DISCREPANCY IN GENERALIZED ARITHMETIC PROGRESSIONS

JAVIER CILLERUELO AND NILS HEBBINGHAUS

ABSTRACT. Estimating the discrepancy of the set of all arithmetic progressions in the first N natural numbers was one of the famous open problem in combinatorial discrepancy theory for a long time, successfully solved by K. Roth (lower bound) and Beck (upper bound). They proved that $D(N) = \min_{\chi} \max_A |\sum_{x \in A} \chi(x)| = \Theta(N^{1/4})$, where the minimum is taken over all colorings $\chi : [N] \to \{-1, 1\}$ and the maximum over all arithmetic progressions in $[N] = \{0, \ldots, N-1\}$.

Sumsets of k arithmetic progressions, $A_1 + \cdots + A_k$, are called k-arithmetic progressions and they are important objects in additive combinatorics. We define $D_k(N)$ the discrepancy of the set $\{P \cap [N] : P \text{ is a k-arithmetic progression}\}$. The second author proved that $D_k(N) = \Omega(N^{k/(2k+2)})$ and Přívětivý improved it to $\Omega(N^{1/2})$ for all $k \geq 3$. Since the probabilistic argument gives $D_k(N) = O((N \log N)^{1/2})$ for all fixed k, the case k = 2 remained the only case with a large gap between the known upper and lower bound. We bridge this gap (up to a logarithmic factor) by proving that $D_k(N) = \Omega(N^{1/2})$ for all $k \geq 2$.

Indeed we prove the multicolor version of this result.

1. INTRODUCTION

Sumsets of k arithmetic progressions, $A_1 + \cdots + A_k$, are called k-arithmetic progressions and they are important objects in additive combinatorics.

Let P a k-arithmetic progression and $[N] = \{0, \ldots, N-1\}$. The imbalance of P due to the coloring $\chi : [N] \to \{-1, 1\}$ is defined by $\chi(P) = \sum_{x \in P} \chi(x)$ where $\chi(x) = 0$ if $x \notin [N]$. The discrepancy of the set of k-arithmetic in [N] is defined by

(1)
$$D_k(N) = \min_{\chi} \max_{P} |\sum_{x \in P} \chi(x)|$$

where the minimum is taken over all possible colorings $\chi : [N] \to \{-1, 1\}$ and the maximum over all k-arithmetic progressions.

Thus, $D_k(N)$ is the least possible imbalance of any k-arithmetic progression that can not be avoided under any coloring $\chi : [N] \to \{-1, 1\}$. For short we write D(N) when k = 1.

One of the most famous open problem in (combinatorial) discrepancy theory was to determine the right order for the discrepancy of the set of arithmetic progressions in the first N natural numbers. That is, the order for D(N).

In 1964, Roth [8] proved $D(N) = \Omega(N^{1/4})$. Using a random coloring of [N], one can easily show that $D(N) = O((N \log N)^{1/2})$. The first non-trivial upper bound is due to Sárközy [9]. In 1973 he proved that $D(N) = O((N \log N)^{1/3})$. A sketch of his beautiful proof can be found in [3]. Inventing the famous partial coloring method,

First author is supported by Grant CCG07-UAM/ESP-1814 and DGICYT MTM 2005-04730 (Spain)

Beck [1] showed in 1981 that Roth's lower bound is nearly sharp. His upper bound of order $O(N^{1/4} \log^{5/4} N)$ was finally improved by Matoušek and Spencer [6] in 1996. They showed by a refinement of the partial coloring method - the entropy method - that $D(N) = O(N^{1/4})$.

After 32 years, this open problem was solved. In the next years several extensions of this discrepancy problem were studied. For example, Doerr, Srivastav and Wehr [2] determined the discrepancy of cartesian product of arithmetic progressions, those of the form $(A_1, \ldots, A_d) \subset [N]^d$ where all A_i are arithmetic progressions. They proved that, in this case, the discrepancy is $\Theta(N^{d/4})$. Another related discrepancy concerning to 1-dimensional arithmetic progressions in the grid $[N]^d$ was studied by Valkó [10]. He proved for the discrepancy in these sets a lower bound of order $\Omega(N^{d/(2d+2)})$ and an upper bound of order $O(N^{d/(2d+2)} \log^{5/2} N)$.

Here we deal with the discrepancy of k-arithmetic progressions in [N]. We observe that, since any k-arithmetic progression is a (k + 1)-arithmetic progression, we have

(2)
$$D(N) = D_1(N) \le D_2(N) \le D_3(N) \le \dots \le D_k(N) \le D_{k+1}(N) \le \dots$$

The second author [4] proved that $D_k(N) = \Omega(N^{k/(2k+2)})$. But there remained a large gap between this bound and the upper bound $D_k(N) = O((N \log N)^{1/2})$ obtained from the random coloring. In 2006 Přívětivý [7] almost closed this gap for $k \ge 3$ by proving $D_3(N) = \Omega(N^{1/2})$. This lower bound clearly implies $D_k(N) = \Omega(N^{1/2})$ for all $k \ge 3$. Thus the case k = 2 was the last case with a large gap between the lower and the upper bound for $D_k(N)$.

In this paper we improve the lower bound for $D_2(N)$ from $\Omega(N^{1/3})$ to $\Omega(N^{1/2})$.

The multicolor version of discrepancies has only been recently investigated. We state our main result in its general multicolor version.

Theorem 1. For all $c \geq 2$ and all $k \geq 2$ we obtain the bound

$$D_k(N,c) = \Omega(N^{1/2})$$

for

$$D_k(N,c) = \min_{\chi} \max_{i=1,...,c} \max_{A} \left| |\chi^{-1}(i) \cap A| - \frac{|A \cap [N]|}{c} \right|,$$

where the minimum is taken over all colorings $\chi : [N] \to \{1, \ldots, c\}$ and the maximum is taken over all colors and k-arithmetic progressions.

It should be noted that $D_k(N) = 2D_k(N, 2)$. Theorem 1 above shows that the upper bound $D_k(N, c) = O((N \log N)^{1/2})$, coming from probabilistic arguments, is nearly sharp for all fixed $k \ge 2$. Theorem 1 above follows immediately from (2) and Theorem 2 below.

Theorem 2. For any coloring $\chi : [N] \to \{1, \ldots, c\}$ there exists a 2-arithmetic progression P and some $i \in \{1, \ldots, c\}$ such that

$$\left| |\chi^{-1}(i) \cap P| - \frac{|P \cap [N]|}{c} \right| \ge \frac{N^{1/2}}{800c^{1/2}}.$$

Acknowledgements: This paper is a follow up of Hebbinghaus [5] where the main result was already stated and proved for c = 2. The present version contains a simplified version of the original proof and the extension for all $c \ge 2$.

2. Proof of theorem 2

2.1. Discrete Fourier Analysis in \mathbb{Z}_p . : Let p be a prime. For any function $f : \mathbb{Z} \to \mathbb{C}$ we define $\hat{f} : \mathbb{Z}_p \to \mathbb{C}$ by

$$\hat{f}(a) = \sum_{x \in \mathbb{Z}} f(x) \omega^{ax}$$

where $\omega = e^{\frac{2\pi i}{p}}$. The convolution of two functions f * g is defined by

$$(f * g)(x) = \sum_{y \in \mathbb{Z}} f(y)g(x - y)$$

and it satisfies $\widehat{f * g} = \widehat{f}\widehat{g}$.

Lemma 1 (Folklore). If $supp(f) \subset \{-\frac{p-1}{2}, \dots, \frac{p-1}{2}\}$ then

$$\sum_{x \in \mathbb{Z}} |f(x)|^2 = \frac{1}{p} \sum_{x \in \mathbb{Z}_p} |\hat{f}(x)|^2.$$

2.2. **Proper 2-arithmetic progressions.** A 2-arithmetic progression is a set of the form

$$P = \{a + \delta_1 j_1 + \delta_2 j_2 : j_1 \in [L_1], j_2 \in [L_2]\}$$

for some $a \in \mathbb{Z}$ and some $\delta_1, \delta_2, L_1, L_2 \in \mathbb{N}$. We say that P is proper if all elements $a + \delta_1 j_1 + \delta_2 j_2$ are distinct.

Lemma 2. If $(\delta_1, \delta_2) = 1$ and $L_1 \leq \delta_2$ then P is proper.

Proof. Otherwise, $\delta_1 j_1 + \delta_2 j_2 = \delta_1 j'_1 + \delta_2 j'_2 \implies \delta_1 (j_1 - j'_1) = \delta_2 (j'_2 - j_2)$ and then (since $(\delta_1, \delta_2) = 1) \ \delta_2 | (j_1 - j'_1)$, in particular $\delta_2 < L_1$.

Lemma 3. For all $a \in \mathbb{Z}_p$ there exists a proper 2-arithmetic progression

$$P_a = \{\delta_1 j_1 + \delta_2 j_2 : j_i \in [L_i], i = 1, 2\} \subset [N]$$

such that $|\hat{1}_{-P_a}(a)| \ge p/400.$

Proof. For a = 0 we take $P_0 = [N]$ and it is clear that $|\hat{1}_{-P_0}(0)| = N \ge p/4$. For $a \not\equiv 0 \pmod{p}$, let δ_1 be the least positive integer such that

(3)
$$a\delta_1 = r_1 + a_1 p, \qquad 1 \le r_1 < \sqrt{p}$$

for some integer a_1 . Using the pigeonhole principle we can check that $1 \leq \delta_1 \leq \sqrt{p}$. Then $m = \max\{r_1, \delta_1\} \leq \sqrt{p}$. Sometimes we will use that $m \leq p/m$.

Let δ_1^* be the solution of the congruence $a_1 x \equiv -1 \pmod{\delta_1}$ in $[\delta_1]$. Then

(4)
$$a_1^* \delta_1 - \delta_1^* a_1 = 1, \qquad 0 \le \delta_1^* < \delta_1$$

for some positive integer a_1^* . We define $L_1 = \left\lceil \frac{p}{16m} \right\rceil$, $L_2 = \left\lceil \frac{m}{16} \right\rceil$, $k = \left\lceil \frac{p}{\delta_1 m} \right\rceil$ and

(5)
$$\delta_2 = \delta_1^* + \delta_1 k.$$

We claim that the 2-progression $P_a = \{\delta_1 j_1 + \delta_2 j_2 : j_i \in [L_i], i = 1, 2\}$ satisfies the conditions of Lemma 3. To see that $P_a \subset [N]$ we observe that

$$0 \le \delta_2 \le \delta_1^* + \delta_1 \left(\frac{p}{\delta_1 m} + 1\right) \le \frac{p}{m} + 2\delta_1 \le \frac{p}{m} + 2m \le \frac{p}{m} + \frac{2p}{m} = \frac{3p}{m}$$

so the largest element in P_a is

$$\delta_1(L_1 - 1) + \delta_2(L_2 - 1) \le m \frac{p}{16m} + \frac{3p}{m} \frac{m}{16} \le \frac{p}{4} < N.$$

To see that P_a is proper we observe that relations (4) and (5) imply that $(\delta_1, \delta_2) = 1$. On the other hand if $L_1 > \delta_2$ then $1 + \frac{p}{16m} \ge \delta_1 k \ge \frac{p}{m} \implies 1 \ge \frac{15p}{16m} \ge \frac{15\sqrt{p}}{16} \implies p \le 1$. So $L_1 \le \delta_2$ and we use Lemma 2 to conclude that P_a is proper.

Since P_a is proper we can write

(6)
$$\hat{1}_{-P_a}(a) = \sum_{x \in P_a} \omega^{-ax} = \left(\sum_{j_1 \in [L_1]} \omega^{-a\delta_1 j_1}\right) \left(\sum_{j_2 \in [L_2]} \omega^{-a\delta_2 j_2}\right).$$

Since $|r_1(L_1 - 1)| \le r_1 p/(16m) \le p/16$ we have

(7)
$$\left| \sum_{j_1 \in [L_1]} \omega^{-a\delta_1 j_1} \right| \ge \mathcal{R} \left(\sum_{j_1 \in [L_1]} \omega^{-r_1 j_1} \right) \ge L_1 \min_{j_1 \in [L_1]} \cos(2\pi r_1 j_1 / p) \ge L_1 \cos(\pi / 8).$$

We observe that

$$a\delta_{2} \equiv a(\delta_{1}^{*} + \delta_{1}k) \equiv a\delta_{1}^{*} + r_{1}k \equiv \left(\frac{r_{1} + a_{1}p}{\delta_{1}}\right)\delta_{1}^{*} + r_{1}k \equiv \frac{r_{1}\delta_{1}^{*} + (a_{1}^{*}\delta_{1} - 1)p}{\delta_{1}} + r_{1}k$$
$$\equiv \frac{r_{1}\delta_{1}^{*} - p}{\delta_{1}} + r_{1}k \equiv \frac{r_{1}\delta_{1}^{*} - p + r_{1}p/m}{\delta_{1}} + r_{1}\left(1 - \left\{\frac{p}{\delta_{1}m}\right\}\right) \pmod{p}.$$

We write r_2 for the last long expression. Since $r_1 \leq m$ and $\delta_1^* < \delta_1$ we have that $r_2 \leq 2r_1 \leq 2m \leq 2p/m$. If $m = r_1$ then $0 \leq r_2$. If $m = \delta_1$ then $r_2 \geq -p/\delta_1 = -p/m$. In any case we have $|r_2| \le 2p/m$, so $|r_2(L_2 - 1)| \le (2p/m)(m/16) \le p/8$. Thus,

(8)
$$\left| \sum_{j_2 \in [L_2]} \omega^{-a\delta_2 j_2} \right| \ge \mathcal{R}\left(\sum_{j_2 \in [L_2]} \omega^{-r_2 j_2} \right) \ge L_2 \min_{j_2 \in [L_2]} \cos(2\pi r_2 j_2/p) \ge L_2 \cos(\pi/4).$$

Finally, (6), (7) and (8) give $|\hat{1}_{-P_1}(a)| > L_1 \cos(\pi/8) L_2 \cos(\pi/4) > p/400.$

Finally, (6), (7) and (8) give $|\hat{1}_{-P_a}(a)| \ge L_1 \cos(\pi/8) L_2 \cos(\pi/4) \ge p/400.$

2.3. End of the proof. For any coloring $\chi: [N] \to \{1, \ldots, c\}$ we consider the functions $f_i: \mathbb{Z} \to \mathbb{C}, i = 1, \dots, c$ defined by

$$f_i(x) = \begin{cases} 1 - \frac{1}{c} & \text{if } x \in \chi^{-1}(i) \cap [N] \\ -\frac{1}{c} & \text{if } x \in [N] \setminus \chi^{-1}(i) \\ 0 & \text{otherwise.} \end{cases}$$

For any set $P \subset \mathbb{Z}$ we write $f(P) = \sum_{x \in P} f(x)$. We observe that for any set P,

$$f_i(P) = \sum_{x \in P} f_i(x) = |\chi^{-1}(i) \cap P| - \frac{|P \cap [N]|}{c}$$

If we write 1_P for the characteristic function of the set P, we can see easily that

$$f_i(a+P) = f_i * 1_{-P}(a).$$

Now we take a prime p such that $2N . We observe that if <math>P \subset [N]$ and $a \notin \{-\frac{p-1}{2}, \ldots, \frac{p-1}{2}\}$ then $f_i(a+P) = 0$ and we can apply Lemma 1 to the function $f_i * 1_{-P}$ to get

$$\sum_{a \in \mathbb{Z}} |f_i * 1_{-P}(a)|^2 = \frac{1}{p} \sum_{a \in \mathbb{Z}_p} |\widehat{f_i * 1_{-P}(a)}|^2 = \frac{1}{p} \sum_{a \in \mathbb{Z}_p} |\widehat{f_i}(a)|^2 |\widehat{1}_{-P}(a)|^2.$$

By Lemma 3 we can select, for any $a \in \mathbb{Z}_p$, a proper 2-arithmetic progression P_a such that $|\hat{1}_{-P_a}(a)| \ge p/400$. Thus,

$$\begin{split} \sum_{x \in \mathbb{Z}_p} \sum_{-\frac{p-1}{2} \le a \le \frac{p-1}{2}} |f_i(a+P_x)|^2 &= \sum_{x \in \mathbb{Z}_p} \sum_{a \in \mathbb{Z}} |f_i * 1_{-P_x}(a)|^2 \\ &= \frac{1}{p} \sum_{a \in \mathbb{Z}_p} |\hat{f}_i(a)|^2 \sum_{x \in \mathbb{Z}_p} |\hat{1}_{-P_x}(a)|^2 \ge \frac{1}{p} \sum_{a \in \mathbb{Z}_p} |\hat{f}_i(a)|^2 |\hat{1}_{-P_a}(a)|^2 \\ &\ge \left(\frac{p}{400}\right)^2 \frac{1}{p} \sum_{a \in \mathbb{Z}_p} |\hat{f}_i(a)|^2 = \left(\frac{p}{400}\right)^2 \sum_{a \in \mathbb{Z}_p} |f_i(a)|^2 \\ &= \left(\frac{p}{400}\right)^2 \left(\left(1 - \frac{1}{c}\right)^2 |\chi^{-1}(i)| + \frac{1}{c^2}(N - |\chi^{-1}(i)|)\right) \\ &= \left(\frac{p}{400}\right)^2 \left(\left(1 - \frac{2}{c}\right) |\chi^{-1}(i)| + \frac{1}{c^2}N\right). \end{split}$$

Summing in all colors we obtain

$$\sum_{i=1}^{c} \sum_{x \in \mathbb{Z}_p} \sum_{a \in \{-\frac{p-1}{2}, \dots, \frac{p-1}{2}\}} |f_i(a+P_x)|^2 \ge \left(\frac{p}{400}\right)^2 \left(1-\frac{1}{c}\right) N \ge \frac{p^3}{8(400)^2}$$

Thus, there exists $a + P_x$ and a color *i* such that $|f_i(a + P_x)| \ge \frac{\sqrt{p}}{(8c)^{1/2}400} \ge \frac{\sqrt{N}}{c^{1/2}800}$ which completes the proof of Theorem 2.

References

- J. BECK, Roth's estimate of the discrepancy of integer sequences is nearly sharp, Combinatorica, 1(4) (1981), 319-325.
- [2] B. DOERR, A. SRIVASTAV AND P. WEHR, Discrepancies of cartesian products of arithmetic progressions, *Electronic Journal of Combinatorics*. 11 (1) (2004), R5.
- [3] P. ERDŐS AND J. SPENCER, Probabilistic methods in Combinatorics, Akademia Kiado, Budapest, 1974.
- [4] N. HEBBINGHAUS, Discrepancy of sums of arithmetic progressions, *Electronic Notes in Discrete Mathematics*, **17C** (2004), 185-189.
- [5] N. HEBBINGHAUS, Discrepancy of sums of two arithmetic progressions, *Electronic Notes in Discrete Mathematics*, 29 (2007), 547-551.
- [6] J. MATOUŠEK, J. SPENCER, Discrepancy in arithmetic progressions, Journal of the American Mathematical Society, 9(1) (1996), 195-204.
- [7] A. PŘÍVĚTIVÝ, Discrepancy of sums of three arithmetic progressions, The Electronic Journal of Combinatorics, 13(1) (2006), R5.
- [8] K. F. ROTH, Remark concerning integer sequences, Acta Arithmetica, 9 (1964), 257-260.
- [9] A. SÁRKÖZY, In P. Erdős and J. Spencer, editors, Probabilistic Methods in Combinatorics. Akadémia Kiadó, Budapest, 1974.
- [10] B. VALKÓ, Discrepancy of arithmetic progressions in higher dimensions, Journal of Number Theory, 92 (2002), 117-130.

JAVIER CILLERUELO AND NILS HEBBINGHAUS

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA DE MADRID, 28049-MADRID. *E-mail address:* franciscojavier.cilleruelo@uam.es

MAX-PLANCK-INSTITUT FÜR INFORMATIK, SAARBRÜCKEN, GERMANY *E-mail address*: nhebbing@mpi-inf.mpg.de

6