QUASI SIDON SETS

JAVIER CILLERUELO

Abstract

We study sets of integers A with $|A-A|$ close to $|A|^{2}$ and prove that $|A|<\sqrt{n}+\sqrt{|A|^{2}-|A-A|}$ for any set $A \subset\{1, \ldots, n\}$. For infinite sequences of positive integers $A=\left(a_{n}\right)$ we define $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ and prove that if $\left|A_{n}-A_{n}\right| \sim n^{2}$ then $\lim \sup _{n \rightarrow \infty} a_{n} / n^{2}=\infty$. On the opposite hand we construct, for any positive function $\omega(n) \rightarrow \infty$, an infinite sequence A satisfying $\left|A_{n}-A_{n}\right| \sim n^{2}$ and $a_{n} \ll \omega(n) n^{2}$.

1. Introduction

A Sidon set is a set of integers having the property that all the nonzero differences $a-a^{\prime}, a, a^{\prime} \in A$ are distinct; i.e. the difference set $A-A=\left\{a-a^{\prime}\right.$: $\left.a, a^{\prime} \in A\right\}$ has the maximum possible size: $|A-A|=|A|^{2}-|A|+1$.

Sidon sets have been studied for a long time but we are interested here in those sets with $|A-A|$ close to $|A|^{2}$ (quasi difference Sidon sets). We prove the inequality

$$
\begin{equation*}
|A|<\sqrt{n}+\sqrt{|A|^{2}-|A-A|} \tag{1.1}
\end{equation*}
$$

for any set $A \subset\{1, \ldots, n\}$. An inmediate consequence of this inequality is that if $|A-A|=|A|^{2}(1+o(1))$, then $|A| \leq \sqrt{n}(1+o(1))$, the same asymptotic upper bound we have for Sidon sets. We deduce oher results on Sidon sets from inequality (1.1).

Our main results concern to infinite quasi difference Sidon sequences $A=\left(a_{n}\right)$. Denote $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$. We say that A is a quasi difference Sidon sequence if $\left|A_{n}-A_{n}\right| \sim n^{2}$. We prove that if A is a quasi difference Sidon sequence then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{n} / n^{2}=\infty \tag{1.2}
\end{equation*}
$$

Erdős proved that $\lim \sup _{n \rightarrow \infty} a_{n} /\left(n^{2} \log n\right)>0$ for Sidon sequences, but conclusion (1.2) is best possible for quasi difference sequences. Indeed we can construct, for any positive function $\omega(n) \rightarrow \infty$, an infinite sequence $A=\left\{a_{n}\right\}$ with $\left|A_{n}-A_{n}\right| \sim n^{2}$ and $a_{n} \ll \omega(n) n^{2}$.

[^0]We cannot decide if (1.2) holds for quasi sum Sidon sequences, those sequences with $\left|A_{n}+A_{n}\right| \sim n^{2} / 2$.

2. Finite quasi Sidon sets

We start with an inequality which is non trivial for those sets A with $|A-A|$ close to $|A|^{2}$. This inequality simplifies some proofs of known results about Sidon sets. A less precise version of the inequality below has appeared before in [1] and [10].

Theorem 2.1. If $A \subset\{1, \ldots, n\}$ then

$$
\begin{equation*}
|A|<\sqrt{n}+\sqrt{|A|^{2}-|A-A|} . \tag{2.1}
\end{equation*}
$$

Theorem 2.1 is a consequence of the following lemma, which is generalization of Theorem 4.2 in [17].

Lemma 2.1. Let A and B be two subsets of an abelian group G. Then we have

$$
\begin{equation*}
|A|^{2} \leq|A+B|\left(1+\frac{|A|^{2}-|A-A|}{|B|}\right) \tag{2.2}
\end{equation*}
$$

Proof. As usual we define $r_{A+B}(x)=\#\{(a, b) \in A \times B: a+b=n\}$. The following equalities are well known:
i) $|A||B|=\sum_{x \in G} r_{A+B}(x)$
ii) $\sum_{x \in G} r_{A+B}^{2}(x)=\sum_{x \in G} r_{A-A}(x) r_{B-B}(x)$.

Cauchy inequality and the identities above give the following inequality:

$$
\begin{aligned}
(|A||B|)^{2} & =\left(\sum_{x \in A+B} r_{A+B}(x)\right)^{2} \leq|A+B| \sum_{x} r_{A+B}^{2}(x) \\
& =|A+B| \sum_{x \in A-A} r_{A-A}(x) r_{B-B}(x) \\
& =|A+B|\left(\sum_{x \in A-A} r_{B-B}(x)+\sum_{x \in A-A}\left(r_{A-A}(x)-1\right) r_{B-B}(x)\right) \\
& \leq|A+B|\left(\sum_{x} r_{B-B}(x)+|B| \sum_{x \in A-A}\left(r_{A-A}(x)-1\right)\right) \\
& \leq|A+B|\left(|B|^{2}+|B|\left(|A|^{2}-|A-A|\right)\right) .
\end{aligned}
$$

When A is a Sidon set then $|A-A|=|A|^{2}-|A|+1$ and Lemma 2.1 gives the following inequality proved by Ruzsa[17]:

$$
\begin{equation*}
|A|^{2} \leq|A+B|\left(1+\frac{|A|-1}{|B|}\right) \tag{2.3}
\end{equation*}
$$

Proof of Theorem 2.1. We consider the set $B=[0, l] \cap \mathbb{Z}$ with

$$
l=\left\lfloor\sqrt{n\left(|A|^{2}-|A-A|\right)}\right\rfloor .
$$

Then $|A+B| \leq n+l$ y $|B|=l+1$ and Lemma 3.1 implies that

$$
\begin{aligned}
|A|^{2} & \leq(n+l)\left(1+\frac{|A|^{2}-|A-A|}{l+1}\right) \\
& <n+l+\frac{n\left(|A|^{2}-|A-A|\right)}{l+1}+|A|^{2}-|A-A| \\
& \leq n+2 \sqrt{n\left(|A|^{2}-|A-A|\right)}+|A|^{2}-|A-A| \\
& =\left(\sqrt{n}+\sqrt{\left.|A|^{2}-|A-A|\right)^{2}}\right.
\end{aligned}
$$

and we get the inequality of the Theorem.
This inequality has interesting consequences. The first one is the best known upper bound for the size of Sidon sets in intervals [3].
Corollary 2.1. If $A \subset[1, n]$ is a Sidon set then $|A|<\sqrt{n}+n^{1 / 4}+1 / 2$.
Proof. If A is a Sidon set then $|A-A|=|A|^{2}-|A|+1$ and the inequality (2.1) implies

$$
|A|<\sqrt{n}+\sqrt{|A|-1} \Longrightarrow(|A|-\sqrt{n})^{2}<|A|-1
$$

Writting $|A|=\sqrt{n}+c n^{1 / 4}+1 / 2$ and putting this expression in the last inequality we obtain

$$
c^{2} n^{1 / 2}+c n^{1 / 4}+1 / 4<n^{1 / 2}+c n^{1 / 4}-1 / 2
$$

which provides a contradiction when $c \geq 1$.
Ruzsa called weak-Sidon sets those sets having the property that all the sums $a+a^{\prime}, a \neq a^{\prime}, a, a^{\prime} \in A$ are distinct. Notice that $2 a=a^{\prime}+a^{\prime \prime}$ is allowed, so any Sidon set is a weak-Sidon set but the converse is not true. Ruzsa [17] proved that the cardinality of a weak Sidon set $A \subset[1, n]$ is bounded by $\sqrt{n}+4 n^{1 / 4}+11$. P. Mark [15] improved it to $\sqrt{n}+\sqrt{3} n^{1 / 4}+O(1)$. We give a short proof of this last result.

Corollary 2.2. If $A \subset[1, n]$ is a weak Sidon set then $|A|<\sqrt{n}+\sqrt{3} n^{1 / 4}+3 / 2$.

Proof. Define the sets

$$
\begin{aligned}
& (A-A)_{1}=\left\{x: x \neq 0, r_{A-A}(x)=1\right\} \\
& (A-A)_{2}=\left\{x: x \neq 0, r_{A-A}(x)=2\right\} .
\end{aligned}
$$

It is clear that $r_{A-A}(x) \leq 2$ for any $x \neq 0$. Otherwise we would have $x=$ $a-b=c-d$ with $a \neq d$ and $b \neq c$, which is not allowed. On the other hand, if $x \in(A-A)_{2}$ then there exists $a, b, c \in A$ such that $x=a-b=c-a$ or $x=b-a=a-c$. Thus, each non trivial arithmetic progression of elements of A, say $2 a=b+c$ corresponds to two elements of $(A-A)_{2}$, say $x=a-b$ and $x=b-a$. Thus we have

$$
\begin{aligned}
|A|^{2} & =\sum_{x} r_{A-A}(x)=|A|+\left|(A-A)_{1}\right|+2\left|(A-A)_{2}\right| \\
& =|A|+|A-A|-1+\left|(A-A)_{2}\right| \\
& =|A|+|A-A|-1+2\left|P_{3}\right|,
\end{aligned}
$$

where P_{3} is the set of non trivial arithmetic progressions in A. Clearly $\left|P_{3}\right| \leq$ $|A|-2$. Thus

$$
|A|^{2}-|A-A| \leq 3|A|-5
$$

Theorem 2.1 implies that

$$
|A|<\sqrt{n}+\sqrt{3|A|-5}
$$

Writing $|A|=\sqrt{n}+c n^{1 / 4}+3 / 2$ an substituying this in $(|A|-\sqrt{n})^{2}<3|A|-5$ we get

$$
c^{2} \sqrt{n}+3 c n^{1 / 4}+9 / 4<3 \sqrt{n}+3 c n^{1 / 4}-1 / 2
$$

and then $c^{2} \sqrt{n}+11 / 4<3 \sqrt{n}$, which implies that $c<\sqrt{3}$.
The B_{h} sets are sets A with the property that all the sums $a_{1}+\cdots+a_{h}, a_{1} \leq$ $\cdots \leq a_{h}, a_{i} \in A$ are all distinct. The B_{2} sets are just the Sidon sets. While there are constructions of B_{h} sets in $[1, n]$ with $\sim n^{1 / h}$ elements, it is unknown the asymptotic estimate for the largest cardinality of a B_{h} set in $[1, n]$ when $h \geq 3$. The easy counting argument gives the upper bound $(h \cdot h!n)^{1 / h}$. A non trivial upper bound was obtained by Lindstrom [14] for B_{4} sets, by Jia [13] for B_{h} sets with h even and by Chen [2] for B_{h} sequences with h odd. These upper bounds have been improved slightly using deeper methods (see [4] and [11]). We present here a shorter proof of Jia's estimate as consequence of Theorem 2.1.
Corollary 2.3. If $A \subset[1, n]$ is a $B_{2 h}$ set then $|A| \leq\left(h \cdot h!^{2} n\right)^{1 /(2 h)}(1+o(1))$.
Proof. Assume that A is a $B_{2 h}$ set. For each $x=a_{1}+\cdots+a_{h} \in h A$ we define the multiset $\bar{x}=\left\{a_{1}, \ldots, a_{h}\right\}$. We observe that any z has at most one representation of the form $z=x-y$ with $x, y \in h A$ and $\bar{x} \cap \bar{y}=\emptyset$. The reason is that if
$x-y=x^{\prime}-y^{\prime}$ then $x+y^{\prime}=y+x^{\prime}$ and since A is a B_{h} set then $\bar{x} \cup \bar{y}^{\prime}=\bar{x}^{\prime} \cup \bar{y}$. But since $\bar{x} \cap \bar{y}=\bar{x}^{\prime} \cap \bar{y}^{\prime}=\emptyset$ we have that $x=x^{\prime}, y=y^{\prime}$. Thus we get

$$
|h A|^{2}=\sum_{z \in h A-h A} r_{h A-h A}(z)=|h A-h A|+\sum_{z \in h A-h A}\left(r_{h A-h A}(z)-1\right)
$$

and the last sum is bounded by the number of pairs $(x, y) \in h A \times h A$ with $\bar{x} \cap \bar{y} \neq \emptyset$, which is $O\left(|A|^{2 h-1}\right)$. Since $|h A|^{2}=\binom{|A|+h-1}{h}^{2} \gg|A|^{2 h}$ we have that

$$
|h A-h A|=|h A|^{2}(1+o(1)) .
$$

Assuming this we apply the inequality (2.1) to get $|h A| \leq \sqrt{h n}(1+o(1))$. The asymptotic estimate $|h A| \sim|A|^{h} / h$! finishes the proof.

We finish the colection of consequences of Theorem 2.1 with the following Corollary.

Corollary 2.4. If $A \subset[1, n]$ and $|A-A| \sim|A|^{2}$ then $|A| \leq \sqrt{n}(1+o(1))$.
This Corollary follows inmediately from Theorem 2.1, but what it is interesting is that we have not a similar conclusion for sets A with $|A+A| \sim|A|^{2} / 2$. Indeed Erdős and Freud [7, 8, 9] gave an example of a set $A \subset[1, n]$ with $|A+A| \sim|A|^{2} / 2$ of size $|A| \sim \frac{2}{\sqrt{3}} \sqrt{n}$. They considered the set $A=B \cup(n-B)$ where $B \subset$ $[1, n / 3)$ is a Sidon set of asymptotic size $\sqrt{n / 3}$. It is unknown if the constant $\frac{2}{\sqrt{3}}$ is the largest constant for this problem. Trivially $|A| \leq 2 \sqrt{n}(1+o(1))$ if $A \subset[1, n]$ and $|A+A| \sim|A|^{2} / 2$. Erdős and Freud claimed to have a proof of $|A| \leq 1.98 \sqrt{n}(1+o(1))$ but Pikhurko [16] has proved that $|A| \leq 1.863 \sqrt{n}(1+o(1))$.

Obviously, the set A constructed by Erdős and Freud is an example of a set with $|A+A| \sim|A|^{2} / 2$ but $|A-A| \nsim|A|^{2}$. Ruzsa [19] has proved that there exists $c>0$ and sets A with $|A-A| \sim|A|^{2}$ and $|A+A| \leq|A|^{2-c}$ and sets with $|A+A| \sim|A|^{2} / 2$ and $|A-A| \leq|A|^{2-c}$.

3. Infinite quasi Sidon sequences

A simple counting argument shows that if $A=\left(a_{n}\right)$ is an infinite Sidon sequence then $a_{n} \gg n^{2}$. Then, it is a natural question to ask if there is an infinte Sidon sequence A with $a_{n} \ll n^{2}$. Erdős (see Theorem 8, Chapter II in [12]) gave a negative answer to this question.

Theorem 3.1 (Erdős). If A is an infinite Sidon sequence then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{a_{n}}{n^{2}}=\infty \tag{3.1}
\end{equation*}
$$

Indeed Erdős proved that if A is an infinite Sidon sequence then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{a_{n}}{n^{2} \log n} \gg 1 \tag{3.2}
\end{equation*}
$$

We prove here that (3.1) also holds for quasi difference Sidon sequences. The proof of Theorem 3.2 follows the ideas of Erdős to prove (3.2).
Theorem 3.2. If $A=\left(a_{n}\right)$ is an infinite quasi difference Sidon sequence then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{a_{n}}{n^{2}}=\infty \tag{3.3}
\end{equation*}
$$

Proof. Denote $A^{n}=A \cap[1, n]$, so $A(n)=\left|A^{n}\right|$. We observe that (3.3) is equivalent to $\lim \inf _{n \rightarrow \infty} A(n) / \sqrt{n}=0$. This is what we are proving.

Since A is a quasi difference sequence then $\left|A^{n}-A^{n}\right| \sim\left|A^{n}\right|^{2}$, which implies that there exists a positive decreasing function $\epsilon(n) \rightarrow 0$ such that

$$
\begin{equation*}
\left|A^{n}-A^{n}\right| \geq\left|A^{n}\right|^{2}(1-\epsilon(n)) \tag{3.4}
\end{equation*}
$$

We consider the intervals $I_{k}=((k-1) n, k n], k=1, \ldots, \omega(n)$ where $\omega(n)=$ $\lceil 1 / \sqrt{\epsilon(n)}\rceil$. We denote $D_{k}=\left|A \cap I_{k}\right|$ and $m=n \omega(n)$. It is clear that

$$
\sum_{k \leq \omega(n)}\binom{D_{k}}{2} \leq \sum_{1 \leq x \leq n} r_{A^{m}-A^{m}}(x) \leq n+\sum_{x \in A^{m}-A^{m}}\left(r_{A^{m}-A^{m}}(x)-1\right) .
$$

On the other hand

$$
\left|A^{m}\right|^{2}=\sum_{x \in A^{m}-A^{m}} r_{A^{m}-A^{m}}(x)=\left|A^{m}-A^{m}\right|+\sum_{x \in A^{m}-A^{m}}\left(r_{A^{m}-A^{m}}(x)-1\right) .
$$

Then, using (3.4) and $\left|A^{m}\right|^{2} \leq m(1+o(1))$ we have

$$
\begin{aligned}
\sum_{k \leq \omega(n)}\binom{D_{k}}{2} & \leq n+\left|A^{m}\right|^{2}-\left|A^{m}-A^{m}\right| \\
& \leq n+\epsilon(m)\left|A^{m}\right| \\
& \leq n+\epsilon(m) m\left(1+o_{m}(1)\right) \\
& \leq n+\epsilon(n \omega(n))(\omega(n) n)\left(1+o_{n}(1)\right) .
\end{aligned}
$$

Notice that $\epsilon(n \omega(n)) \omega(n) \leq \epsilon(n) \omega(n) \ll \sqrt{\epsilon(n)} \rightarrow 0$. So,

$$
\sum_{k \leq \omega(n)}\binom{D_{k}}{2} \leq n(1+o(1))
$$

On the one hand

$$
\left(\sum_{k \leq \omega(n)} \frac{D_{k}}{\sqrt{k}}\right)^{2} \leq\left(\sum_{k \leq \omega(n)} \frac{1}{k}\right)\left(\sum_{k \leq \omega(n)} D_{k}^{2}\right)
$$

with

$$
\sum_{k \leq \omega(n)} \frac{1}{k} \ll \log \omega(n)
$$

and

$$
\begin{aligned}
\sum_{k \leq \omega(n)} D_{k}^{2} & =2 \sum_{k \leq \omega(n)}\binom{D_{k}}{2}+\sum_{k \leq \omega(n)} D_{k} \\
& \leq n(1+o(1))+\left|A^{m}\right| \\
& \leq n(1+o(1))+O(\sqrt{n \omega(n)}) \leq n(1+o(1))
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{k \leq \omega(n)} \frac{D_{k}}{\sqrt{k}} \ll(n \log \omega(n))^{1 / 2} \tag{3.5}
\end{equation*}
$$

On the other hand

$$
\sum_{k \leq \omega(n)} \frac{D_{k}}{\sqrt{k}} \geq \frac{1}{2} \int_{2}^{\omega(n)} \frac{\sum_{k \leq t} D_{k}}{t^{3 / 2}} d t=\frac{1}{2} \int_{2}^{\omega(n)} \frac{A([t] n)}{t^{3 / 2}} d t
$$

If $\lim \inf _{x \rightarrow \infty} A(x) / \sqrt{x}>0$ we would have that $A([t] n) \gg \sqrt{[t] n}$ and then

$$
\sum_{k \leq \omega(n)} \frac{D_{k}}{\sqrt{k}} \gg \sqrt{n} \int_{2}^{\omega(n)} \frac{d t}{t} \gg \sqrt{n} \log \omega(n)
$$

which is a contradiction with (3.5).
The following Theorem shows that Theorem 3.2 is sharp. Note that (3.2) does not hold for quasi difference Sidon sequences (take any function $\omega(n)=o(\log n)$ in Theorem 3.3).
Theorem 3.3. For any positive function $\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$ it is possible to construct an infinite a sequence $A=\left\{a_{n}\right\}$ satisfying $\left|A_{n}-A_{n}\right| \sim n^{2}$ and $a_{n} \ll \omega(n) n^{2}$.

Proof. We can assume that $\omega(n)$ is a non decreasing function. Otherwise we can consider the function $\omega^{\prime}(n)=\inf _{m \geq n} \omega(n)$.
Lemma 3.1. For any non decreasing positive function $\omega(n) \rightarrow \infty$; there exists a no decreasing function $\omega^{*}(n)$ satisfying the following conditions:
i) $\omega^{*}(n) \leq \omega(n)$.
ii) $\omega^{*}(n+1) \leq \omega^{*}(n)(1+1 / n)$.
iii) $\omega^{*}(n) \rightarrow \infty$.

Proof. Define $\omega^{*}(1)=\omega(1)$ and for $n \geq 1$,

$$
\omega^{*}(n+1)=\min \left(\omega(n+1), \omega^{*}(n)(1+1 / n)\right) .
$$

If $\omega^{*}(n+1)=\omega^{*}(n)(1+1 / n)$ then it is clear that $\omega^{*}(n+1) \geq \omega^{*}(n)$. If $\omega^{*}(n+1)=\omega(n+1)$ we also have that

$$
\omega^{*}(n+1) \geq \omega(n) \geq \min \left(\omega(n), \omega^{*}(n-1)(1+1 /(n-1))\right)=\omega^{*}(n)
$$

Thus, $\omega^{*}(n)$ is a non decreasing function.
The conditions i) and ii) are trivial consequences from the definition of $\omega^{*}(n)$. For iii), we distinghis two cases:
a) If $\omega^{*}(n+1)=\omega^{*}(n)(1+1 / n)$ for $n \geq n_{0}$ then $\omega^{*}\left(n_{0}+m\right)=\omega^{*}\left(n_{0}\right) \prod_{i=0}^{m-1}\left(1+\frac{1}{n_{0}+i}\right)$ and then $\omega^{*}\left(n_{0}+m\right) \rightarrow \infty$ when $m \rightarrow \infty$.
b) If $\omega^{*}(n+1)=\omega(n+1)$ for infinite many n, then $\limsup \omega^{*}(n+1) \rightarrow \infty$ and then $\omega^{*}(n+1) \rightarrow \infty$ because ω^{*} is a non decreasing function.

Given $\omega(n)$, we construct our sequence A with the following greedy algorithm: Let $a_{1}=1$ and for $n \geq 1$, define a_{n+1} as the smallest positive integer m, distinct to a_{1}, \ldots, a_{n} such that

$$
\left|\left(A_{n} \cup m\right)-\left(A_{n} \cup m\right)\right| \geq\left(n^{2}+n\right)\left(1-1 / \omega^{*}(n+1)\right) .
$$

Thus, the sequence generated by this greedy algorithm satisfies that $\left|A_{n}-A_{n}\right| \geq$ $\left(n^{2}-n\right)\left(1-1 / \omega^{*}(n)\right)$. Since $\omega^{*}(n) \rightarrow \infty$ we have that A is a quasi difference Sidon sequence. Hence we have to prove that $a_{n} \ll \omega(n) n^{2}$.

The forbidden elements for a_{n+1} are the elements of A_{n} and the elements m of the set F_{n} defined by

$$
F_{n}=\left\{m:\left|\left(A_{n} \cup m\right)-\left(A_{n} \cup m\right)\right|<\left(n^{2}+n\right)\left(1-1 / \omega^{*}(n+1)\right)\right\} .
$$

Denote

$$
T_{n}(m)=\left|\left\{m-a_{i} \in A_{n}-A_{n}: \quad i=1, \ldots, n\right\}\right| .
$$

We have

$$
\begin{aligned}
\left|\left(A_{n} \cup m\right)-\left(A_{n} \cup m\right)\right| & \geq\left|A_{n}-A_{n}\right|+2\left|\left\{m-a_{i} \notin A_{n}-A_{n}: i=1, \ldots, n\right\}\right| \\
& \geq\left(n^{2}-n\right)\left(1-1 / \omega^{*}(n)\right)+2 n-2 T_{n}(m) .
\end{aligned}
$$

If $T_{n}(m) \leq \frac{n^{2}+n}{2 \omega^{*}(n+1)}-\frac{n^{2}-n}{2 \omega^{*}(n)}$ then
$\left|\left(A_{n} \cup m\right)-\left(A_{n} \cup m\right)\right| \geq n^{2}-n+2 n-\frac{n^{2}+n}{\omega^{*}(n+1)} \geq\left(n^{2}+n\right)\left(1-\frac{1}{\omega^{*}(n+1)}\right)$,
and $m \notin F_{n}$. Thus, using the property ii) of $\omega^{*}(n+1)$ we have

$$
\begin{aligned}
\sum_{m} T_{n}(m) & \geq\left(\frac{n^{2}+n}{2 \omega^{*}(n+1)}-\frac{n^{2}-n}{2 \omega^{*}(n)}\right)\left|F_{n}\right| \\
& \geq\left(\frac{n^{2}+n}{2 \omega^{*}(n)(1+1 / n)}-\frac{n^{2}-n}{2 \omega^{*}(n)}\right)\left|F_{n}\right| \geq \frac{n}{2 \omega^{*}(n)}\left|F_{n}\right|
\end{aligned}
$$

On the other hand

$$
\sum_{m} T_{n}(m)=n\left|A_{n}-A_{n}\right| \leq n\left(n^{2}-n+1\right)
$$

It implies that $\left|F_{n}\right| \leq 2 \omega^{*}(n)\left(n^{2}-n+1\right)$. Thus the number of forbidden elements for a_{n+1} is at most

$$
n+\left|F_{2, n}\right| \leq n+2 \omega^{*}(n)\left(n^{2}-n+1\right)
$$

and a_{n+1} will be an integer less or equal than $\omega^{*}(n)\left(2 n^{2}-2 n+2\right)+n+1 \ll$ $\omega(n) n^{2}$.

The greedy algorithm can be modified to get a sequence $A=\left\{a_{n}\right\}$ with $a_{n} \ll$ $\omega(n) n^{2}$, which is both, a quasi difference Sidon sequence and a quasi sum Sidon sequence.

We remark that the densest known Sidon sequences $A=\left\{a_{n}\right\}$ have been found by Ruzsa [18] and the author [6] and satisfy $a_{n} \ll n^{\sqrt{2}+1+o(1)}$.

References

[1] B. Bollobas and O. Pikhurko, Integer sets with prescribed pairwise differences being distinct European J. Combin. 26 (2005), no. 5, 607-616.
[2] S. Chen, On the size of finite Sidon sequences Proc. Amer. Math. Soc. 121 (1994), no. 2, 353-356.
[3] J. Cilleruelo, Sidon sets in \mathbb{N}^{d}. J. Combin. Theory Ser. A 117 (2010), no. 7, 857-871.
[4] J. Cilleruelo, New upper bounds for finite B_{h} sequences, Adv. Math. 159 (2001), no. 1, 1-17.
[5] J. Cilleruelo, Probabilistic constructions of $B_{2}[g]$ sequences, Acta Mathematica Sinica 26 (2010), no. 7, 1309-1314.
[6] J. Cilleruelo, Infinite Sidon sequences, Advances in Mathematics 255 (2014), 474-486.
[7] P. Erdős, Some problems and results on combinatorial number theory, Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., 576, pp. 132-145, New York Acad. Sci., New York, 1989.
[8] P. Erdős, Some of my forgotten problems in number theory, Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1992, 15, pp.34-50.
[9] P. Erdős and Freud, On Sidon sequences and related problems, Mat. Lapok 1 (1991), 1-44.
[10] Ferrara, M.; Kohayakawa and Y.; Rodl, V. Distance graphs on the integers Combin. Probab. Comput. 14 (2005), no. 1-2, 107-131.
[11] B. Green, The number of squares and $B_{h}[g]$ sets, Acta Arith. 100 (2001), no. 4, $365 ? 390$.
[12] H. Halberstam and K.F. Roth, Sequences, Springer-Verlag, New York (1983).
[13] X.-D. Jia, On finite Sidon sequences, J. Number Theory 44 (1993), 84-92.
[14] B. Lindstrom, An inequality for B_{2}-sequences, J. Combinatorial Theory 6 (1969), 211-212.
[15] P. Mark Kayll, A note on weak Sidon sequences. Discrete Mathematics, Volume 299, 141144 (2005).
[16] O. Pikhurko, Dense edge-magic graphs and thin additive bases, Discrete Math. 306 (2006), no. 17, 2097-2107.
[17] I. Ruzsa, Solving a linear equation in a set of integers. I. Acta Arith. 65 (1993), no. 3, 259-282.
[18] I. Ruzsa, An infinite Sidon sequence. J. Number Theory 68 (1998), no. 1, 63-71.
[19] I. Ruzsa, On the number of sums and differences. Acta Math. Hungar. 59 (1992), 439-447.

Instituto de Ciencias Matemáticas (ICMAT) and Departamento de Matemáticas, Unversidad Autónoma de Madrid, Madrid 28049, España.

E-mail address: franciscojavier.cilleruelo@uam.es

[^0]: 1991 Mathematics Subject Classification. 2000 Mathematics Subject Classification: 11B83. Key words and phrases. Sidon sets, greedy algorithm.
 This work was supported by MINECO project MTM2014-56350-P and ICMAT Severo Ochoa project SEV-2015-0554.

