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Abstract. We study the typical behavior of the least common multiple of the elements of a

random subset A ⊂ {1, . . . , n}. For example we prove that lcm{a : a ∈ A} = 2n(1+o(1)) for

almost all subsets A ⊂ {1, . . . , n}.

1. Introduction

The function ψ(n) = log lcm {m : 1 ≤ m ≤ n} was introduced by Chebyshev in his study on

the distribution of the prime numbers. It is a well known fact that the asymptotic relation

ψ(n) ∼ n is equivalent to the Prime Number Theorem, which was proved finally by Hadamard

and de la Vallée Poussin.

In the present paper, instead of considering the whole set {1, . . . , n}, we study the typical

behavior of the quantity ψ(A) := log lcm{a : a ∈ A} for a random set A in {1, . . . , n} when

n→∞. We consider two natural models.

In the first one, denoted by B(n, δ), each element in A is chosen independently at random in

{1, . . . , n} with probability δ = δ(n), typically a function of n.

Theorem 1.1. If δ = δ(n) < 1 and δn→∞ then

ψ(A) ∼ nδ log(δ−1)

1− δ

asymptotically almost surely in B(n, δ) when n→∞ .

The case δ = 1, which corresponds to the asymptotic estimate for the classical Chebyshev

function, appears as the limiting case, as δ tends to 1, in Theorem 1.1, since limδ→1
δ log(δ−1)

1−δ = 1.

When δ = 1/2 all the subsets A ⊂ {1, . . . , n} are chosen with the same probability and

Theorem 1.1 gives the following result.

Corollary 1.1. For almost all sets A ⊂ {1, . . . , n} we have that

lcm{a : a ∈ A} = 2n(1+o(1)).

For a given positive integer k = k(n), again typically a function of n, we consider the second

model, where each subset of k elements is chosen uniformly at random among all sets of size k

in {1, . . . , n}. We denote this model by S(n, k).

When δ = k/n the heuristic suggests that both models are quite similar. Indeed, this is the

strategy we follow to prove Theorem 1.2.
1
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Theorem 1.2. For k = k(n) < n and k →∞ we have

ψ(A) = k
log(n/k)

1− k/n

(
1 +O(e−C

√
log k)

)
almost surely in S(n, k) when n→∞ for some positive constant C.

The case k = n, which corresponds to Chebyshev’s function, is also obtained as a limiting

case in Theorem 1.2 in the sense that limk/n→1
log(n/k)
1−k/n = 1.

This work has been motivated by a result of the first author about the asymptotic behavior

of ψ(A) when A = Aq,n := {q(m) : 1 ≤ q(m) ≤ n} for a quadratic polynomial q(x) ∈ Z[x]. We

wondered if that behavior was typical among the sets A ⊂ {1, . . . , n} of similar size. We analyze

this issue in the last section.

2. Chebyshev’s function for random sets in B(n, δ). Proof of Theorem 1.1

The following lemma provides us with an explicit expression for ψ(A) in terms of the Mangoldt

function

Λ(m) =

log p if m = pk for some k ≥ 1

0, otherwise.

Lemma 2.1. For any set of positive integers A we have ψ(A) =
∑
m Λ(m)IA(m), where Λ

denotes the classical Von Mangoldt function and

IA(m) =

{
1 if A ∩ {m, 2m, 3m, . . . } 6= ∅,
0 otherwise.

Proof. We observe that for any positive integer l, the number log l can be written as log l =∑
pk|l log p, where the sum is taken over all the powers of primes. Thus, using that pk| lcm{a :

a ∈ A} if and only if A ∩ {pk, 2pk, 3pk, . . . } 6= ∅, we get

log lcm(a : a ∈ A) =
∑

pk|lcm(a: a∈A)

log p =
∑
pk

(log p)IA(pk) =
∑
m

Λ(m)IA(m).

�

Note that if A = {1, . . . , n} then ψ(A) =
∑
m≤n Λ(m) is the classical Chebychev function

ψ(n).

2.1. Expectation. First of all we give an explicit expression for the expected value of the

random variable X = ψ(A) where A is a random set in B(n, δ).

Proposition 2.1. For the random variable X = ψ(A) in B(n, δ) we have

E (X) = n
δ log(δ−1)

1− δ
+ δ

∑
r≥1

R
(n
r

)
(1− δ)r−1,

where R(x) = ψ(x)− x denotes the error term in the Prime Number Theorem.
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Proof. The ambiguous case δ = 1 must be understood as the limit as δ → 1, which recovers

the equality ψ(n) = n + R(n). In the following we assume that δ < 1. By linearity of the

expectation, Lemma 2.1 clearly implies

E(X) =
∑
m≤n

Λ(m)E(IA(m)).

Since E(IA(m)) = P(A ∩ {m, 2m, . . . } 6= ∅) = 1 −
∏
r≤n/m P(rm 6∈ A) = 1 − (1 − δ)bn/mc, we

obtain

(1) E(X) =
∑
m≤n

Λ(m)
(

1− (1− δ)bn/mc
)
.

We observe that bn/mc = r whenever n
r+1 < m ≤ n

r , so we split the sum into intervals Jr =

( n
r+1 ,

n
r ], obtaining

E (X) =
∑
r≥1

(1− (1− δ)r)
∑
m∈Jr

Λ(m)

=
∑
r≥1

(1− (1− δ)r)
(
ψ
(n
r

)
− ψ

( n

r + 1

))
= δ

∑
r≥1

ψ
(n
r

)
(1− δ)r−1

= δn
∑
r≥1

(1− δ)r−1

r
+ δ

∑
r≥1

R
(n
r

)
(1− δ)r−1.

= n
δ log(δ−1)

1− δ
+ δ

∑
r≥1

R
(n
r

)
(1− δ)r−1.

�

Corollary 2.1. If δ = δ(n) < 1 and δn→∞ then

E (X) = n
δ log(δ−1)

1− δ

(
1 +O

(
e−C
√

log(δn)
))

.

for some constant C > 0.

Proof. We estimate the absolute value of sum appearing in Proposition 2.1. For any positive

integer T and using that |R(y)| < 2y for all y > 0 we have∑
r≥1

|R (n/r) |(1− δ)r−1 =
∑

1≤r≤T

|R (n/r) |(1− δ)r−1 +
∑

r≥T+1

|R (n/r) |(1− δ)r−1

≤n
∑

1≤r≤T

|R (n/r) |
(n/r)

(1− δ)r−1

r
+ 2n

∑
r≥T+1

(1− δ)r−1

r

≤ n

(
max
x≥n/T

|R(x)|
x

) ∑
1≤r≤T

(1− δ)r−1

r
+ 2n

∑
r≥T+1

(1− δ)r−1

r

≤ n
log(δ−1)

(1− δ)

(
max
x≥n/T

|R(x)|
x

)
+

2n

T + 1

(1− δ)T

δ

Taking into account that (1− δ)T < e−δT and the known estimate

max
x>y

|R(x)|
x

� e−C1

√
log y
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for the error term in the PNT, we have∑
r≥1

|R (n/r) |(1− δ)r−1 � n
log(δ−1)

(1− δ)
e−C
√

log(n/T ) + n
e−δT

δT
.

Thus we have proved that for any positive integer T we have

E(X) = n
δ log(δ−1)

1− δ

(
1 +O

(
e−C
√

log(n/T )
)

+O

(
1− δ

log(δ−1)

e−δT

δT

))
.

We take T � δ−1
√

log(δn) to minimize the error term. To estimate the first error term we

observe that log(n/T ) � log(δn/
√

log(δn)) � log(δn), so e−C
√

log(n/T ) � e−C1

√
log(δn) for

some constant C1. To bound the second error term we simply observe that δT > 1 and that
1−δ

log(δ−1) ≤ 1 and we get a similar upper bound. �

2.2. Variance.

Proposition 2.2. For the random variable X = ψ(A) in B(n, δ) we have

V (X)� δn log2 n.

Proof. By linearity of expectation we have that

V (X) = E
(
X2
)
− E2 (X)

=
∑
m,l≤n

Λ(m)Λ(l) (E (IA(m)IA(l))− E (IA(m))E (IA(l))) .

We observe that if Λ(m)Λ(l) 6= 0 then l | m, m | l or (m, l) = 1. Let us now study the term

E(IA(m)IA(l)) in these cases.

(i) If l | m then

E(IA(m)IA(l)) = 1− (1− δ)bn/mc.

(ii) If (l,m) = 1 then

E(IA(m)IA(l)) = 1− (1− δ)bn/mc − (1− δ)bn/lc + (1− δ)bn/mc+bn/lc−bn/mlc.

Both of these relations are subsumed in

E(IA(m)IA(l)) = 1− (1− δ)bn/mc − (1− δ)bn/lc + (1− δ)bn/mc+bn/lc−bn(m,l)/mlc.

Therefore, it follows from (1) that for each term in the sum we have

Λ(m)Λ(l) (E (IA(m)IA(l))− E (IA(m))E (IA(l)))

= Λ(m)Λ(l)(1− δ)bn/mc+bn/lc−bn(m,l)/mlc
(

1− (1− δ)bn(m,l)/mlc
)
.

Finally, by using the inequality 1− (1− x)r ≤ rx we have

Λ(m)Λ(l) (E (IA(m)IA(l))− E (IA(m))E (IA(l))) ≤ δnΛ(l)

l

Λ(m)

m
(m, l),

and therefore:

V (X) ≤ 2δn
∑

1≤l≤m≤n

Λ(l)

l

Λ(m)

m
(m, l).
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We now split the sum according to l | m or (l,m) = 1 and estimate each one separately.∑
1≤l≤m≤n

l|m

Λ(l)

l

Λ(m)

m
(m, l) =

∑
p≤n

∑
1≤j≤i

log p

pi
log p

pi
pj ≤

∑
p≤n

∑
1≤i

i log2 p

pi
� log2 n,

∑
1≤l≤m≤n
(l,m)=1

Λ(l)

l

Λ(m)

m
(m, l) ≤

 ∑
1≤l≤n

Λ(l)

l

 ∑
1≤m≤n

Λ(m)

m

� log2 n,

as we wanted to prove. �

We finish the proof of Theorem 1.1 by observing that V (X) = o(E(X)2) when δn → ∞, so

X ∼ E(X) asymptotically almost surely.

3. Chebyshev’s function for random sets in S(n, k). Proof of Theorem 1.2

Let us consider again the random variable X = ψ(A), but in the model S(n, k). From now

on Ek(X) and Vk(X) will denote the expected value and the variance of X in this probability

space. Clearly, for s = 1, 2 we have

Ek(Xs) =
1(
n
k

) ∑
|A|=k

ψs(A)

Vk(X) =
1(
n
k

) ∑
|A|=k

(ψ(A)− Ek(X))
2

Lemma 3.1. For s = 1, 2 and 1 ≤ j < k we have that

Ej(Xs) ≤ Ek(Xs) ≤ Ej(Xs) + (ks − js) logs n.

Proof. Suppose j < k. There are
(
n−j
k−j
)

ways to add k−j new elements to a set A ∈
(

[n]
j

)
in order

to obtain a subset of
(

[n]
k

)
. Observe that the function ψ is monotone with respect to inclusion,

i.e. ψ (A ∪A′) ≥ ψ(A) for any sets A,A′. Therefore it is clear that, for s = 1, 2, we have

ψs(A) ≤
(
n− j
k − j

)−1 ∑
A∩A′=∅
|A′|=k−j

ψs(A ∪A′),

and then ∑
|A|=j

ψs(A) ≤
(
n− j
k − j

)−1 ∑
A∩A′=∅

|A|=j, |A′|=k−j

ψs(A ∪A′)

=

(
n− j
k − j

)−1 ∑
|A′′|=k

∑
A∪A′=A′′

|A|=j, |A′|=k−j

ψs(A′′)

=

(
n− j
k − j

)−1 ∑
|A′′|=k

ψs(A′′)
∑

A∪A′=A′′
|A|=j, |A′|=k−j

1

=

(
n
j

)(
n
k

) ∑
|A′′|=k

ψs(A′′),
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and the first inequality follows.

For the second inequality we observe that for any set A ∈
(

[n]
k

)
and any partition into two sets

A = A′∪A′′ with |A′| = j, |A′′| = k−j we have that ψ(A) ≤ ψ(A′)+ψ(A′′) ≤ ψ(A′)+(k−j) log n.

Similarly,

ψ2(A) ≤ (ψ(A′) + (k − j) log n)2

= ψ2(A′) + 2ψ(A′)(k − j) log n+ (k − j)2 log2 n

≤ ψ2(A′) + 2j(k − j) log2 n+ (k − j)2 log2 n

= ψ2(A′) + (k2 − j2) log2 n.

Thus, for s = 1, 2 we have

ψs(A) ≤
(
k

j

)−1 ∑
A′⊂A
|A′|=j

(ψs(A′) + (ks − js) logs n)

≤
(
k

j

)−1( ∑
A′⊂A
|A′|=j

ψs(A′)
)

+ (ks − js) logs n.

Then, ∑
|A|=k

ψs(A) ≤
(
k

j

)−1 ∑
|A|=k

∑
A′⊂A
|A′|=j

ψs(A′) +

(
n

k

)
(ks − js) logs n

=

(
k

j

)−1 ∑
|A′|=j

ψs(A′)
∑
A′⊂A
|A|=k

1 +

(
n

k

)
(ks − js) logs n

=

(
k

j

)−1(
n− j
k − j

) ∑
|A′|=j

ψs(A′) +

(
n

k

)
(ks − js) logs n

=

(
n
k

)(
n
j

) ∑
|A′|=j

ψs(A′) +

(
n

k

)
(ks − js) logs n,

and the second inequality holds. �

Proposition 3.1. For s = 1, 2 we have that

Ek(Xs) = E(Xs) +O(ks−1/2 logs n)

where E(Xs) denotes the expectation of Xs in B(n, k/n) and Ek(Xs) the expectation in S(n, k).

Proof. Observe that for s = 1, 2 we have

E(Xs)− Ek(Xs) = −Ek(Xs) +

n∑
j=0

(
k

n

)j (
1− k

n

)n−j ∑
|A|=j

ψs(A)

= −Ek(Xs) +

n∑
j=0

(
k

n

)j (
1− k

n

)n−j (
n

j

)
Ej(Xs)

=

n∑
j=0

(
k

n

)j (
1− k

n

)n−j (
n

j

)
(Ej(Xs)− Ek(Xs)) ,
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for s = 1, 2. Using Lemma 3.1 we get

(2) |Ek(Xs)− E(Xs)| ≤ logs n

n∑
j=0

(
k

n

)j (
1− k

n

)n−j (
n

j

)
|js − ks|.

The sum in (2) for s = 1 is E(|Y − E(Y )|), where Y ∼ Bin(n, k/n) is the binomial distribution

of parameters n and k/n. Chauchy-Schwarz inequality for the expectation implies that this

quantity is bounded by the standard deviation of the binomial distribution.

(3)

n∑
j=0

(
k

n

)j (
1− k

n

)n−j (
n

j

)
|j − k| ≤

√
n(k/n)(1− k/n) ≤

√
k,

which proves Proposition 3.1 for s = 1.

To estimate the sum in (2) for s = 2, we split the expression in two terms: the sum indexed

by j ≤ 2k and the one with j > 2k. We use (3) to get∑
j≤2k

(
k

n

)j (
1− k

n

)n−j (
n

j

)
|j2 − k2| ≤ 3k

n∑
j=0

(
k

n

)j (
1− k

n

)n−j (
n

j

)
|j − k|

≤ 3k3/2.

On the other hand,∑
j>2k

(
k

n

)j (
1− k

n

)n−j (
n

j

)
|j2 − k2|

≤
∑
l≥2

(l + 1)2k2
∑

lk<j≤(l+1)k

(
k

n

)j (
1− k

n

)n−j (
n

j

)
≤

∑
l≥2

(l + 1)2k2 P(Y > lk)

where, once again, Y ∼ Bin(n, k/n). Chernoff’s Theorem implies that for any ε > 0 we have

P(Y > (1 + ε)k) ≤ e−ε
2k/3.

Applying this inequality to P(Y > lk) we get∑
j>2k

(
k

n

)j (
1− k

n

)n−j (
n

j

)
|j2 − k2|

≤
∑
l≥2

(l + 1)2k2e−(l−1)2k/3 � k2e−k/3 � k3/2.

�

The next corollary proves the first part of Theorem 1.2.

Corollary 3.1. If k = k(n) < n and k →∞ then

Ek(X) = k
log(n/k)

1− k/n

(
1 +O

(
e−C

√
log k

))
Proof. Proposition 3.1 for s = 1 and Corollary 2.1 imply that

Ek(X) = k
log(n/k)

1− k/n

(
1 +O

(
e−C

√
log k

)
+O

(
k−1/2

))
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and clearly k−1/2 = o
(
e−C

√
log k

)
when k →∞. �

To conclude the proof of Theorem 1.2 we combine Proposition 2.2 and Proposition 3.1 to

estimate the variance Vk(X) in S(n, k):

Vk(X) = Ek(X2)− E2
k(X)

= V (X) +
(
Ek(X2)− E(X2)

)
+ (E(X)− Ek(X)) (E(X) + Ek(X))

� k log2 n+
(
k1/2 log n

)
(k log n)

� k3/2 log2 n.

The second assertion of Theorem 1.2 is a consequence of the estimate Vk(X) = o
(
E2
k(X)

)
when

k →∞.

3.1. The case when k is constant. The case when k is constant and n → ∞ is not relevant

for our original motivation but we give a brief analysis for the sake of the completeness. In

this case Fernandez and Fernandez [3] have been proved that Ek(ψ(A)) = k log n + Ck + o(1)

where Ck = −k +
∑k
j=2

(
k
j

)
(−1)j ζ

′(j)
ζ(j) . Actually they consider the probabilistic model with k

independent choices in {1, . . . , n}, but when k is fixed it does not make big differences because

the probability of a repetition between the k choices is tiny.

It is easy to prove that with probability 1 − o(1) we have that ψ(A) ∼ k log n. To see this

we observe that a1 · · · ak
∏
i<j(ai, aj)

−1 ≤ lcm(a1, . . . , ak) ≤ a1 · · · ak ≤ nk, so
∑k
i=1 log ai −∑

i<j log(ai, aj) ≤ ψ(A) ≤ k log n.

Now notice that P(ai ≤ n/ log n for some i = 1, . . . , k) ≤ k/ log n. and that P((ai, aj) ≥
log n) ≤

∑
d>logn P(d | ai, d | aj) ≤

∑
d>logn

1
d2 < 1

logn . These observations imply that with

probability at least 1− k+(k
2)

logn we have that

k log n (1−O (log log n/ log n)) ≤ ψ(A) ≤ k log n.

The analysis in the model B(n, δ) when δn→ c can be done using again Proposition 2.1.

E (ψ(A)) = n
δ log(δ−1)

1− δ
+ δ

∑
r<n/ logn

R
(n
r

)
(1− δ)r−1 + δ

∑
n/ logn≤r≤n

R
(n
r

)
(1− δ)r−1

We use the estimate R(x)� x/ log x in the first sum and the estimate R(x)� x in the second

one. We have

E (ψ(A)) = c log n+O(1) +O

 c

log log n

∑
r< n

log n

(1− δ)r−1

r

+O

c ∑
n

log n≤r≤n

(1− δ)r−1

r


= c log n+O

(
c log δ

log log n

)
+O (c log log n)

= c log n(1 + o(1)).

Of course in this model we have not concentration around the expected value because the prob-

ability that A is the empty set tends to a positive constant: P(A = ∅)→ e−c.
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4. The least common multiple of the values of a polynomial

Chebyshev’s function could be also generalized to

ψq(n) = log lcm {q(k) : 1 ≤ k, 1 ≤ q(k) ≤ n}

for a given polynomial q(x) ∈ Z[x] and it is natural to try to obtain the asymptotic behavior for

ψq(n). Some progress has been made in this direction. While the Prime Number Theorem is

equivalent to the asymptotic ψq(n) ∼ n for q(x) = x, the Prime Number Theorem for arithmetic

progressions can be exploited [1] to obtain the asymptotic estimate when q(x) = a1x + a0 is a

linear polynomial:

ψq(n) ∼ n

a1

m

φ(m)

∑
1≤l≤m
(l,m)=1

1

l
,

where m = a1/(a1, a0). The first author [2] has extended this result to quadratic polynomials.

For a given irreducible quadratic polynomial q(x) = a2x
2 + a1x + a0 with a2 > 0 the following

asymptotic estimate holds:

(4) ψq(n) =
1

2
(n/a2)

1/2
log (n/a2) +Bq (n/a2)

1/2
+ o(n1/2),

where the constant Bq depends only on q. In the particular case of q(x) = x2 + 1, he got

ψq(n) = 1
2n

1/2 log n+Bqn
1/2 + o(n1/2) with

Bq = γ − 1− log 2

2
−
∑
p 6=2

(−1
p

)
log p

p− 1
,

where γ is the Euler constant,
(−1
p

)
is the Legendre’s symbol and the sum is considered over

all odd prime numbers. It has recently been proved in [4] that the error term in the previous

expression is O
(
n1/2 (log n)

−4/9+ε
)

for each ε > 0. When q(x) is a reducible polynomial the

behavior is, however, different. In this case it is known (see Theorem 3 in [2]) that:

ψq(n) ∼ cn1/2

where c is an explicit constant depending only on q.

The asymptotic behavior of ψq(n) remains unknown for irreducible polynomials of degree

d ≥ 3, but it is conjectured in [2] that this should be given by

(5) ψq(n) ∼ (1− 1/d) (n/ad)
1/d

log (n/ad) ,

where ad > 0 is the coefficient of xd. For example, this conjecture would imply ψq(n) ∼
2
3n

1/3 log n for q(x) = x3 + 2.

We observe that ψq(n) = ψ(Aq,n) where Aq,n := {q(k) : 1 ≤ k, 1 ≤ q(k) ≤ n} and

it is natural to wonder whether for a given polynomial q(x) the asymptotic Ek(X) ∼ ψq(n)

holds when n → ∞ where k = |Aq,n| and X = ψ(A) for a random set A of k elements in

{1, . . . , n}. This question was the original motivation of this work. Theorem 1.2 applied to

k = |Aq,n| =
√
n/a2 +O(1) gives

Ek(X) = k
log(n/k)

1− k/n

(
1 +O

(
e−C

√
log k

))
=

1

2
(n/a2)1/2 log(n/a2) + o

(
n1/2

)
.
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This shows that the asymptotic behavior of ψq(n) is the expected of a random set of the same

size when q(x) is an irreducible quadratic polynomial. Theorem 1.2 also supports the analogous

conjecture 5 for any q(x) = adx
d + · · ·+ a0 irreducible polynomial of degree d ≥ 3.

Nevertheless, there are some differences in the second term. For example, if q(x) = x2 + 1,

we have

ψq(n) =
1

2
n1/2 log n+Bqn

1/2 + o(n1/2),

for B = −0.06627563... On the other hand, Theorem 1.2 implies that in corresponding model

S(n, k) with k = |Aq,n| = b
√
n− 1c we have that

ψ(A) =
1

2
n1/2 log n+ o(n1/2)

almost surely. In other words, when q(x) is an irreducible quadratic polynomial, the asymptotic

behavior of ψq(n) is the same that ψ(A) in the corresponding model S(n, k). But, the second

term is not typical unless Bq = 0. Probably Bq 6= 0 for any irreducible quadratic polynomial

q(x) but we have not found a proof.
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