QUASI SIDON SETS

JAVIER CILLERUELO

ABSTRACT. We study sets of integers A with |4 — A| close to |A|? and prove

that [A] < v/n + /|A]? = |A — A] for any set A C {1,...,n}. For infinite
sequences of positive integers A = (a,,) we define A,, = {ay,...,a,} and prove
that if |4, — A,| ~ n? then limsup,,_,., a,/n?> = co. On the opposite hand
we construct, for any positive function w(n) — oo, an infinite sequence A
satisfying |A,, — A,| ~ n? and a,, < w(n)n?.

1. INTRODUCTION

A Sidon set is a set of integers having the property that all the nonzero dif-
ferences a — a’, a,a’ € A are distinct; i.e. the difference set A — A = {a — d' :
a,a’ € A} has the maximum possible size: |[A — A| = |A|* — |A| + 1.

Sidon sets have been studied for a long time but we are interested here in

those sets with |A — A| close to |A|? (quasi difference Sidon sets). We prove the
inequality

(1.1) Al < v+ V|A]2 - |A - A

for any set A C {1,...,n}. An inmediate consequence of this inequality is that
if |[A— Al = |A]*(1 + o(1)), then |A| < y/n(1 + 0o(1)), the same asymptotic
upper bound we have for Sidon sets. We deduce oher results on Sidon sets from
inequality (1.1).

Our main results concern to infinite quasi difference Sidon sequences A = (ay,).
Denote A, ={ay,...,a,}. We say that A is a quasi difference Sidon sequence if
|A,, — A,| ~ n% We prove that if A is a quasi difference Sidon sequence then
(1.2) lim sup a, /n® = oc.

n—oo

Erdés proved that limsup,,_, . a,/(n*logn) > 0 for Sidon sequences, but con-
clusion (1.2) is best possible for quasi difference sequences. Indeed we can con-
struct, for any positive function w(n) — oo, an infinite sequence A = {a, } with
|A, — A,| ~n? and a, < w(n)n?.
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We cannot decide if (1.2) holds for quasi sum Sidon sequences, those sequences
with |A, + A,| ~ n?/2.

2. FINITE QUASI SIDON SETS

We start with an inequality which is non trivial for those sets A with |A — A]
close to |AJ%. This inequality simplifies some proofs of known results about Sidon
sets. A less precise version of the inequality below has appeared before in [1] and

[10].
Theorem 2.1. If A C {1,...,n} then

(2.1) Al < Vi + VAP —JA— 4]

Theorem 2.1 is a consequence of the following lemma, which is generalization
of Theorem 4.2 in [17].

Lemma 2.1. Let A and B be two subsets of an abelian group G. Then we have

AP — A — A|>
|Bi '

(2.2) |A]? < |A + B| (1 +

Proof. As usual we define raip(z) = #{(a,b) € Ax B : a+b = n}. The
following equalities are well known:

i) |AlIB] = 3 peq rarn(t)
i) 2 pec Tar(®) = Yaeara-alz)re-p(x).

Cauchy inequality and the identities above give the following inequality:

(JA||B|)? = ( Z rA+B(x)> < \A+B\Zr§+3(x)

r€A+B

= |A+B| Y raal@)rs_p(x)

= |A+ B| ( Z TB_B<J]) + Z (T’A_A(ZL’) — 1)7“B_B(ZL')>
<[A+B| (ZTBB(:UH Bl Y (ra—a(e) - 1)>

<|A+B|(IBI* + [B|(|A]" = [A = A]) .
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When A is a Sidon set then |[A — A| = |A|* — |A| + 1 and Lemma 2.1 gives the
following inequality proved by Ruzsa[l17]:

(2.3) |A? < |A+ B <1+ ’A”B_‘ 1).

Proof of Theorem 2.1. We consider the set B = [0,{] N Z with
L= [Vn(AP - A - AJ).

Then |[A+ B| <n+1y|B|=10+1 and Lemma 3.1 implies that

AP = [A- A
2 1]
|A| _(n—irl)( + T
AP —JA—- A
<n+l+n(|| | |>+|A|2—|A—A|
[+1

<n+2y/n(AP2 — |A— A]) + |A> — |A - A|
= (Vn+ ]AP — |A - A

and we get the inequality of the Theorem. 0

This inequality has interesting consequences. The first one is the best known
upper bound for the size of Sidon sets in intervals [3].

Corollary 2.1. If A C [1,n] is a Sidon set then |A| < \/n+n'/* +1/2.

Proof. If A is a Sidon set then |A — A| = |A|? — |A] + 1 and the inequality (2.1)
implies

Al < Ve VTAT=T = (JA] - Vi) < 4] - L

Writting |A| = Vn+ent/t 41 /2 and putting this expression in the last inequality
we obtain

AEnt? 4 ent* +1/4 < 0?4 ent/t —1)2,

which provides a contradiction when ¢ > 1. OJ

Ruzsa called weak-Sidon sets those sets having the property that all the sums
a+dad, a#d, a,ad € A are distinct. Notice that 2a = o’ + a” is allowed, so any
Sidon set is a weak-Sidon set but the converse is not true. Ruzsa [17] proved that
the cardinality of a weak Sidon set A C [1,7n] is bounded by /n + 4n'/* +11. P.
Mark [15] improved it to \/n 4 v/3n'/* + O(1). We give a short proof of this last
result.

Corollary 2.2. If A C [1,n] is a weak Sidon set then |A| < /n+v/3n'/* +3/2.
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Proof. Define the sets

(A= A) = {z: 2 £0, ra_a(@) =1}

(A=A ={o: a2 #0, raale) = 2).
It is clear that ry_4(xz) < 2 for any x # 0. Otherwise we would have z =
a—b=c—dwith a # d and b # ¢, which is not allowed. On the other hand,
if z € (A — A)y then there exists a,b,c € A such that t = a—b =c¢—a or
x =b—a = a— c Thus, each non trivial arithmetic progression of elements of

A, say 2a = b+ ¢ corresponds to two elements of (A — A), say © = a — b and
x = b— a. Thus we have

AP = ) ra-alz) = Al +[(A— A +2|(A - A)

[Al+ A = Al = 1+ [(A = A),|
= |A|+|A— A —1+2|P,
where Pj is the set of non trivial arithmetic progressions in A. Clearly |Ps| <
|A| — 2. Thus
A]2 = |A— A] < 3]A] - 5.
Theorem 2.1 implies that

|Al < vn++/3|A| = 5.

Writing |A| = /n + en'/* 4+ 3/2 an substituying this in (|A] — /n)? < 3|4| — 5
we get

Avn 4 3en'/* +9/4 < 3v/n + 3entt —1/2
and then ¢2\/n + 11/4 < 3y/n, which implies that ¢ < v/3. O

The B, sets are sets A with the property that all the sums a; +-- -+ ayp, a1 <
- < ap, a; € A are all distinct. The B, sets are just the Sidon sets. While there
are constructions of By sets in [1,n] with ~ n'/" elements, it is unknown the
asymptotic estimate for the largest cardinality of a By, set in [1,n] when h > 3.
The easy counting argument gives the upper bound (h - h!n)Y/". A non trivial
upper bound was obtained by Lindstrom [14] for By sets, by Jia [13] for B, sets
with h even and by Chen [2] for Bj, sequences with h odd. These upper bounds
have been improved slightly using deeper methods (see [4] and [11]). We present
here a shorter proof of Jia’s estimate as consequence of Theorem 2.1.

Corollary 2.3. If A C [1,n] is a By, set then |A] < (h - h!2n)YCh (1 + o(1)).
Proof. Assume that A is a By, set. For each x = ay+---+a;, € hA we define the

multiset Z = {ay,...,a}. We observe that any z has at most one representation
of the form 2z = z — y with x,y € hA and TNy = (. The reason is that if
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x—y=1a"—1vy then x +9 =y + 2’ and since A is a By, set then TUY =7 U7.
But since TNy =7 Ny = () we have that x = 2/, y = . Thus we get
RAP = Y rhacna(z) = [hA—hA[+ > (rpapa(z) = 1)
2€hA—hA 2€hA—hA
and the last sum is bounded by the number of pairs (z,y) € hA x hA with
7Ny # (0, which is O(|A[*»1). Since |hAJ]? = (|A|J;Lh71)2 > |A|*" we have that
|hA — hA| = |RA|*(1 4 o(1)).

Assuming this we apply the inequality (2.1) to get |hA| < vVhn(1 + o(1)). The
asymptotic estimate |hA| ~ |A|"/h! finishes the proof. O

We finish the colection of consequences of Theorem 2.1 with the following
Corollary.

Corollary 2.4. If A C [1,n] and |A — A| ~ |A|* then |A] < /n(1+ 0o(1)).

This Corollary follows inmediately from Theorem 2.1, but what it is interesting
is that we have not a similar conclusion for sets A with |A+ A| ~ |A|?>/2. Indeed
Erdés and Freud [7, 8, 9] gave an example of a set A C [1,n] with |[A+A| ~ |A|?/2
of size |A| ~ %\/ﬁ They considered the set A = B U (n — B) where B C
[1,n/3) is a Sidon set of asymptotic size \/n/3. It is unknown if the constant
\% is the largest constant for this problem. Trivially |A| < 2y/n(1 + o(1)) if
A C [1,n] and |A + A| ~ |A[]*/2. Erd6s and Freud claimed to have a proof of
|A| < 1.98y/n(140(1)) but Pikhurko [16] has proved that |A] < 1.863y/n(140(1)).

Obviously, the set A constructed by Erdés and Freud is an example of a set
with |A + A| ~ |A]?/2 but |A — A] # |A|>. Ruzsa [19] has proved that there
exists ¢ > 0 and sets A with |[A — A| ~ |A|? and |A + A| < |A|*"¢ and sets with
|A+ A] ~ |A]?/2 and |A — A|] < JA]*-.

3. INFINITE QUASI SIDON SEQUENCES

A simple counting argument shows that if A = (a,,) is an infinite Sidon sequence
then a, > n?. Then, it is a natural question to ask if there is an infinte Sidon
sequence A with a, < n?. Erdds (see Theorem 8, Chapter II in [12]) gave a
negative answer to this question.

Theorem 3.1 (Erdés). If A is an infinite Sidon sequence then

. Qn
(3.1) hglj;jp; = 00.

Indeed Erdés proved that if A is an infinite Sidon sequence then

(3.2) lim sup 2a—n > 1.
nsco  N2logn
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We prove here that (3.1) also holds for quasi difference Sidon sequences. The
proof of Theorem 3.2 follows the ideas of Erdds to prove (3.2).

Theorem 3.2. If A = (a,) is an mﬁm'te quasi difference Sidon sequence then

(3.3) lim sup = 00.

n—oo n2
Proof. Denote A" = AN[1,n], so A(n) = |A"|. We observe that (3.3) is equivalent
to liminf, ., A(n)/v/n = 0. This is what we are proving.

Since A is a quasi difference sequence then |A" — A™| ~ |A"|?, which implies
that there exists a positive decreasing function ¢(n) — 0 such that

(3.4) A" — A" = |A™*(1 — e(n)).

We consider the intervals I, = ((k — 1)n,kn], k= 1,...,w(n) where w(n) =
[1/4/€(n)]. We denote Dy, = |[AN I;| and m = nw(n). It is clear that

2 (gk) D ranan(@ Snt Y (ramoan(@) —1).
k<w(n) 1<z<n zEAM_A™

On the other hand
AP = > ramoam(@) = |A" = A+ D (ramoan(x) — ).

TEAM—A™ TEAM—Am

Then, using (3.4) and |A™|?> < m(1 + o(1)) we have

IN

Dy~ n+4|AT2 — A" — A"
= (%)
< n+e(m)|A™|
< ntem)m(l+on(l))
< n+e(nw(n))(w(n)n)(1+ on(1)).

Notice that e(nw(n))w(n) < e(n)w(n) < y/€(n) — 0. So,
Dy,
<n(1+o(1)).
z )

On the one hand

R DI I DY

k<w(n) k<w(n) kE<w(n)

with
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and
o=y (F)r X o
k<w(n) k<w(n) k<w(n)

< n(l+o(1)) + A"

< n(l+o0(1)) +O0(y/nw(n)) <n(l+o(1)).
Thus

Dy, 1/2

(3.5) Z —= < (nlogw(n))"2.

k<w(n) \/E
On the other hand

Z Zk<t Dkdt 1 < A([t]n) dt
\/_ =2 t3/2 2, 32

If liminf, . (:U)/\/E > 0 we would have that A([t]n) > /[t|n and then

w(n)
> = >>\/‘/ —>>\/_logw()
k:<w(n)
which is a contradiction with (3.5). O

The following Theorem shows that Theorem 3.2 is sharp. Note that (3.2) does
not hold for quasi difference Sidon sequences (take any function w(n) = o(logn)
in Theorem 3.3).

Theorem 3.3. For any positive function w(n) — 0o as n — oo it is possible
to construct an infinite a sequence A = {a,} satisfying |A, — A,| ~ n*® and
a, < w(n)n?.

Proof. We can assume that w(n) is a non decreasing function. Otherwise we can
consider the function w’(n) = inf,,>, w(n).

Lemma 3.1. For any non decreasing positive function w(n) — oo; there exists
a no decreasing function w*(n) satisfying the following conditions:

i) w*(n) <w(n).
i) w*(n+1) <w*(n)(1+ 1/n).
i) w*(n) — oo.
Proof. Define w*(1) = w(1) and for n > 1,
w*(n+1) = min(w(n + 1),w*(n)(1 + 1/n)).

If w*(n+1) = w*(n)(1 4+ 1/n) then it is clear that w*(n + 1) > w*(n). If
w*(n+1) = w(n + 1) we also have that

w(n+1) >w(n) > min(w(n),w* (n —1)(1+1/(n —1))) = w*(n).
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Thus, w*(n) is a non decreasing function.

The conditions i) and ii) are trivial consequences from the definition of w*(n).
For iii), we distinghis two cases:

no—+1

a) Ifw*(n+1) = w*(n)(1+1/n) for n > ng then w*(ng+m) = w*(ne) [y (1 + )
and then w*(ng + m) — oo when m — oo.

b) If w*(n + 1) = w(n + 1) for infinite many n, then limsupw*(n + 1) — oo
and then w*(n + 1) — oo because w* is a non decreasing function.

O

Given w(n), we construct our sequence A with the following greedy algorithm:
Let a; = 1 and for n > 1, define a,,41 as the smallest positive integer m, distinct
to aq,...,a, such that

(A, Um) — (A, Um)| > (n® +n)(1 — 1/w*(n +1)).

Thus, the sequence generated by this greedy algorithm satisfies that |A,,— A, | >

(n* —n)(1 — 1/w*(n)). Since w*(n) — oo we have that A is a quasi difference

Sidon sequence. Hence we have to prove that a,, < w(n)n?.

The forbidden elements for a,, are the elements of A, and the elements m of
the set F}, defined by

E, = {m: [(4,Um)— (A, Um)| < (n*+n)(1-1/w*(n+1))}.
Denote
T.(m)=|{m—a;, € Ay — A, : i=1,...,n}.
We have
(A, Um) — (A, Um)| A, — Ap| +2{m —a; €A, — A, : i=1,...,n}
(n* —n)(1 —1/w*(n)) + 2n — 2T,,(m).

n2 n n2_n
If T,,(m) < 2w*(:+1) ~ 2570 then

>
>

%Z(nun) (Pm)’

and m ¢ F,,. Thus, using the property ii) of w*(n + 1) we have

2 Tlm) 2 (QWZiJfl)_ZZ*_(nT;)|F"|

(A, Um) — (A, Um)| > n*—n+2n—

n®+n n®>—n n
— F|>—|F|.
(2w*(n)(1+ 1/n) 2w*(n)> [l 2 2w*(n)| nl
On the other hand
> To(m) = n|A, — A < n(n® —n+1).

m
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It implies that |F,| < 2w*(n)(n*—n+1). Thus the number of forbidden elements
for a, 11 is at most

n+|Fp,l <n+2w (n)(n*—n+1)

and a,.; will be an integer less or equal than w*(n)(2n* —2n +2) +n + 1 <
w(n)n?. O

The greedy algorithm can be modified to get a sequence A = {a,} with a,, <
w(n)n?, which is both, a quasi difference Sidon sequence and a quasi sum Sidon
sequence.

We remark that the densest known Sidon sequences A = {a,, } have been found
by Ruzsa [18] and the author [6] and satisfy a, < nVZHited),
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