A NOTE ON PRODUCT SETS OF RATIONALS

JAVIER CILLERUELO

Abstract

Bourgain, Konyagin and Shparlinski obtained a lower bound for the size of the product set $A B$ when A and B are sets of positive rational numbers with numerator and denominator less or equal than Q. We extend and slightly improve that lower bound using a different approach.

1. Introduction

Bourgain, Konyagin and Shparlinsky [1] obtained a lower bound for the size of the product of two sets of rational numbers

$$
A, B \subset \mathcal{F}_{Q}=\left\{q / q^{\prime}: 1 \leq q, q^{\prime} \leq Q\right\}
$$

and they applied it to the study of the distribution of elements of multiplicative groups in residue rings. See [3] and [2] for related results and more applications of this useful inequality.

Theorem \mathbf{A} (BKSh). If $A, B \subset \mathcal{F}_{Q}$ then

$$
\begin{equation*}
|A B| \geq|A||B| \exp (-(9+o(1)) \log Q / \sqrt{\log \log Q}) \tag{1}
\end{equation*}
$$

where $o(1) \rightarrow 0$ when $Q \rightarrow \infty$.
For any real numbers $Q, Q^{\prime} \geq 1$ let $\mathcal{F}_{Q, Q^{\prime}}$ denotes the set of rational numbers

$$
\mathcal{F}_{Q, Q^{\prime}}=\left\{q / q^{\prime}: 1 \leq q \leq Q, 1 \leq q^{\prime} \leq Q^{\prime}\right\} .
$$

We give the following result which extends and slightly improves Theorem A.

Theorem 1. If $A, B \subset \mathcal{F}_{Q, Q^{\prime}}$ then

$$
|A / B| \geq|A||B| \exp \left(-(2 \sqrt{\log 2}+o(1)) \log \left(Q Q^{\prime}\right) / \sqrt{\log \log \left(Q Q^{\prime}\right)}\right)
$$

where $o(1) \rightarrow 0$ when $Q Q^{\prime} \rightarrow \infty$.
Taking $Q^{\prime}=Q$ and the set $1 / B=\left\{b^{-1}: b \in B\right\}$ instead of B we improve the constant in (1).

[^0]Corollary 1. If $A, B \in \mathcal{F}_{Q}$, then

$$
|A B| \geq|A||B| \exp (-(4 \sqrt{\log 2}+o(1)) \log Q / \sqrt{\log \log Q})
$$

2. Proof of Theorem 1

For any pair of sets $A, B \subset \mathcal{F}_{Q, Q^{\prime}}$ and $\operatorname{gcd}(r, s)=1$ we define the sets

$$
\begin{aligned}
\mathcal{M}(A \times B, r / s) & =\left\{\left(a / a^{\prime}, b / b^{\prime}\right) \in A \times B: \operatorname{gcd}(a, b)=r, \operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=s\right\} \\
A_{r / s} & =\left\{a / a^{\prime} \in A, r|a, s| a^{\prime}\right\} \\
B_{r / s} & =\left\{b / b^{\prime} \in B, r|b, s| b^{\prime}\right\} .
\end{aligned}
$$

It is clear that $\mathcal{M}(A \times B, r / s) \subset A_{r / s} \times B_{r / s}$, so we have

$$
\begin{equation*}
|\mathcal{M}(A \times B, r / s)| \leq\left|A_{r / s}\right|\left|B_{r / s}\right| . \tag{2}
\end{equation*}
$$

We claim that each $c / d \in A / B$ (assume that $\operatorname{gcd}(c, d)=1$) has at most $\tau(c) \tau(d)$ representation as

$$
\begin{equation*}
\frac{c}{d}=\frac{a / a^{\prime}}{b / b^{\prime}} \tag{3}
\end{equation*}
$$

with $\left(a / a^{\prime}, b / b^{\prime}\right) \in \mathcal{M}(A \times B, r / s)$. Indeed we observe that (3) implies $\frac{c}{d}=\frac{a_{0} b_{0}^{\prime}}{b_{0} a_{0}^{\prime}}$ where $a_{0}=a / r, \quad b_{0}=b / r, \quad a_{0}^{\prime}=a_{0} / s, \quad b_{0}^{\prime}=b_{0} / s$. Since $\operatorname{gcd}(c, d)=1$ and $\operatorname{gcd}\left(a_{0} b_{0}^{\prime}, a_{0}^{\prime} b_{0}\right)=1$ then $c=a_{0} b_{0}^{\prime}$ and $d=a_{0}^{\prime} b_{0}$, which proves the claim.

Note that $c=a_{0} b_{0}^{\prime} \leq Q Q^{\prime}$ and $d=a_{0}^{\prime} b_{0} \leq Q Q^{\prime}$, thus the claim implies the inequality

$$
\begin{equation*}
|\mathcal{M}(A, B, r / s)| \leq T^{2}|A / B| \tag{4}
\end{equation*}
$$

where $T=T\left(Q Q^{\prime}\right)$ and $T(x)$ is the function

$$
T(x)=\max _{m \leq x} \tau(m) .
$$

Using (2), (4) and the well known inequality

$$
\sum_{\substack{1 \leq r, s \\ r s \leq x}} 1 \leq x(1+\log x)
$$

we get

$$
\begin{align*}
|A \| B| & =\sum_{\substack{r s \leq x \\
(r, s)=1}}|\mathcal{M}(A, B, r / s)|+\sum_{\substack{r s>x \\
(r, s)=1}}|\mathcal{M}(A, B, r / s)| \tag{5}\\
& \leq T^{2}|A / B| x(1+\log x)+\sum_{\substack{r s>x \\
(r, s)=1}}\left|A_{r / s}\right|\left|B_{r / s}\right|
\end{align*}
$$

for any real number $x \geq 1$. If x is such that the last sum is less than $|A||B| / 2$ then we get

$$
\begin{equation*}
|A / B| \geq \frac{|A||B|}{2 T^{2} x(1+\log x)} \tag{6}
\end{equation*}
$$

Now we are ready to prove the key Lemma.
Lemma 2. For any $n \geq 1$ and for any $A, B \in \mathcal{F}_{Q, Q^{\prime}}$ with real numbers $Q, Q^{\prime} \geq 1$, we have

$$
\begin{equation*}
|A / B| \geq \frac{|A||B|}{(4 T)^{n+1}\left(Q Q^{\prime}\right)^{1 / n}\left(1+\log \left(Q Q^{\prime}\right)\right)} \tag{7}
\end{equation*}
$$

where $T=\max _{m \leq Q Q^{\prime}} \tau(m)$.
Proof. We proceed by induction on n : trivially, since $|B| \leq Q Q^{\prime}$ we have

$$
|A / B| \geq|A| \geq \frac{|A||B|}{Q Q^{\prime}}
$$

which proves (7) for $n=1$. Suppose that Lemma 2 is true for some $n \geq 1$.

If there is r / s such that

$$
\begin{equation*}
\left|A_{r / s}\right|\left|B_{r / s}\right| \geq \frac{\left(Q Q^{\prime}\right)^{\frac{1}{n(n+1)}}}{4 T(r s)^{1 / n}}|A||B| \tag{8}
\end{equation*}
$$

we use induction for the sets $A_{r / s}, B_{r / s} \subset \mathcal{F}_{Q / r, Q^{\prime} / s}$. By observing that the function $T(x)=\max _{m \leq x} \tau(m)$ is a non decreasing function we have

$$
|A / B| \geq\left|A_{r / s} / B_{r / s}\right|
$$

(by induction hypothesis) $\geq \frac{\left|A_{r / s}\right|\left|B_{r / s}\right|}{(4 T)^{n+1}\left((Q / r)\left(Q^{\prime} / s\right)\right)^{1 / n}\left(1+\log \left((Q / r)\left(Q^{\prime} / s\right)\right)\right)}$

$$
(\text { by }(8)) \geq \frac{|A||B|}{(4 T)^{n+2}\left(Q Q^{\prime}\right)^{1 /(n+1)}\left(1+\log \left(Q Q^{\prime}\right)\right)}
$$

Thus, we assume that

$$
\left|A_{r / s}\right|\left|B_{r / s}\right|<\frac{\left(Q Q^{\prime}\right)^{\frac{1}{n(n+1)}}}{4 T(r s)^{1 / n}}|A||B|
$$

for any $r / s,(r, s)=1$. In this case we have

$$
\begin{align*}
\sum_{r s>x}\left|A_{r / s}\right|\left|B_{r / s}\right| & \leq \max _{r s>x}\left(\left|A_{r / s}\right|\left|B_{r / s}\right|\right)^{1 / 2} \sum_{r s>x}\left|A_{r / s}\right|^{1 / 2}\left|B_{r / s}\right|^{1 / 2} \\
(9) & \leq \frac{\left(Q Q^{\prime}\right)^{\frac{1}{2 n(n+1)}}}{2 T^{1 / 2} x^{\frac{1}{2 n}}}(|A||B|)^{1 / 2}\left(\sum_{r, s}\left|A_{r / s}\right|\right)^{1 / 2}\left(\sum_{r, s}\left|B_{r / s}\right|\right)^{1 / 2} \tag{9}
\end{align*}
$$

To estimate the sums in the brackets we have

$$
\begin{equation*}
\sum_{r, s}\left|A_{r / s}\right|=\sum_{q / q^{\prime} \in A} \sum_{\substack{r, s \\ r|q, s| q^{\prime}}} 1 \leq \sum_{q / q^{\prime} \in A} \tau\left(q q^{\prime}\right) \leq|A| T . \tag{10}
\end{equation*}
$$

Putting in (9) the estimate (10) and the analogous for $\sum_{r, s}\left|B_{r / s}\right|$ we have

$$
\sum_{r s>x}\left|A_{r / s}\right|\left|B_{r / s}\right| \leq|A||B| \frac{T^{1 / 2}\left(Q Q^{\prime}\right)^{\frac{1}{2 n(n+1)}}}{2 x^{\frac{1}{2 n}}}
$$

Taking $x=T^{n}\left(Q Q^{\prime}\right)^{\frac{1}{n+1}}$ we get

$$
\sum_{r s>x}\left|A_{r / s}\right|\left|B_{r / s}\right| \leq|A||B| / 2 .
$$

Then (6) applies and noting that $\log x \leq \log \left(\left(Q Q^{\prime}\right)^{n+\frac{1}{n+1}}\right) \leq 2 n \log \left(Q Q^{\prime}\right)$ we get

$$
\begin{aligned}
|A / B| & \geq \frac{|A||B|}{2 T^{2} x(1+\log x)} \\
& \geq \frac{|A||B|}{2 T^{n+2}\left(Q Q^{\prime}\right)^{\frac{1}{(n+1)}}\left(1+2 n \log \left(Q Q^{\prime}\right)\right)} \\
& \geq \frac{|A||B|}{(4 T)^{n+2}\left(Q Q^{\prime}\right)^{\frac{1}{(n+1)}}\left(1+\log \left(Q Q^{\prime}\right)\right)} \times \frac{2^{2 n+3}\left(1+\log \left(Q Q^{\prime}\right)\right)}{1+2 n \log \left(Q Q^{\prime}\right)} \\
& \geq \frac{|A||B|}{(4 T)^{n+2}\left(Q Q^{\prime}\right)^{\frac{1}{(n+1)}}\left(1+\log \left(Q Q^{\prime}\right)\right)}
\end{aligned}
$$

The well known upper bound for the divisor function,

$$
\tau(m) \leq \exp ((\log 2+o(1)) \log m / \log \log m)
$$

implies

$$
T \leq \exp \left((\log 2+o(1)) \log \left(Q Q^{\prime}\right) / \log \log \left(Q Q^{\prime}\right)\right)
$$

Thus, an optimal choice of n in Lemma 2 is $n \sim \sqrt{\frac{\log \log \left(Q Q^{\prime}\right)}{\log 2}}$, from where Theorem 1 follows.
Acknowledgements. This work was supported by grants MTM 201122851 of MICINN and ICMAT Severo Ochoa project SEV-2011-0087.

References

[1] J. Bourgain, S. Konyagin, I. Shparlinski, Product sets of Rationals, Multiplicative Translates of Subgroups in Residue Rings, and Fixed Points of the Discrte Logarithm. International Mathematical Research Notices, vol 2008. 1-29.
[2] J. Cilleruelo and M. Garaev, Congruences involving product of intervals and sets with small multiplicative doublings modulo a prime. Preprint.
[3] J. Cilleruelo, S. Ramana and O. Ramaré, The number of rational numbers determined by large sets of integers. Bull. of the London Math. Soc. vol 42, n3 (2010)

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

[^0]: 2000 Mathematics Subject Classification. 11B30.
 Key words and phrases. Product sets, quotient sets, divisor function, Farey fractions.

