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Abstract. Bourgain, Konyagin and Shparlinski obtained a lower
bound for the size of the product set AB when A and B are sets of
positive rational numbers with numerator and denominator less or
equal than Q. We extend and slightly improve that lower bound
using a different approach.

1. Introduction

Bourgain, Konyagin and Shparlinsky [1] obtained a lower bound for
the size of the product of two sets of rational numbers

A,B ⊂ FQ = {q/q′ : 1 ≤ q, q′ ≤ Q}

and they applied it to the study of the distribution of elements of
multiplicative groups in residue rings. See [3] and [2] for related results
and more applications of this useful inequality.

Theorem A (BKSh). If A,B ⊂ FQ then

(1) |AB| ≥ |A||B| exp
(
−(9 + o(1)) logQ/

√
log logQ

)
,

where o(1)→ 0 when Q→∞.

For any real numbers Q,Q′ ≥ 1 let FQ,Q′ denotes the set of rational
numbers

FQ,Q′ = {q/q′ : 1 ≤ q ≤ Q, 1 ≤ q′ ≤ Q′}.
We give the following result which extends and slightly improves The-
orem A.

Theorem 1. If A,B ⊂ FQ,Q′ then

|A/B| ≥ |A||B| exp
(
−(2

√
log 2 + o(1)) log(QQ′)/

√
log log(QQ′)

)
,

where o(1)→ 0 when QQ′ →∞.

Taking Q′ = Q and the set 1/B = {b−1 : b ∈ B} instead of B we
improve the constant in (1).
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Corollary 1. If A,B ∈ FQ, then

|AB| ≥ |A||B| exp
(
−(4

√
log 2 + o(1)) logQ/

√
log logQ

)
.

2. Proof of Theorem 1

For any pair of sets A,B ⊂ FQ,Q′ and gcd(r, s) = 1 we define the
sets

M(A×B, r/s) = {(a/a′, b/b′) ∈ A×B : gcd(a, b) = r, gcd(a′, b′) = s}
Ar/s = {a/a′ ∈ A, r | a, s | a′}
Br/s = {b/b′ ∈ B, r | b, s | b′}.

It is clear that M(A×B, r/s) ⊂ Ar/s ×Br/s, so we have

(2) |M(A×B, r/s)| ≤ |Ar/s||Br/s|.

We claim that each c/d ∈ A/B (assume that gcd(c, d) = 1) has at
most τ(c)τ(d) representation as

(3)
c

d
=
a/a′

b/b′

with (a/a′, b/b′) ∈M(A×B, r/s). Indeed we observe that (3) implies
c
d

=
a0b′0
b0a′0

where a0 = a/r, b0 = b/r, a′0 = a0/s, b′0 = b0/s. Since

gcd(c, d) = 1 and gcd(a0b
′
0, a
′
0b0) = 1 then c = a0b

′
0 and d = a′0b0, which

proves the claim.
Note that c = a0b

′
0 ≤ QQ′ and d = a′0b0 ≤ QQ′, thus the claim

implies the inequality

(4) |M(A,B, r/s)| ≤ T 2|A/B|,

where T = T (QQ′) and T (x) is the function

T (x) = max
m≤x

τ(m).

Using (2), (4) and the well known inequality∑
1≤r,s
rs≤x

1 ≤ x(1 + log x)

we get

|A||B| =
∑
rs≤x
(r,s)=1

|M(A,B, r/s)|+
∑
rs>x
(r,s)=1

|M(A,B, r/s)|(5)

≤ T 2|A/B|x(1 + log x) +
∑
rs>x
(r,s)=1

|Ar/s||Br/s|



A NOTE ON PRODUCT SETS OF RATIONALS 3

for any real number x ≥ 1. If x is such that the last sum is less than
|A||B|/2 then we get

(6) |A/B| ≥ |A||B|
2T 2x(1 + log x)

.

Now we are ready to prove the key Lemma.

Lemma 2. For any n ≥ 1 and for any A,B ∈ FQ,Q′ with real numbers
Q,Q′ ≥ 1, we have

(7) |A/B| ≥ |A||B|
(4T )n+1(QQ′)1/n(1 + log(QQ′))

where T = maxm≤QQ′ τ(m).

Proof. We proceed by induction on n: trivially, since |B| ≤ QQ′ we
have

|A/B| ≥ |A| ≥ |A||B|
QQ′

,

which proves (7) for n = 1. Suppose that Lemma 2 is true for some
n ≥ 1.

If there is r/s such that

|Ar/s||Br/s| ≥
(QQ′)

1
n(n+1)

4T (rs)1/n
|A||B|(8)

we use induction for the sets Ar/s, Br/s ⊂ FQ/r,Q′/s. By observing that
the function T (x) = maxm≤x τ(m) is a non decreasing function we have

|A/B| ≥ |Ar/s/Br/s|

(by induction hypothesis) ≥
|Ar/s||Br/s|

(4T )n+1((Q/r)(Q′/s))1/n(1 + log((Q/r)(Q′/s)))

(by (8)) ≥ |A||B|
(4T )n+2(QQ′)1/(n+1)(1 + log(QQ′))

.

Thus, we assume that

|Ar/s||Br/s| <
(QQ′)

1
n(n+1)

4T (rs)1/n
|A||B|

for any r/s, (r, s) = 1. In this case we have∑
rs>x

|Ar/s||Br/s| ≤ max
rs>x

(|Ar/s||Br/s|)1/2
∑
rs>x

|Ar/s|1/2|Br/s|1/2

≤ (QQ′)
1

2n(n+1)

2T 1/2x
1
2n

(|A||B|)1/2
(∑

r,s

|Ar/s|

)1/2(∑
r,s

|Br/s|

)1/2

.(9)

To estimate the sums in the brackets we have∑
r,s

|Ar/s| =
∑

q/q′∈A

∑
r,s

r|q, s|q′

1 ≤
∑

q/q′∈A

τ(qq′) ≤ |A|T.(10)
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Putting in (9) the estimate (10) and the analogous for
∑

r,s |Br/s| we
have ∑

rs>x

|Ar/s||Br/s| ≤ |A||B|
T 1/2(QQ′)

1
2n(n+1)

2x
1
2n

.

Taking x = T n(QQ′)
1

n+1 we get∑
rs>x

|Ar/s||Br/s| ≤ |A||B|/2.

Then (6) applies and noting that log x ≤ log((QQ′)n+
1

n+1 ) ≤ 2n log(QQ′)
we get

|A/B| ≥ |A||B|
2T 2x(1 + log x)

≥ |A||B|
2T n+2(QQ′)

1
(n+1) (1 + 2n log(QQ′))

≥ |A||B|
(4T )n+2(QQ′)

1
(n+1) (1 + log(QQ′))

× 22n+3(1 + log(QQ′))

1 + 2n log(QQ′)

≥ |A||B|
(4T )n+2(QQ′)

1
(n+1) (1 + log(QQ′))

.

�

The well known upper bound for the divisor function,

τ(m) ≤ exp((log 2 + o(1)) logm/ log logm)

implies
T ≤ exp((log 2 + o(1)) log(QQ′)/ log log(QQ′)).

Thus, an optimal choice of n in Lemma 2 is n ∼
√

log log(QQ′)
log 2

, from

where Theorem 1 follows.
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