressions, Electronic Notes in Discrete Mathematics, 17C (2004), 185-189.
[5] N. Hebbinghaus, Discrepancy of sums of two arithmetic progressions, Electronic Notes in Discrete Mathematics, 29 (2007), 547-551.
[6] J. Matoušek, J. Spencer, Discrepancy in arithmetic progressions, Journal of the American Mathematical Society, 9(1) (1996), 195-204.
[7] A. PŘívĚTivý, Discrepancy of sums of three arithmetic progressions, The Electronic Journal of Combinatorics, 13(1) (2006), R5.
[8] K. F. Rotн, Remark concerning integer sequences, Acta Arithmetica, 9 (1964), 257-260.
[9] A. SÁrközy, In P. Erdős and J. Spencer, editors, Probabilistic Methods in Combinatorics. Akadémia Kiadó, Budapest, 1974.
[10] B. Valkó, Discrepancy of arithmetic progressions in higher dimensions, Journal of Number Theory, 92 (2002), 117-130.

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049-Madrid.
E-mail address: franciscojavier.cilleruelo@uam.es

Max-Planck-Institut Für Informatik, SaArbrücken, Germany
E-mail address: nhebbing@mpi-inf.mpg.de

[^0]: First author is supported by Grant CCG07-UAM/ESP-1814 and DGICYT MTM 2005-04730 (Spain)

