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ABSTRACT. Estimating the discrepancy of the set of all arithmetic progressions in
the first N natural numbers was one of the famous open problem in combinatorial
discrepancy theory for a long time, successfully solved by K. Roth (lower bound)
and Beck (upper bound). They proved that D(N) = miny maxa |> 4 x(®)] =
©(N/4), where the minimum is taken over all colorings x : [N] — {—1,1} and the
maximum over all arithmetic progressions in [N] = {0,..., N — 1}.

Sumsets of k arithmetic progressions, A + - - - + A, are called k-arithmetic pro-
gressions and they are important objects in additive combinatorics. We define Dy (V)
the discrepancy of the set {P N[N]: P is a k-arithmetic progression} . The second
author proved that Dy (N) = Q(N*/(2k+2)) and Pifvétivy improved it to Q(N1/2)
for all k > 3. Since the probabilistic argument gives Dy (N) = O((N log N)/2) for
all fixed k, the case k = 2 remained the only case with a large gap between the known
upper and lower bound. We bridge this gap (up to a logarithmic factor) by proving
that Dy(N) = Q(N'/2) for all k > 2.

Indeed we prove the multicolor version of this result.

1. INTRODUCTION

Sumsets of k arithmetic progressions, A1+- - -+ Ay, are called k-arithmetic progressions
and they are important objects in additive combinatorics.

Let P a k-arithmetic progression and [N] = {0,..., N — 1}. The imbalance of P due
to the coloring x : [N] — {—1,1} is defined by x(P) = >_,.p x(2) where x(z) = 0 if
x & [N]. The discrepancy of the set of k-arithmetic in [N] is defined by
(1) Dy(N) = min mgx| Z x(x)]

rEP
where the minimum is taken over all possible colorings x : [N] — {—1,1} and the
maximum over all k-arithmetic progressions.

Thus, Dg(N) is the least possible imbalance of any k-arithmetic progression that can
not be avoided under any coloring x : [N] — {—1,1}. For short we write D(N) when
k=1.

One of the most famous open problem in (combinatorial) discrepancy theory was to

determine the right order for the discrepancy of the set of arithmetic progressions in the
first N natural numbers. That is, the order for D(N).

In 1964, Roth [8] proved D(N) = Q(N'/*). Using a random coloring of [N], one
can easily show that D(N) = O((Nlog N)'/?). The first non-trivial upper bound is
due to Sarkozy [9]. In 1973 he proved that D(N) = O((Nlog N)'/3). A sketch of
his beautiful proof can be found in [3]. Inventing the famous partial coloring method,
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Beck [1] showed in 1981 that Roth’s lower bound is nearly sharp. His upper bound
of order O(N'/4 log®/* N') was finally improved by Matousek and Spencer [6] in 1996.
They showed by a refinement of the partial coloring method - the entropy method - that
D(N) = O(N'/4).

After 32 years, this open problem was solved. In the next years several extensions
of this discrepancy problem were studied. For example, Doerr, Srivastav and Wehr [2]
determined the discrepancy of cartesian product of arithmetic progressions, those of the
form (Ay,...,Aq) C [N]? where all A; are arithmetic progressions. They proved that,
in this case, the discrepancy is ©(N%*). Another related discrepancy concerning to
1-dimensional arithmetic progressions in the grid [N]? was studied by Valké [10]. He
proved for the discrepancy in these sets a lower bound of order Q(N d/ (2d+2)) and an
upper bound of order O(N%/(24+2) 1g%/2 ),

Here we deal with the discrepancy of k-arithmetic progressions in [N]. We observe
that, since any k-arithmetic progression is a (k + 1)-arithmetic progression, we have

(2)  D(N)=Di(N) < Dy(N) < D(N) <+ < Dy(N) < D1 (N) < - -

The second author [4] proved that Dy (N) = Q(N*/(2:+2)) But there remained a large
gap between this bound and the upper bound Dy (N) = O((N log N)/?) obtained from
the random coloring. In 2006 Piivétivy [7] almost closed this gap for k& > 3 by proving
D3(N) = Q(N'/?). This lower bound clearly implies Dy(N) = Q(N'/?) for all k& > 3.
Thus the case k = 2 was the last case with a large gap between the lower and the upper
bound for Dy (N).

In this paper we improve the lower bound for Dy(N) from Q(N'/3) to Q(N'/2).

The multicolor version of discrepancies has only been recently investigated. We state
our main result in its general multicolor version.

Theorem 1. For all ¢ > 2 and all k > 2 we obtain the bound

Di(N,c) = Q(N'/?)

for
AN[N
Dy(N,c) = min max max |[x (i) N A| — AN N ,
X i=l,...,c A c
where the minimum is taken over all colorings x : [N] — {1,...,c} and the mazimum is

taken over all colors and k-arithmetic progressions.

It should be noted that Dy(N) = 2Dy (N,2). Theorem 1 above shows that the upper
bound Dy (N, ¢) = O((N log N)'/?), coming from probabilistic arguments, is nearly sharp
for all fixed k > 2. Theorem 1 above follows immediately from (2) and Theorem 2 below.

Theorem 2. For any coloring x : [N] — {1,...,c} there exists a 2-arithmetic progres-
sion P and some i € {1,...,c} such that

L PAN]| . NV2
NnP|— > .
NP >
Acknowledgements: This paper is a follow up of Hebbinghaus [5] where the main
result was already stated and proved for ¢ = 2. The present version contains a simplified
version of the original proof and the extension for all ¢ > 2.
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2. PROOF OF THEOREM 2

2.1. Discrete Fourier Analysis in Z,. : Let p be a prime. For any function f : Z — C
we define f : Z, — C by

f@) =3 flayw
TEZ

27

where w = e » . The convolution of two functions f * g is defined by
(fx9)(@) =Y fglz—y)
YEL
and it satisfies f/:k\g = fg.
Lemma 1 (Folklore). If supp(f) C {—%, ey %} then

S @) =}9 S @)

TEL TE€Lp

2.2. Proper 2-arithmetic progressions. A 2-arithmetic progression is a set of the
form

P ={a+d1j1+ 252 : j1 € [L1], j2 € [L2]}

for some a € Z and some 41,02, L1, Ly € N. We say that P is proper if all elements
a + 51j1 + 52j2 are distinct.

Lemma 2. If (§1,02) =1 and Ly < § then P is proper.
Proof. Otherwise, 0171 + d2j2 = 0171 + 02j5 = 91(j1 —j1) = 62(j5 — j2) and then (since
(01,02) = 1) 82](j1 — J1), in particular dy < L;. O
Lemma 3. For all a € Z,, there exists a proper 2-arithmetic progression

Py ={01j1 + 622+ ji € [Ls], i=1,2} C[N]
such that |1_p, (a)| > p/400.

Proof. For a = 0 we take Py = [N] and it is clear that |[1_p,(0)| = N > p/4. For a # 0
(mod p), let d; be the least positive integer such that

(3) ady =71 + a1p, 1<r <.p

for some integer a;. Using the pigeonhole principle we can check that 1 < 6; < |/p.
Then m = max{ry,0:} < ,/p. Sometimes we will use that m < p/m.

Let 67 be the solution of the congruence a;z = —1 (mod d1) in [01]. Then

(4) afél — 5?&1 =1, 0< (51‘ <

for some positive integer aj. We define Ly = [£-], Lo = [£], k = [ P —‘ and

(5) 8y = &% + 01k

We claim that the 2-progression P, = {0171 + 0272 : Ji € [Li], ¢ = 1,2} satisfies the
conditions of Lemma 3. To see that P, C [IN] we observe that
2 _3p

0§62§6f+61(5pm+1>si+2élgi+2msi+m—m,
1
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so the largest element in P, is

P P
Li—1 Ly—1)<m P 2P P _ N
0Ly = 1)+ 0a(Lo = 1) Smpen 4 e <5 <

To see that P, is proper we observe that relations (4) and (5) imply that (d1,02) = 1.
On the other hand if Ly > 8, then 1+ 2= > 61k > £ = 1> 222 > D¥P — <1,

= 16m = " 16
So L1 < §5 and we use Lemma 2 to conclude that P, is proper.

Since P, is proper we can write

(6) o)=Y o= [ 3 et | [ 30 e

zeEP, j1€[L1] j2€[L2]

Since |r1(L1 — 1) < r1p/(16m) < p/16 we have

(7) Z w0 >R Z w ™I | > Ly min cos(2mryj1/p) > Ly cos(m/8).
J1€[L1] J1€[L1] freltal

We observe that

ady = a(0] + 01k) = adf +rk = (7“1-;611]9) 07 +mk = rdp + (3161 —Up +rik
1 1
_ méi-p _ridf —p+rip/m p
= - < k = 1 - EP— d .
5 +r 5 +r G (mod p)

We write 72 for the last long expression. Since r1 < m and 6] < d; we have that
re < 2r; <2m < 2p/m. If m =ry then 0 < ro. If m =67 then ro > —p/d1 = —p/m. In
any case we have |rq| < 2p/m, so |ro(La — 1)| < (2p/m)(m/16) < p/8. Thus,

(8) Z w202 > R Z w2 | > L, <m[i£1]cos(27rr2j2/p) > Loy cos(m/4).
j2€[L2] j2€[L2] J2€lbe

Finally, (6), (7) and (8) give ‘i,pa (a)| = Ly cos(w/8) L cos(m/4) > p/400. O
2.3. End of the proof. For any coloring x : [N] — {1,..., ¢} we consider the functions
fi:Z—C, i=1,...,c defined by
1-1 ifzex (i) N[N
filr)={—¢ iz e [N]\x'()
0 otherwise.
For any set P C Z we write f(P) = )__ .p f(x). We observe that for any set P,
1. PN[N
5P = X sty =@y n e - T

zEP
If we write 1p for the characteristic function of the set P, we can see easily that
fila+ P) = fix1_p(a).

Now we take a prime p such that 2N < p < 4N. We observe that if P C [N] and
a & {—%, e, ”2;1} then f;(a + P) = 0 and we can apply Lemma 1 to the function
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fi*x1_p to get

Z‘fl*l p( Z |fz*1 P Z |fz |17P(a)|2'

a€Z aEZ aEZ

By Lemma 3 we can select, for any a € Z,, a proper 2-arithmetic progression P, such
that [1_p, (a)| > p/400. Thus,

Yooo> e+ P)P = Y > lfixlop(a)

TELp 7PT71§¢1§% €Ly a€Z
= *Zlfz )12 1i-r.(a) Zlfz )PP, (a)®
aEZ TEZLy aEZ
p
= (400) D Z fila (f) >_ lfila

a€Zy
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Summing in all colors we obtain

XYY iserrrz(g) (1) vz g

=1 xEZpae{ P 1 71021}

which

Thus, there exists a + P, and a color 4 such that |f;(a+ P,)| > v >

N
(8¢)172400 = ¢1/2800

completes the proof of Theorem 2.
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