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Abstract

In his famous 1946 paper, Erdős [4] proved that the points of a
√
n×√

n portion of the
integer lattice determine Θ(n/

√
log n) distinct distances, and a variant of his technique

derives the same bound for
√
n × √

n portions of several other types of lattices (e.g.,
see [11]). In this note we consider distinct distances in rectangular lattices of the form
{(i, j) ∈ Z

2 | 0 ≤ i ≤ n1−α, 0 ≤ j ≤ nα}, for some 0 < α < 1/2, and show that the
number of distinct distances in such a lattice is Θ(n). In a sense, our proof “bypasses”
a deep conjecture in number theory, posed by Cilleruelo and Granville [3]. A positive
resolution of this conjecture would also have implied our bound.
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Given a set P of n points in R
2, let D(P) denote the number of distinct distances

that are determined by pairs of points from P. Let D(n) = min|P|=nD(P); that is, D(n)
is the minimum number of distinct distances that any set of n points in R

2 must always
determine. In his celebrated 1946 paper [4], Erdős derived the bound D(n) = O(n/

√
log n)

by considering a
√
n×√

n integer lattice. Recently, after 65 years and a series of progressively
larger lower bounds1, Guth and Katz [8] provided an almost matching lower bound D(n) =
Ω(n/ log n).

While the problem of finding the asymptotic value of D(n) is almost completely solved,
hardly anything is known about which point sets determine a small number of distinct
distances. Consider a set P of n points in the plane, such that D(P ) = O(n/

√
logn). Erdős

conjectured [6] that any such set “has lattice structure.” A variant of a proof of Szemerédi
implies that there exists a line that contains Ω(

√
log n) points of P (Szemerédi’s proof was

communicated by Erdős in [5] and can be found in [9, Theorem 13.7]). A recent result of
Pach and de Zeeuw [10] implies that any constant-degree curve that contains no lines and
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circles cannot be incident to more than O(n3/4) points of P. Another recent result, by
Sheffer, Zahl, and de Zeeuw [12] implies that no line can contain Ω(n7/8) points of P, and
no circle can contain Ω(n5/6) such points.

In this note we make some progress towards the understanding of the structure of
such sets, by showing that rectangular lattices cannot have a sublinear number of distinct
distances. Specifically, we consider the number of distinct distances that are determined by
an n1−α × nα integer lattice, for some 0 < α ≤ 1/2. We denote this number by Dα(n).

The case α = 1/2 is the case of the square
√
n×√

n lattice, which determines D1/2(n) =
Θ(n/

√
log n) distinct distances, as already mentioned above. Surprisingly, we show here a

different estimate for α < 1/2.

Theorem 1. For α < 1/2, the number of distinct distances that are determined by an

n1−α × nα integer lattice is

Dα(n) = n+ o(n).

Proof. We consider the rectangular lattice

Rα(n) = {(i, j) ∈ Z
2 | 0 ≤ i ≤ n1−α, 0 ≤ j ≤ nα}.

Notice that every distance between a pair of points of Rα(n) is also spanned by (0, 0) and
another point of Rα(n). This immediately implies Dα(n) ≤ n+O(n1−α). In the rest of the
proof we derive a lower bound for Dα(n). For this purpose, we consider the sublattice

R′
α(n) = {(i, j) ∈ Z

2 | 2nα ≤ i ≤ n1−α, 0 ≤ j ≤ nα};

since α < 1/2, R′
α(n) 6= ∅ for n ≥ n0(α), a suitable constant depending on α. We also

consider the functions

r(m) =
∣

∣{(i, j) ∈ R′
α(n) | i2 + j2 = m}

∣

∣,

d(m) =
∣

∣{(i, j) ∈ R′
α(n) | i2 − j2 = m}

∣

∣.

Observe that the smallest (resp., largest) value of m for which d(m) 6= 0 is 3n2α (resp.,
n2−2α).

We have the identities

∑

m

r(m) =
∑

m

d(m), (1)

∑

m

r2(m) =
∑

m

d2(m). (2)

The identity (1) is trivial. To see (2) we observe that the sum
∑

m r2(m) counts the
number of ordered quadruples (i, j, i′, j′), for (i, j), (i′, j′) ∈ R′

α(n), such that i2 + j2 =
i′2 + j′2. But this quantity also counts the number of those ordered quadruples (i, j, i′, j′),
for (i, j′), (i′, j) ∈ R′

α(n), such that i2 − j′2 = i′2 − j2, which is the value of the sum
∑

m d2(m). Putting (1) and (2) together we have

∑

m

(

r(m)

2

)

=
∑

m

(

d(m)

2

)

. (3)
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Writing Mk for the set of those m with r(m) = k, we have
∑

k k|Mk| = |R′
α(n)|. On the

other hand,

Dα(n) ≥
∑

k≥1

|Mk|

=
∑

k≥1

k|Mk| −
∑

k≥1

(k − 1)|Mk|

= |R′
α(n)| −

∑

k≥2

(k − 1)|Mk|.

Thus Dα(n) ≥ n−O(n2α + n1−α)−∑

k≥2(k− 1)|Mk|. Using the inequality k− 1 ≤
(

k
2

)

and (3), we have

∑

k≥2

(k − 1)|Mk| ≤
∑

k≥2

(

k

2

)

|Mk| =
∑

m

(

r(m)

2

)

=
∑

m

(

d(m)

2

)

.

Theorem 1 is therefore a trivial consequence of the following proposition.

Proposition 2.
∑

m

(

d(m)

2

)

= O
(

n2α log2 n
)

.

Proof. We need the following easy lemma.

Lemma 3. If a positive integer m can be written as the product of two integers in two

different ways, say m = m1m2 = m3m4, then there exists a quadruple of positive integers

(s1, s2, s3, s4) satisfying

m1 = s1s2, m2 = s3s4, m3 = s1s3, m4 = s2s4.

Proof. Since m1 divides m3m4, we have m1 = s1s2 for some s1 | m3 and some s2 | m4.
Putting s3 = m3/s1 and s4 = m4/s2, we have m2 = s3s4, m3 = s1s3, and m4 = s2s4.

We write
∑

m

(

d(m)

2

)

=
∑

1≤l≤n1−2α

∑

m∈Il

(

d(m)

2

)

,

where Il = [l2n2α, (l+1)2n2α). We observe that the union of the intervals, namely [n2α, (1+
n1−2α)2n2α), covers all the possible m with d(m) 6= 0.

Now we estimate
∑

m∈Il

(

d(m)
2

)

for a fixed l, by viewing the binomials as counting un-

ordered pairs of distinct pairs whose difference of squares is m. Let a2− b2 = c2− d2 (a > c
and b > d) be such a pair of distinct representations of some m, which is counted in the
above sum

∑

m∈Il

(

d(m)
2

)

. Since m ∈ Il we have

l2n2α ≤ a2 − b2 < (l + 1)2n2α.

Thus,
l2n2α ≤ a2 < (l + 1)2n2α + b2 ≤ ((l + 1)2 + 1)n2α < (l + 2)2n2α.
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The same inequality holds for c, so we have

lnα ≤ a, c < (l + 2)nα. (4)

Applying Lemma 3 to (a − c)(a + c) = (b − d)(b + d) (clearly, the two products are
distinct), we obtain a quadruple of integers (s1, s2, s3, s4) satisfying

s1s2 = a− c, s3s4 = a+ c,

s1s3 = b− d, s2s4 = b+ d.

Using (4) and 0 ≤ b, d ≤ nα we have the following inequalities:

1 ≤ s1s2, s1s3, s2s4 ≤ 2nα,

2lnα ≤s3s4 < (2l + 4)nα. (5)

It is clear from the above inequalities that si ≤ 2nα, for i = 1, . . . , 4. From s2s4 ≤
2nα, s1s3 ≤ 2nα, and 2lnα ≤ s3s4, we also deduce that

1 ≤ s2 ≤
s3
l

and 1 ≤ s1 ≤
s4
l
. (6)

Choose s3 between 1 and 2nα. Then choose s4, according to (5), in the range [
2lnα

s3
,
(2l + 4)nα

s3
).

Then choose s1 and s2, according to (6), in
s3
l
· s4
l
≤ (2l + 4)nα

l2
ways. The overall number

of quadruples (s1, s2, s3, s4) under consideration is thus at most

∑

1≤s3≤2nα

4nα

s3
· (2l + 4)nα

l2
= O

(

n2α log n

l

)

.

Finally we have

∑

m

(

d(m)

2

)

≤
∑

1≤l≤n1−2α

∑

m∈Il

(

d(m)

2

)

= O





∑

l≤n1−2α

n2α log n

l



 = O
(

n2α log2 n
)

.

Discussion. Theorem 1 is closely related to a special case of a fairly deep conjecture in
number theory, stated as Conjecture 13 in Cilleruelo and Granville [3]. This special case,
given in [3, Eq. (5.1)], asserts that, for any integer N , and any fixed β < 1/2,

∣

∣{(a, b) ∈ Z
2 | a2 + b2 = N, |b| < Nβ}

∣

∣ ≤ Cβ ,

where Cβ is a constant that depends on β (but not on N). A simple geometric argument
shows that this is true for β ≤ 1/4 but it is unknown for any 1/4 < β < 1/2. If that latter
conjecture were true, a somewhat weaker version of Theorem 1 would follow. Indeed, let
N be an integer that can be written as i2 + j2, for 1

2n
1−α ≤ i ≤ n1−α and j ≤ nα. Then

N = Θ(n2(1−α)), and j = O(Nβ), for β = α/(2(1− α)) < 1/2.

Conjecture 13 of [3] would then imply that the number of pairs (i, j) as above is at most
the constant Cβ . In other words, each of the Θ(n) distances in the portion of Rα(n) with
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i ≥ 1
2n

1−α, interpreted as a distance from the origin (0, 0), can be attained at most Cβ

times. Hence Dα(n) = Θ(n), as asserted in Theorem 1.

The general form of conjecture 13 [3] asserts that the number of integer lattice points
on an arc of length Nβ on the circle a2 + b2 = N is bounded by some constant Cβ , for any
β < 1/2. Cilleruelo and Córdoba [2] have proved this for β < 1/4. See also Bourgain and
Rudnick [1] for some consequences of this conjecture.

A heuristic argument that supports the above conjecture is the following: It is well known
that the quantity r(N), that counts the number of lattice points on the circle x2 + y2 = N ,
satisfies r(N) ≪ N ε for any ε > 0. If the lattice points were distributed at random along
the circle, an easy calculation would show that the probability that an arc of length Nβ

contains k lattice points is bounded by
(r(N)

k

)

N (k−1)(β−1/2). Now, for any β < 1/2, there

exists k such that the infinite sum
∑

N

(r(N)
k

)

N (k−1)(β−1/2) converges, and the Borel–Cantelli
Lemma would then imply that, with probability 1, only a finite number of circles can contain
k lattice points on arcs of length Nβ .
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