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Abstract. We study sets of integers A with |A− A| close to |A|2 and prove

that |A| <
√
n +

√
|A|2 − |A−A| for any set A ⊂ {1, . . . , n}. For infinite

sequences of positive integers A = (an) we define An = {a1, . . . , an} and prove
that if |An − An| ∼ n2 then lim supn→∞ an/n

2 = ∞. On the opposite hand
we construct, for any positive function ω(n) → ∞, an infinite sequence A
satisfying |An −An| ∼ n2 and an � ω(n)n2.

1. Introduction

A Sidon set is a set of integers having the property that all the nonzero dif-
ferences a − a′, a, a′ ∈ A are distinct; i.e. the difference set A − A = {a − a′ :
a, a′ ∈ A} has the maximum possible size: |A− A| = |A|2 − |A|+ 1.

Sidon sets have been studied for a long time but we are interested here in
those sets with |A− A| close to |A|2 (quasi difference Sidon sets). We prove the
inequality

(1.1) |A| <
√
n+

√
|A|2 − |A− A|

for any set A ⊂ {1, . . . , n}. An inmediate consequence of this inequality is that
if |A − A| = |A|2(1 + o(1)), then |A| ≤

√
n(1 + o(1)), the same asymptotic

upper bound we have for Sidon sets. We deduce oher results on Sidon sets from
inequality (1.1).

Our main results concern to infinite quasi difference Sidon sequences A = (an).
Denote An = {a1, . . . , an}. We say that A is a quasi difference Sidon sequence if
|An − An| ∼ n2. We prove that if A is a quasi difference Sidon sequence then

(1.2) lim sup
n→∞

an/n
2 =∞.

Erdős proved that lim supn→∞ an/(n
2 log n) > 0 for Sidon sequences, but con-

clusion (1.2) is best possible for quasi difference sequences. Indeed we can con-
struct, for any positive function ω(n) → ∞, an infinite sequence A = {an} with
|An − An| ∼ n2 and an � ω(n)n2.
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We cannot decide if (1.2) holds for quasi sum Sidon sequences, those sequences
with |An + An| ∼ n2/2.

2. Finite quasi Sidon sets

We start with an inequality which is non trivial for those sets A with |A− A|
close to |A|2. This inequality simplifies some proofs of known results about Sidon
sets. A less precise version of the inequality below has appeared before in [1] and
[10].

Theorem 2.1. If A ⊂ {1, . . . , n} then

(2.1) |A| <
√
n+

√
|A|2 − |A− A|.

Theorem 2.1 is a consequence of the following lemma, which is generalization
of Theorem 4.2 in [17].

Lemma 2.1. Let A and B be two subsets of an abelian group G. Then we have

(2.2) |A|2 ≤ |A+B|
(

1 +
|A|2 − |A− A|

|B|

)
.

Proof. As usual we define rA+B(x) = #{(a, b) ∈ A × B : a + b = n}. The
following equalities are well known:

i) |A||B| =
∑

x∈G rA+B(x)
ii)
∑

x∈G r
2
A+B(x) =

∑
x∈G rA−A(x)rB−B(x).

Cauchy inequality and the identities above give the following inequality:

(|A||B|)2 =

( ∑
x∈A+B

rA+B(x)

)2

≤ |A+B|
∑
x

r2A+B(x)

= |A+B|
∑

x∈A−A

rA−A(x)rB−B(x)

= |A+B|

( ∑
x∈A−A

rB−B(x) +
∑

x∈A−A

(rA−A(x)− 1)rB−B(x)

)

≤ |A+B|

(∑
x

rB−B(x) + |B|
∑

x∈A−A

(rA−A(x)− 1)

)
≤ |A+B|

(
|B|2 + |B|(|A|2 − |A− A|)

)
.

�
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When A is a Sidon set then |A−A| = |A|2− |A|+ 1 and Lemma 2.1 gives the
following inequality proved by Ruzsa[17]:

(2.3) |A|2 ≤ |A+B|
(

1 +
|A| − 1

|B|

)
.

Proof of Theorem 2.1. We consider the set B = [0, l] ∩ Z with

l = b
√
n(|A|2 − |A− A|)c.

Then |A+B| ≤ n+ l y |B| = l + 1 and Lemma 3.1 implies that

|A|2 ≤ (n+ l)

(
1 +
|A|2 − |A− A|

l + 1

)
< n+ l +

n(|A|2 − |A− A|)
l + 1

+ |A|2 − |A− A|

≤ n+ 2
√
n(|A|2 − |A− A|) + |A|2 − |A− A|

= (
√
n+

√
|A|2 − |A− A|)2

and we get the inequality of the Theorem. �

This inequality has interesting consequences. The first one is the best known
upper bound for the size of Sidon sets in intervals [3].

Corollary 2.1. If A ⊂ [1, n] is a Sidon set then |A| <
√
n+ n1/4 + 1/2.

Proof. If A is a Sidon set then |A− A| = |A|2 − |A|+ 1 and the inequality (2.1)
implies

|A| <
√
n+

√
|A| − 1 =⇒ (|A| −

√
n)2 < |A| − 1.

Writting |A| =
√
n+cn1/4 +1/2 and putting this expression in the last inequality

we obtain

c2n1/2 + cn1/4 + 1/4 < n1/2 + cn1/4 − 1/2,

which provides a contradiction when c ≥ 1. �

Ruzsa called weak-Sidon sets those sets having the property that all the sums
a+ a′, a 6= a′, a, a′ ∈ A are distinct. Notice that 2a = a′ + a′′ is allowed, so any
Sidon set is a weak-Sidon set but the converse is not true. Ruzsa [17] proved that
the cardinality of a weak Sidon set A ⊂ [1, n] is bounded by

√
n+ 4n1/4 + 11. P.

Mark [15] improved it to
√
n+
√

3n1/4 +O(1). We give a short proof of this last
result.

Corollary 2.2. If A ⊂ [1, n] is a weak Sidon set then |A| <
√
n+
√

3n1/4 + 3/2.
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Proof. Define the sets

(A− A)1 = {x : x 6= 0, rA−A(x) = 1}
(A− A)2 = {x : x 6= 0, rA−A(x) = 2}.

It is clear that rA−A(x) ≤ 2 for any x 6= 0. Otherwise we would have x =
a − b = c − d with a 6= d and b 6= c, which is not allowed. On the other hand,
if x ∈ (A − A)2 then there exists a, b, c ∈ A such that x = a − b = c − a or
x = b − a = a − c. Thus, each non trivial arithmetic progression of elements of
A, say 2a = b + c corresponds to two elements of (A − A)2, say x = a − b and
x = b− a. Thus we have

|A|2 =
∑
x

rA−A(x) = |A|+ |(A− A)1|+ 2|(A− A)2|

= |A|+ |A− A| − 1 + |(A− A)2|
= |A|+ |A− A| − 1 + 2|P3|,

where P3 is the set of non trivial arithmetic progressions in A. Clearly |P3| ≤
|A| − 2. Thus

|A|2 − |A− A| ≤ 3|A| − 5.

Theorem 2.1 implies that

|A| <
√
n+

√
3|A| − 5.

Writing |A| =
√
n + cn1/4 + 3/2 an substituying this in (|A| −

√
n)2 < 3|A| − 5

we get

c2
√
n+ 3cn1/4 + 9/4 < 3

√
n+ 3cn1/4 − 1/2

and then c2
√
n+ 11/4 < 3

√
n, which implies that c <

√
3. �

The Bh sets are sets A with the property that all the sums a1 + · · ·+ ah, a1 ≤
· · · ≤ ah, ai ∈ A are all distinct. The B2 sets are just the Sidon sets. While there
are constructions of Bh sets in [1, n] with ∼ n1/h elements, it is unknown the
asymptotic estimate for the largest cardinality of a Bh set in [1, n] when h ≥ 3.
The easy counting argument gives the upper bound (h · h!n)1/h. A non trivial
upper bound was obtained by Lindstrom [14] for B4 sets, by Jia [13] for Bh sets
with h even and by Chen [2] for Bh sequences with h odd. These upper bounds
have been improved slightly using deeper methods (see [4] and [11]). We present
here a shorter proof of Jia’s estimate as consequence of Theorem 2.1.

Corollary 2.3. If A ⊂ [1, n] is a B2h set then |A| ≤ (h · h!2n)1/(2h)(1 + o(1)).

Proof. Assume that A is a B2h set. For each x = a1 + · · ·+ah ∈ hA we define the
multiset x = {a1, . . . , ah}. We observe that any z has at most one representation
of the form z = x − y with x, y ∈ hA and x ∩ y = ∅. The reason is that if
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x− y = x′ − y′ then x+ y′ = y + x′ and since A is a Bh set then x ∪ y′ = x′ ∪ y.
But since x ∩ y = x′ ∩ y′ = ∅ we have that x = x′, y = y′. Thus we get

|hA|2 =
∑

z∈hA−hA

rhA−hA(z) = |hA− hA|+
∑

z∈hA−hA

(rhA−hA(z)− 1)

and the last sum is bounded by the number of pairs (x, y) ∈ hA × hA with

x ∩ y 6= ∅, which is O(|A|2h−1). Since |hA|2 =
(|A|+h−1

h

)2 � |A|2h we have that

|hA− hA| = |hA|2(1 + o(1)).

Assuming this we apply the inequality (2.1) to get |hA| ≤
√
hn(1 + o(1)). The

asymptotic estimate |hA| ∼ |A|h/h! finishes the proof. �

We finish the colection of consequences of Theorem 2.1 with the following
Corollary.

Corollary 2.4. If A ⊂ [1, n] and |A− A| ∼ |A|2 then |A| ≤
√
n(1 + o(1)).

This Corollary follows inmediately from Theorem 2.1, but what it is interesting
is that we have not a similar conclusion for sets A with |A+A| ∼ |A|2/2. Indeed
Erdős and Freud [7, 8, 9] gave an example of a set A ⊂ [1, n] with |A+A| ∼ |A|2/2
of size |A| ∼ 2√

3

√
n. They considered the set A = B ∪ (n − B) where B ⊂

[1, n/3) is a Sidon set of asymptotic size
√
n/3. It is unknown if the constant

2√
3

is the largest constant for this problem. Trivially |A| ≤ 2
√
n(1 + o(1)) if

A ⊂ [1, n] and |A + A| ∼ |A|2/2. Erdős and Freud claimed to have a proof of
|A| ≤ 1.98

√
n(1+o(1)) but Pikhurko [16] has proved that |A| ≤ 1.863

√
n(1+o(1)).

Obviously, the set A constructed by Erdős and Freud is an example of a set
with |A + A| ∼ |A|2/2 but |A − A| 6∼ |A|2. Ruzsa [19] has proved that there
exists c > 0 and sets A with |A− A| ∼ |A|2 and |A + A| ≤ |A|2−c and sets with
|A+ A| ∼ |A|2/2 and |A− A| ≤ |A|2−c.

3. Infinite quasi Sidon sequences

A simple counting argument shows that if A = (an) is an infinite Sidon sequence
then an � n2. Then, it is a natural question to ask if there is an infinte Sidon
sequence A with an � n2. Erdős (see Theorem 8, Chapter II in [12]) gave a
negative answer to this question.

Theorem 3.1 (Erdős). If A is an infinite Sidon sequence then

(3.1) lim sup
n→∞

an
n2

=∞.

Indeed Erdős proved that if A is an infinite Sidon sequence then

(3.2) lim sup
n→∞

an
n2 log n

� 1.
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We prove here that (3.1) also holds for quasi difference Sidon sequences. The
proof of Theorem 3.2 follows the ideas of Erdős to prove (3.2).

Theorem 3.2. If A = (an) is an infinite quasi difference Sidon sequence then

(3.3) lim sup
n→∞

an
n2

=∞.

Proof. Denote An = A∩[1, n], so A(n) = |An|. We observe that (3.3) is equivalent
to lim infn→∞A(n)/

√
n = 0. This is what we are proving.

Since A is a quasi difference sequence then |An − An| ∼ |An|2, which implies
that there exists a positive decreasing function ε(n)→ 0 such that

(3.4) |An − An| ≥ |An|2(1− ε(n)).

We consider the intervals Ik = ((k − 1)n, kn], k = 1, . . . , ω(n) where ω(n) =

d1/
√
ε(n)e. We denote Dk = |A ∩ Ik| and m = nω(n). It is clear that∑

k≤ω(n)

(
Dk

2

)
≤
∑

1≤x≤n

rAm−Am(x) ≤ n+
∑

x∈Am−Am

(rAm−Am(x)− 1).

On the other hand

|Am|2 =
∑

x∈Am−Am

rAm−Am(x) = |Am − Am|+
∑

x∈Am−Am

(rAm−Am(x)− 1).

Then, using (3.4) and |Am|2 ≤ m(1 + o(1)) we have∑
k≤ω(n)

(
Dk

2

)
≤ n+ |Am|2 − |Am − Am|

≤ n+ ε(m)|Am|
≤ n+ ε(m)m(1 + om(1))

≤ n+ ε(nω(n))(ω(n)n)(1 + on(1)).

Notice that ε(nω(n))ω(n) ≤ ε(n)ω(n)�
√
ε(n)→ 0. So,∑

k≤ω(n)

(
Dk

2

)
≤ n(1 + o(1)).

On the one hand ∑
k≤ω(n)

Dk√
k

2

≤

 ∑
k≤ω(n)

1

k

 ∑
k≤ω(n)

D2
k


with ∑

k≤ω(n)

1

k
� logω(n)
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and ∑
k≤ω(n)

D2
k = 2

∑
k≤ω(n)

(
Dk

2

)
+
∑

k≤ω(n)

Dk

≤ n(1 + o(1)) + |Am|
≤ n(1 + o(1)) +O(

√
nω(n)) ≤ n(1 + o(1)).

Thus

(3.5)
∑

k≤ω(n)

Dk√
k
� (n logω(n))1/2.

On the other hand∑
k≤ω(n)

Dk√
k
≥ 1

2

∫ ω(n)

2

∑
k≤tDk

t3/2
dt =

1

2

∫ ω(n)

2

A([t]n)

t3/2
dt.

If lim infx→∞A(x)/
√
x > 0 we would have that A([t]n)�

√
[t]n and then∑

k≤ω(n)

Dk√
k
�
√
n

∫ ω(n)

2

dt

t
�
√
n logω(n),

which is a contradiction with (3.5). �

The following Theorem shows that Theorem 3.2 is sharp. Note that (3.2) does
not hold for quasi difference Sidon sequences (take any function ω(n) = o(log n)
in Theorem 3.3).

Theorem 3.3. For any positive function ω(n) → ∞ as n → ∞ it is possible
to construct an infinite a sequence A = {an} satisfying |An − An| ∼ n2 and
an � ω(n)n2.

Proof. We can assume that ω(n) is a non decreasing function. Otherwise we can
consider the function ω′(n) = infm≥n ω(n).

Lemma 3.1. For any non decreasing positive function ω(n) → ∞; there exists
a no decreasing function ω∗(n) satisfying the following conditions:

i) ω∗(n) ≤ ω(n).
ii) ω∗(n+ 1) ≤ ω∗(n)(1 + 1/n).

iii) ω∗(n)→∞.

Proof. Define ω∗(1) = ω(1) and for n ≥ 1,

ω∗(n+ 1) = min(ω(n+ 1), ω∗(n)(1 + 1/n)).

If ω∗(n + 1) = ω∗(n)(1 + 1/n) then it is clear that ω∗(n + 1) ≥ ω∗(n). If
ω∗(n+ 1) = ω(n+ 1) we also have that

ω∗(n+ 1) ≥ ω(n) ≥ min(ω(n), ω∗(n− 1)(1 + 1/(n− 1))) = ω∗(n).
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Thus, ω∗(n) is a non decreasing function.

The conditions i) and ii) are trivial consequences from the definition of ω∗(n).
For iii), we distinghis two cases:

a) If ω∗(n+1) = ω∗(n)(1+1/n) for n ≥ n0 then ω∗(n0+m) = ω∗(n0)
∏m−1

i=0

(
1 + 1

n0+i

)
and then ω∗(n0 +m)→∞ when m→∞.

b) If ω∗(n+ 1) = ω(n+ 1) for infinite many n, then lim supω∗(n+ 1)→∞
and then ω∗(n+ 1)→∞ because ω∗ is a non decreasing function.

�

Given ω(n), we construct our sequence A with the following greedy algorithm:
Let a1 = 1 and for n ≥ 1, define an+1 as the smallest positive integer m, distinct
to a1, . . . , an such that

|(An ∪m)− (An ∪m)| ≥ (n2 + n)(1− 1/ω∗(n+ 1)).

Thus, the sequence generated by this greedy algorithm satisfies that |An−An| ≥
(n2 − n)(1 − 1/ω∗(n)). Since ω∗(n) → ∞ we have that A is a quasi difference
Sidon sequence. Hence we have to prove that an � ω(n)n2.

The forbidden elements for an+1 are the elements of An and the elements m of
the set Fn defined by

Fn =
{
m : |(An ∪m)− (An ∪m)| < (n2 + n)(1− 1/ω∗(n+ 1))

}
.

Denote
Tn(m) = |{m− ai ∈ An − An : i = 1, . . . , n}|.

We have

|(An ∪m)− (An ∪m)| ≥ |An − An|+ 2|{m− ai 6∈ An − An : i = 1, . . . , n}|
≥ (n2 − n)(1− 1/ω∗(n)) + 2n− 2Tn(m).

If Tn(m) ≤ n2+n
2ω∗(n+1)

− n2−n
2ω∗(n)

then

|(An ∪m)− (An ∪m)| ≥ n2 − n+ 2n− n2 + n

ω∗(n+ 1)
≥ (n2 + n)

(
1− 1

ω∗(n+ 1)

)
,

and m 6∈ Fn. Thus, using the property ii) of ω∗(n+ 1) we have∑
m

Tn(m) ≥
(

n2 + n

2ω∗(n+ 1)
− n2 − n

2ω∗(n)

)
|Fn|

≥
(

n2 + n

2ω∗(n)(1 + 1/n)
− n2 − n

2ω∗(n)

)
|Fn| ≥

n

2ω∗(n)
|Fn|.

On the other hand ∑
m

Tn(m) = n|An − An| ≤ n(n2 − n+ 1).
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It implies that |Fn| ≤ 2ω∗(n)(n2−n+1). Thus the number of forbidden elements
for an+1 is at most

n+ |F2,n| ≤ n+ 2ω∗(n)(n2 − n+ 1)

and an+1 will be an integer less or equal than ω∗(n)(2n2 − 2n + 2) + n + 1 �
ω(n)n2. �

The greedy algorithm can be modified to get a sequence A = {an} with an �
ω(n)n2, which is both, a quasi difference Sidon sequence and a quasi sum Sidon
sequence.

We remark that the densest known Sidon sequences A = {an} have been found

by Ruzsa [18] and the author [6] and satisfy an � n
√
2+1+o(1).
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