QUASI SIDON SETS

JAVIER CILLERUELO

ABSTRACT. We study sets of integers A with |A - A| close to $|A|^2$ and prove that $|A| < \sqrt{n} + \sqrt{|A|^2 - |A - A|}$ for any set $A \subset \{1, \ldots, n\}$. For infinite sequences of positive integers $A = (a_n)$ we define $A_n = \{a_1, \ldots, a_n\}$ and prove that if $|A_n - A_n| \sim n^2$ then $\limsup_{n \to \infty} a_n/n^2 = \infty$. On the opposite hand we construct, for any positive function $\omega(n) \to \infty$, an infinite sequence Asatisfying $|A_n - A_n| \sim n^2$ and $a_n \ll \omega(n)n^2$.

1. INTRODUCTION

A Sidon set is a set of integers having the property that all the nonzero differences a - a', $a, a' \in A$ are distinct; i.e. the difference set $A - A = \{a - a' : a, a' \in A\}$ has the maximum possible size: $|A - A| = |A|^2 - |A| + 1$.

Sidon sets have been studied for a long time but we are interested here in those sets with |A - A| close to $|A|^2$ (quasi difference Sidon sets). We prove the inequality

(1.1)
$$|A| < \sqrt{n} + \sqrt{|A|^2 - |A - A|}$$

for any set $A \subset \{1, \ldots, n\}$. An inmediate consequence of this inequality is that if $|A - A| = |A|^2(1 + o(1))$, then $|A| \leq \sqrt{n}(1 + o(1))$, the same asymptotic upper bound we have for Sidon sets. We deduce oher results on Sidon sets from inequality (1.1).

Our main results concern to infinite quasi difference Sidon sequences $A = (a_n)$. Denote $A_n = \{a_1, \ldots, a_n\}$. We say that A is a *quasi difference* Sidon sequence if $|A_n - A_n| \sim n^2$. We prove that if A is a quasi difference Sidon sequence then

(1.2)
$$\limsup_{n \to \infty} a_n / n^2 = \infty.$$

Erdős proved that $\limsup_{n\to\infty} a_n/(n^2\log n) > 0$ for Sidon sequences, but conclusion (1.2) is best possible for quasi difference sequences. Indeed we can construct, for any positive function $\omega(n) \to \infty$, an infinite sequence $A = \{a_n\}$ with $|A_n - A_n| \sim n^2$ and $a_n \ll \omega(n)n^2$.

¹⁹⁹¹ Mathematics Subject Classification. 2000 Mathematics Subject Classification: 11B83. Key words and phrases. Sidon sets, greedy algorithm.

This work was supported by MINECO project MTM2014-56350-P and ICMAT Severo Ochoa project SEV-2015-0554.

JAVIER CILLERUELO

We cannot decide if (1.2) holds for quasi sum Sidon sequences, those sequences with $|A_n + A_n| \sim n^2/2$.

2. FINITE QUASI SIDON SETS

We start with an inequality which is non trivial for those sets A with |A - A| close to $|A|^2$. This inequality simplifies some proofs of known results about Sidon sets. A less precise version of the inequality below has appeared before in [1] and [10].

Theorem 2.1. If $A \subset \{1, \ldots, n\}$ then

(2.1)
$$|A| < \sqrt{n} + \sqrt{|A|^2 - |A - A|}.$$

Theorem 2.1 is a consequence of the following lemma, which is generalization of Theorem 4.2 in [17].

Lemma 2.1. Let A and B be two subsets of an abelian group G. Then we have

(2.2)
$$|A|^{2} \leq |A+B| \left(1 + \frac{|A|^{2} - |A-A|}{|B|}\right)$$

Proof. As usual we define $r_{A+B}(x) = \#\{(a,b) \in A \times B : a+b = n\}$. The following equalities are well known:

i)
$$|A||B| = \sum_{x \in G} r_{A+B}(x)$$

ii) $\sum_{x \in G} r_{A+B}^2(x) = \sum_{x \in G} r_{A-A}(x)r_{B-B}(x).$

Cauchy inequality and the identities above give the following inequality:

$$(|A||B|)^{2} = \left(\sum_{x \in A+B} r_{A+B}(x)\right)^{2} \le |A+B| \sum_{x} r_{A+B}^{2}(x)$$

= $|A+B| \sum_{x \in A-A} r_{A-A}(x)r_{B-B}(x)$
= $|A+B| \left(\sum_{x \in A-A} r_{B-B}(x) + \sum_{x \in A-A} (r_{A-A}(x)-1)r_{B-B}(x)\right)$
 $\le |A+B| \left(\sum_{x} r_{B-B}(x) + |B| \sum_{x \in A-A} (r_{A-A}(x)-1)\right)$
 $\le |A+B| \left(|B|^{2} + |B|(|A|^{2} - |A-A|)\right).$

When A is a Sidon set then $|A - A| = |A|^2 - |A| + 1$ and Lemma 2.1 gives the following inequality proved by Ruzsa[17]:

(2.3)
$$|A|^2 \le |A+B| \left(1 + \frac{|A|-1}{|B|}\right).$$

Proof of Theorem 2.1. We consider the set $B = [0, l] \cap \mathbb{Z}$ with

$$l = \lfloor \sqrt{n(|A|^2 - |A - A|)} \rfloor$$

Then $|A + B| \le n + l$ y |B| = l + 1 and Lemma 3.1 implies that

$$\begin{split} |A|^2 &\leq (n+l) \left(1 + \frac{|A|^2 - |A - A|}{l+1} \right) \\ &< n+l + \frac{n(|A|^2 - |A - A|)}{l+1} + |A|^2 - |A - A| \\ &\leq n+2\sqrt{n(|A|^2 - |A - A|)} + |A|^2 - |A - A| \\ &= (\sqrt{n} + \sqrt{|A|^2 - |A - A|})^2 \end{split}$$

and we get the inequality of the Theorem.

This inequality has interesting consequences. The first one is the best known upper bound for the size of Sidon sets in intervals [3].

Corollary 2.1. If $A \subset [1, n]$ is a Sidon set then $|A| < \sqrt{n} + n^{1/4} + 1/2$.

Proof. If A is a Sidon set then $|A - A| = |A|^2 - |A| + 1$ and the inequality (2.1) implies

$$|A| < \sqrt{n} + \sqrt{|A| - 1} \implies (|A| - \sqrt{n})^2 < |A| - 1.$$

Writting $|A|=\sqrt{n}+cn^{1/4}+1/2$ and putting this expression in the last inequality we obtain

$$c^{2}n^{1/2} + cn^{1/4} + 1/4 < n^{1/2} + cn^{1/4} - 1/2$$

which provides a contradiction when $c \geq 1$.

Ruzsa called weak-Sidon sets those sets having the property that all the sums a + a', $a \neq a'$, $a, a' \in A$ are distinct. Notice that 2a = a' + a'' is allowed, so any Sidon set is a weak-Sidon set but the converse is not true. Ruzsa [17] proved that the cardinality of a weak Sidon set $A \subset [1, n]$ is bounded by $\sqrt{n} + 4n^{1/4} + 11$. P. Mark [15] improved it to $\sqrt{n} + \sqrt{3}n^{1/4} + O(1)$. We give a short proof of this last result.

Corollary 2.2. If $A \subset [1, n]$ is a weak Sidon set then $|A| < \sqrt{n} + \sqrt{3}n^{1/4} + 3/2$.

Proof. Define the sets

$$(A - A)_1 = \{x : x \neq 0, r_{A - A}(x) = 1\}$$

$$(A - A)_2 = \{x : x \neq 0, r_{A - A}(x) = 2\}.$$

It is clear that $r_{A-A}(x) \leq 2$ for any $x \neq 0$. Otherwise we would have x = a - b = c - d with $a \neq d$ and $b \neq c$, which is not allowed. On the other hand, if $x \in (A - A)_2$ then there exists $a, b, c \in A$ such that x = a - b = c - a or x = b - a = a - c. Thus, each non trivial arithmetic progression of elements of A, say 2a = b + c corresponds to two elements of $(A - A)_2$, say x = a - b and x = b - a. Thus we have

$$|A|^{2} = \sum_{x} r_{A-A}(x) = |A| + |(A - A)_{1}| + 2|(A - A)_{2}|$$

= |A| + |A - A| - 1 + |(A - A)_{2}|
= |A| + |A - A| - 1 + 2|P_{3}|,

where P_3 is the set of non trivial arithmetic progressions in A. Clearly $|P_3| \leq |A| - 2$. Thus

$$|A|^2 - |A - A| \le 3|A| - 5.$$

Theorem 2.1 implies that

$$|A| < \sqrt{n} + \sqrt{3|A| - 5}.$$

Writing $|A| = \sqrt{n} + cn^{1/4} + 3/2$ an substituying this in $(|A| - \sqrt{n})^2 < 3|A| - 5$ we get

$$c^2\sqrt{n} + 3cn^{1/4} + 9/4 < 3\sqrt{n} + 3cn^{1/4} - 1/2$$

and then $c^2\sqrt{n} + 11/4 < 3\sqrt{n}$, which implies that $c < \sqrt{3}$.

The B_h sets are sets A with the property that all the sums $a_1 + \cdots + a_h$, $a_1 \leq \cdots \leq a_h$, $a_i \in A$ are all distinct. The B_2 sets are just the Sidon sets. While there are constructions of B_h sets in [1, n] with $\sim n^{1/h}$ elements, it is unknown the asymptotic estimate for the largest cardinality of a B_h set in [1, n] when $h \geq 3$. The easy counting argument gives the upper bound $(h \cdot h!n)^{1/h}$. A non trivial upper bound was obtained by Lindstrom [14] for B_4 sets, by Jia [13] for B_h sets with h even and by Chen [2] for B_h sequences with h odd. These upper bounds have been improved slightly using deeper methods (see [4] and [11]). We present here a shorter proof of Jia's estimate as consequence of Theorem 2.1.

Corollary 2.3. If $A \subset [1, n]$ is a B_{2h} set then $|A| \leq (h \cdot h!^2 n)^{1/(2h)} (1 + o(1))$.

Proof. Assume that A is a B_{2h} set. For each $x = a_1 + \cdots + a_h \in hA$ we define the multiset $\overline{x} = \{a_1, \ldots, a_h\}$. We observe that any z has at most one representation of the form z = x - y with $x, y \in hA$ and $\overline{x} \cap \overline{y} = \emptyset$. The reason is that if

x - y = x' - y' then x + y' = y + x' and since A is a B_h set then $\overline{x} \cup \overline{y}' = \overline{x}' \cup \overline{y}$. But since $\overline{x} \cap \overline{y} = \overline{x}' \cap \overline{y}' = \emptyset$ we have that x = x', y = y'. Thus we get

$$|hA|^{2} = \sum_{z \in hA - hA} r_{hA - hA}(z) = |hA - hA| + \sum_{z \in hA - hA} (r_{hA - hA}(z) - 1)$$

and the last sum is bounded by the number of pairs $(x, y) \in hA \times hA$ with $\overline{x} \cap \overline{y} \neq \emptyset$, which is $O(|A|^{2h-1})$. Since $|hA|^2 = {\binom{|A|+h-1}{h}}^2 \gg |A|^{2h}$ we have that

$$|hA - hA| = |hA|^2(1 + o(1))$$

Assuming this we apply the inequality (2.1) to get $|hA| \leq \sqrt{hn}(1+o(1))$. The asymptotic estimate $|hA| \sim |A|^h/h!$ finishes the proof.

We finish the collection of consequences of Theorem 2.1 with the following Corollary.

Corollary 2.4. If $A \subset [1, n]$ and $|A - A| \sim |A|^2$ then $|A| \leq \sqrt{n}(1 + o(1))$.

This Corollary follows inmediately from Theorem 2.1, but what it is interesting is that we have not a similar conclusion for sets A with $|A + A| \sim |A|^2/2$. Indeed Erdős and Freud [7, 8, 9] gave an example of a set $A \subset [1, n]$ with $|A + A| \sim |A|^2/2$ of size $|A| \sim \frac{2}{\sqrt{3}}\sqrt{n}$. They considered the set $A = B \cup (n - B)$ where $B \subset$ [1, n/3) is a Sidon set of asymptotic size $\sqrt{n/3}$. It is unknown if the constant $\frac{2}{\sqrt{3}}$ is the largest constant for this problem. Trivially $|A| \leq 2\sqrt{n}(1 + o(1))$ if $A \subset [1, n]$ and $|A + A| \sim |A|^2/2$. Erdős and Freud claimed to have a proof of $|A| \leq 1.98\sqrt{n}(1+o(1))$ but Pikhurko [16] has proved that $|A| \leq 1.863\sqrt{n}(1+o(1))$.

Obviously, the set A constructed by Erdős and Freud is an example of a set with $|A + A| \sim |A|^2/2$ but $|A - A| \not \sim |A|^2$. Ruzsa [19] has proved that there exists c > 0 and sets A with $|A - A| \sim |A|^2$ and $|A + A| \leq |A|^{2-c}$ and sets with $|A + A| \sim |A|^2/2$ and $|A - A| \leq |A|^{2-c}$.

3. Infinite quasi Sidon sequences

A simple counting argument shows that if $A = (a_n)$ is an infinite Sidon sequence then $a_n \gg n^2$. Then, it is a natural question to ask if there is an infinite Sidon sequence A with $a_n \ll n^2$. Erdős (see Theorem 8, Chapter II in [12]) gave a negative answer to this question.

Theorem 3.1 (Erdős). If A is an infinite Sidon sequence then

(3.1)
$$\limsup_{n \to \infty} \frac{a_n}{n^2} = \infty.$$

Indeed Erdős proved that if A is an infinite Sidon sequence then

(3.2)
$$\limsup_{n \to \infty} \frac{a_n}{n^2 \log n} \gg 1$$

JAVIER CILLERUELO

We prove here that (3.1) also holds for quasi difference Sidon sequences. The proof of Theorem 3.2 follows the ideas of Erdős to prove (3.2).

Theorem 3.2. If $A = (a_n)$ is an infinite quasi difference Sidon sequence then

(3.3)
$$\limsup_{n \to \infty} \frac{a_n}{n^2} = \infty.$$

Proof. Denote $A^n = A \cap [1, n]$, so $A(n) = |A^n|$. We observe that (3.3) is equivalent to $\liminf_{n \to \infty} A(n) / \sqrt{n} = 0$. This is what we are proving.

Since A is a quasi difference sequence then $|A^n - A^n| \sim |A^n|^2$, which implies that there exists a positive decreasing function $\epsilon(n) \to 0$ such that

(3.4)
$$|A^n - A^n| \ge |A^n|^2 (1 - \epsilon(n)).$$

We consider the intervals $I_k = ((k-1)n, kn], k = 1, ..., \omega(n)$ where $\omega(n) = \lfloor 1/\sqrt{\epsilon(n)} \rfloor$. We denote $D_k = |A \cap I_k|$ and $m = n\omega(n)$. It is clear that

$$\sum_{k \le \omega(n)} \binom{D_k}{2} \le \sum_{1 \le x \le n} r_{A^m - A^m}(x) \le n + \sum_{x \in A^m - A^m} (r_{A^m - A^m}(x) - 1).$$

On the other hand

$$|A^{m}|^{2} = \sum_{x \in A^{m} - A^{m}} r_{A^{m} - A^{m}}(x) = |A^{m} - A^{m}| + \sum_{x \in A^{m} - A^{m}} (r_{A^{m} - A^{m}}(x) - 1).$$

Then, using (3.4) and $|A^m|^2 \leq m(1+o(1))$ we have

$$\sum_{k \le \omega(n)} {D_k \choose 2} \le n + |A^m|^2 - |A^m - A^m|$$
$$\le n + \epsilon(m)|A^m|$$
$$\le n + \epsilon(m)m(1 + o_m(1))$$
$$\le n + \epsilon(n\omega(n))(\omega(n)n)(1 + o_n(1)).$$

Notice that $\epsilon(n\omega(n))\omega(n) \le \epsilon(n)\omega(n) \ll \sqrt{\epsilon(n)} \to 0$. So,

$$\sum_{k \le \omega(n)} \binom{D_k}{2} \le n(1+o(1)).$$

On the one hand

$$\left(\sum_{k \le \omega(n)} \frac{D_k}{\sqrt{k}}\right)^2 \le \left(\sum_{k \le \omega(n)} \frac{1}{k}\right) \left(\sum_{k \le \omega(n)} D_k^2\right)$$
$$\sum_{k \le \omega(n)} \frac{1}{k} \ll \log \omega(n)$$

with

and

$$\sum_{k \le \omega(n)} D_k^2 = 2 \sum_{k \le \omega(n)} {D_k \choose 2} + \sum_{k \le \omega(n)} D_k$$
$$\leq n(1+o(1)) + |A^m|$$
$$\leq n(1+o(1)) + O(\sqrt{n\omega(n)}) \le n(1+o(1)).$$

Thus

(3.5)
$$\sum_{k \le \omega(n)} \frac{D_k}{\sqrt{k}} \ll (n \log \omega(n))^{1/2}$$

On the other hand

$$\sum_{k \le \omega(n)} \frac{D_k}{\sqrt{k}} \ge \frac{1}{2} \int_2^{\omega(n)} \frac{\sum_{k \le t} D_k}{t^{3/2}} dt = \frac{1}{2} \int_2^{\omega(n)} \frac{A([t]n)}{t^{3/2}} dt.$$

If $\liminf_{x\to\infty} A(x)/\sqrt{x} > 0$ we would have that $A([t]n) \gg \sqrt{[t]n}$ and then

$$\sum_{k \le \omega(n)} \frac{D_k}{\sqrt{k}} \gg \sqrt{n} \int_2^{\omega(n)} \frac{dt}{t} \gg \sqrt{n} \log \omega(n),$$

which is a contradiction with (3.5).

The following Theorem shows that Theorem 3.2 is sharp. Note that (3.2) does not hold for quasi difference Sidon sequences (take any function $\omega(n) = o(\log n)$ in Theorem 3.3).

Theorem 3.3. For any positive function $\omega(n) \to \infty$ as $n \to \infty$ it is possible to construct an infinite a sequence $A = \{a_n\}$ satisfying $|A_n - A_n| \sim n^2$ and $a_n \ll \omega(n)n^2$.

Proof. We can assume that $\omega(n)$ is a non decreasing function. Otherwise we can consider the function $\omega'(n) = \inf_{m \ge n} \omega(n)$.

Lemma 3.1. For any non decreasing positive function $\omega(n) \to \infty$; there exists a no decreasing function $\omega^*(n)$ satisfying the following conditions:

i) $\omega^*(n) \leq \omega(n)$. ii) $\omega^*(n+1) \leq \omega^*(n)(1+1/n)$. iii) $\omega^*(n) \to \infty$.

Proof. Define $\omega^*(1) = \omega(1)$ and for $n \ge 1$,

$$\omega^*(n+1) = \min(\omega(n+1), \omega^*(n)(1+1/n)).$$

If $\omega^*(n+1) = \omega^*(n)(1+1/n)$ then it is clear that $\omega^*(n+1) \ge \omega^*(n)$. If $\omega^*(n+1) = \omega(n+1)$ we also have that

$$\omega^*(n+1) \ge \omega(n) \ge \min(\omega(n), \omega^*(n-1)(1+1/(n-1))) = \omega^*(n)$$

Thus, $\omega^*(n)$ is a non decreasing function.

The conditions i) and ii) are trivial consequences from the definition of $\omega^*(n)$. For iii), we distinguist two cases:

- a) If $\omega^*(n+1) = \omega^*(n)(1+1/n)$ for $n \ge n_0$ then $\omega^*(n_0+m) = \omega^*(n_0) \prod_{i=0}^{m-1} \left(1 + \frac{1}{n_0+i}\right)$ and then $\omega^*(n_0+m) \to \infty$ when $m \to \infty$.
- b) If $\omega^*(n+1) = \omega(n+1)$ for infinite many n, then $\limsup \omega^*(n+1) \to \infty$ and then $\omega^*(n+1) \to \infty$ because ω^* is a non decreasing function.

Given $\omega(n)$, we construct our sequence A with the following greedy algorithm: Let $a_1 = 1$ and for $n \ge 1$, define a_{n+1} as the smallest positive integer m, distinct to a_1, \ldots, a_n such that

$$(A_n \cup m) - (A_n \cup m)| \ge (n^2 + n)(1 - 1/\omega^*(n+1)).$$

Thus, the sequence generated by this greedy algorithm satisfies that $|A_n - A_n| \ge (n^2 - n)(1 - 1/\omega^*(n))$. Since $\omega^*(n) \to \infty$ we have that A is a quasi difference Sidon sequence. Hence we have to prove that $a_n \ll \omega(n)n^2$.

The forbidden elements for a_{n+1} are the elements of A_n and the elements m of the set F_n defined by

$$F_n = \left\{ m : |(A_n \cup m) - (A_n \cup m)| < (n^2 + n)(1 - 1/\omega^*(n+1)) \right\}.$$

Denote

$$T_n(m) = |\{m - a_i \in A_n - A_n : i = 1, \dots, n\}|$$

We have

$$\begin{aligned} |(A_n \cup m) - (A_n \cup m)| &\geq |A_n - A_n| + 2|\{m - a_i \notin A_n - A_n : i = 1, \dots, n\}| \\ &\geq (n^2 - n)(1 - 1/\omega^*(n)) + 2n - 2T_n(m). \end{aligned}$$

If $T_n(m) \leq \frac{n^2 + n}{2\omega^*(n+1)} - \frac{n^2 - n}{2\omega^*(n)}$ then

$$|(A_n \cup m) - (A_n \cup m)| \ge n^2 - n + 2n - \frac{n^2 + n}{\omega^*(n+1)} \ge (n^2 + n) \left(1 - \frac{1}{\omega^*(n+1)}\right),$$

and $m \notin F_n$. Thus, using the property ii) of $\omega^*(n+1)$ we have

$$\sum_{m} T_{n}(m) \geq \left(\frac{n^{2}+n}{2\omega^{*}(n+1)} - \frac{n^{2}-n}{2\omega^{*}(n)}\right) |F_{n}|$$

$$\geq \left(\frac{n^{2}+n}{2\omega^{*}(n)(1+1/n)} - \frac{n^{2}-n}{2\omega^{*}(n)}\right) |F_{n}| \geq \frac{n}{2\omega^{*}(n)} |F_{n}|.$$

On the other hand

$$\sum_{m} T_n(m) = n|A_n - A_n| \le n(n^2 - n + 1).$$

It implies that $|F_n| \leq 2\omega^*(n)(n^2 - n + 1)$. Thus the number of forbidden elements for a_{n+1} is at most

$$n + |F_{2,n}| \le n + 2\omega^*(n)(n^2 - n + 1)$$

and a_{n+1} will be an integer less or equal than $\omega^*(n)(2n^2 - 2n + 2) + n + 1 \ll \omega(n)n^2$.

The greedy algorithm can be modified to get a sequence $A = \{a_n\}$ with $a_n \ll \omega(n)n^2$, which is both, a quasi difference Sidon sequence and a quasi sum Sidon sequence.

We remark that the densest known Sidon sequences $A = \{a_n\}$ have been found by Ruzsa [18] and the author [6] and satisfy $a_n \ll n^{\sqrt{2}+1+o(1)}$.

References

- B. Bollobas and O. Pikhurko, Integer sets with prescribed pairwise differences being distinct European J. Combin. 26 (2005), no. 5, 607–616.
- [2] S. Chen, On the size of finite Sidon sequences Proc. Amer. Math. Soc. 121 (1994), no. 2, 353–356.
- [3] J. Cilleruelo, Sidon sets in \mathbb{N}^d . J. Combin. Theory Ser. A 117 (2010), no. 7, 857–871.
- [4] J. Cilleruelo, New upper bounds for finite B_h sequences, Adv. Math. 159 (2001), no. 1, 1–17.
- [5] J. Cilleruelo, Probabilistic constructions of B₂[g] sequences, Acta Mathematica Sinica 26 (2010), no. 7, 1309–1314.
- [6] J. Cilleruelo, Infinite Sidon sequences, Advances in Mathematics 255 (2014), 474–486.
- [7] P. Erdős, Some problems and results on combinatorial number theory, Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., 576, pp. 132–145, New York Acad. Sci., New York, 1989.
- [8] P. Erdős, Some of my forgotten problems in number theory, Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1992, 15, pp.34–50.
- [9] P. Erdős and Freud, On Sidon sequences and related problems, Mat. Lapok 1 (1991), 1-44.
- [10] Ferrara, M.; Kohayakawa and Y.; Rodl, V. Distance graphs on the integers Combin. Probab. Comput. 14 (2005), no. 1-2, 107–131.
- [11] B. Green, The number of squares and $B_h[g]$ sets, Acta Arith. 100 (2001), no. 4, 365?390.
- [12] H. Halberstam and K.F. Roth, *Sequences*, Springer-Verlag, New York (1983).
- [13] X.-D. Jia, On finite Sidon sequences, J. Number Theory 44 (1993), 84–92.
- [14] B. Lindstrom, An inequality for B₂-sequences, J. Combinatorial Theory 6 (1969), 211–212.
- [15] P. Mark Kayll, A note on weak Sidon sequences. Discrete Mathematics, Volume 299, 141– 144 (2005).
- [16] O. Pikhurko, Dense edge-magic graphs and thin additive bases, Discrete Math. 306 (2006), no. 17, 2097–2107.
- [17] I. Ruzsa, Solving a linear equation in a set of integers. I. Acta Arith. 65 (1993), no. 3, 259–282.
- [18] I. Ruzsa, An infinite Sidon sequence. J. Number Theory 68 (1998), no. 1, 63-71.
- [19] I. Ruzsa, On the number of sums and differences. Acta Math. Hungar. 59 (1992), 439–447.

JAVIER CILLERUELO

Instituto de Ciencias Matemáticas (ICMAT) and Departamento de Matemáticas, Unversidad Autónoma de Madrid, Madrid 28049, España.

E-mail address: franciscojavier.cilleruelo@uam.es