A note on distinct distances in rectangular lattices^{*}

Javier Cilleruelo[†] Micha Sharir[‡]

Adam Sheffer[§]

July 18, 2014

Abstract

In his famous 1946 paper, Erdős [4] proved that the points of a $\sqrt{n} \times \sqrt{n}$ portion of the integer lattice determine $\Theta(n/\sqrt{\log n})$ distinct distances, and a variant of his technique derives the same bound for $\sqrt{n} \times \sqrt{n}$ portions of several other types of lattices (e.g., see [11]). In this note we consider distinct distances in rectangular lattices of the form $\{(i, j) \in \mathbb{Z}^2 \mid 0 \leq i \leq n^{1-\alpha}, 0 \leq j \leq n^{\alpha}\}$, for some $0 < \alpha < 1/2$, and show that the number of distinct distances in such a lattice is $\Theta(n)$. In a sense, our proof "bypasses" a deep conjecture in number theory, posed by Cilleruelo and Granville [3]. A positive resolution of this conjecture would also have implied our bound.

Keywords. Discrete geometry, distinct distances, lattice.

Given a set \mathcal{P} of n points in \mathbb{R}^2 , let $D(\mathcal{P})$ denote the number of distinct distances that are determined by pairs of points from \mathcal{P} . Let $D(n) = \min_{|\mathcal{P}|=n} D(\mathcal{P})$; that is, D(n)is the minimum number of distinct distances that any set of n points in \mathbb{R}^2 must always determine. In his celebrated 1946 paper [4], Erdős derived the bound $D(n) = O(n/\sqrt{\log n})$ by considering a $\sqrt{n} \times \sqrt{n}$ integer lattice. Recently, after 65 years and a series of progressively larger lower bounds¹, Guth and Katz [8] provided an almost matching lower bound $D(n) = \Omega(n/\log n)$.

While the problem of finding the asymptotic value of D(n) is almost completely solved, hardly anything is known about which point sets determine a small number of distinct distances. Consider a set \mathcal{P} of n points in the plane, such that $D(P) = O(n/\sqrt{\log n})$. Erdős conjectured [6] that any such set "has lattice structure." A variant of a proof of Szemerédi implies that there exists a line that contains $\Omega(\sqrt{\log n})$ points of \mathcal{P} (Szemerédi's proof was communicated by Erdős in [5] and can be found in [9, Theorem 13.7]). A recent result of Pach and de Zeeuw [10] implies that any constant-degree curve that contains no lines and

^{*}Work by Javier Cilleruelo has been supported by grants MTM 2011-22851 of MICINN and ICMAT Severo Ochoa project SEV-2011-0087. Work by Adam Sheffer and Micha Sharir has been supported by Grants 338/09 and 892/13 from the Israel Science Fund, by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11), and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.

[†]Instituto de Ciencias Matematicas (CSIC-UAM-UC3M-UCM), and Departamento de Matematicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain. *franciscojavier.cilleruelo@uam.es*

[‡]School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. *michas@tau.ac.il*

[§]Corresponding author. School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. *shef-fera@tau.ac.il*

¹For a comprehensive list of the previous bounds, see [7] and http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html (version of February 2014).

circles cannot be incident to more than $O(n^{3/4})$ points of \mathcal{P} . Another recent result, by Sheffer, Zahl, and de Zeeuw [12] implies that no line can contain $\Omega(n^{7/8})$ points of \mathcal{P} , and no circle can contain $\Omega(n^{5/6})$ such points.

In this note we make some progress towards the understanding of the structure of such sets, by showing that rectangular lattices cannot have a sublinear number of distinct distances. Specifically, we consider the number of distinct distances that are determined by an $n^{1-\alpha} \times n^{\alpha}$ integer lattice, for some $0 < \alpha \leq 1/2$. We denote this number by $D_{\alpha}(n)$.

The case $\alpha = 1/2$ is the case of the square $\sqrt{n} \times \sqrt{n}$ lattice, which determines $D_{1/2}(n) = \Theta(n/\sqrt{\log n})$ distinct distances, as already mentioned above. Surprisingly, we show here a different estimate for $\alpha < 1/2$.

Theorem 1. For $\alpha < 1/2$, the number of distinct distances that are determined by an $n^{1-\alpha} \times n^{\alpha}$ integer lattice is

$$D_{\alpha}(n) = n + o(n).$$

Proof. We consider the rectangular lattice

$$R_{\alpha}(n) = \{(i,j) \in \mathbb{Z}^2 \mid 0 \le i \le n^{1-\alpha}, \ 0 \le j \le n^{\alpha}\}.$$

Notice that every distance between a pair of points of $R_{\alpha}(n)$ is also spanned by (0,0) and another point of $R_{\alpha}(n)$. This immediately implies $D_{\alpha}(n) \leq n + O(n^{1-\alpha})$. In the rest of the proof we derive a lower bound for $D_{\alpha}(n)$. For this purpose, we consider the sublattice

$$R'_{\alpha}(n) = \{ (i,j) \in \mathbb{Z}^2 \mid 2n^{\alpha} \le i \le n^{1-\alpha}, \ 0 \le j \le n^{\alpha} \};$$

since $\alpha < 1/2$, $R'_{\alpha}(n) \neq \emptyset$ for $n \ge n_0(\alpha)$, a suitable constant depending on α . We also consider the functions

$$r(m) = \left| \{ (i,j) \in R'_{\alpha}(n) \mid i^2 + j^2 = m \} \right|,$$

$$d(m) = \left| \{ (i,j) \in R'_{\alpha}(n) \mid i^2 - j^2 = m \} \right|.$$

Observe that the smallest (resp., largest) value of m for which $d(m) \neq 0$ is $3n^{2\alpha}$ (resp., $n^{2-2\alpha}$).

We have the identities

$$\sum_{m} r(m) = \sum_{m} d(m), \tag{1}$$

$$\sum_{m} r^{2}(m) = \sum_{m} d^{2}(m).$$
 (2)

The identity (1) is trivial. To see (2) we observe that the sum $\sum_{m} r^{2}(m)$ counts the number of ordered quadruples (i, j, i', j'), for $(i, j), (i', j') \in R'_{\alpha}(n)$, such that $i^{2} + j^{2} = i'^{2} + j'^{2}$. But this quantity also counts the number of those ordered quadruples (i, j, i', j'), for $(i, j'), (i', j) \in R'_{\alpha}(n)$, such that $i^{2} - j'^{2} = i'^{2} - j^{2}$, which is the value of the sum $\sum_{m} d^{2}(m)$. Putting (1) and (2) together we have

$$\sum_{m} \binom{r(m)}{2} = \sum_{m} \binom{d(m)}{2}.$$
(3)

Writing M_k for the set of those m with r(m) = k, we have $\sum_k k|M_k| = |R'_{\alpha}(n)|$. On the other hand,

$$D_{\alpha}(n) \ge \sum_{k\ge 1} |M_k|$$

= $\sum_{k\ge 1} k|M_k| - \sum_{k\ge 1} (k-1)|M_k|$
= $|R'_{\alpha}(n)| - \sum_{k\ge 2} (k-1)|M_k|.$

Thus $D_{\alpha}(n) \ge n - O(n^{2\alpha} + n^{1-\alpha}) - \sum_{k \ge 2} (k-1)|M_k|$. Using the inequality $k-1 \le \binom{k}{2}$ and (3), we have

$$\sum_{k\geq 2} (k-1)|M_k| \le \sum_{k\geq 2} \binom{k}{2} |M_k| = \sum_m \binom{r(m)}{2} = \sum_m \binom{d(m)}{2}.$$

Theorem 1 is therefore a trivial consequence of the following proposition.

Proposition 2.

$$\sum_{m} \binom{d(m)}{2} = O\left(n^{2\alpha} \log^2 n\right).$$

Proof. We need the following easy lemma.

Lemma 3. If a positive integer m can be written as the product of two integers in two different ways, say $m = m_1m_2 = m_3m_4$, then there exists a quadruple of positive integers (s_1, s_2, s_3, s_4) satisfying

$$m_1 = s_1 s_2, \quad m_2 = s_3 s_4, \quad m_3 = s_1 s_3, \quad m_4 = s_2 s_4$$

Proof. Since m_1 divides m_3m_4 , we have $m_1 = s_1s_2$ for some $s_1 \mid m_3$ and some $s_2 \mid m_4$. Putting $s_3 = m_3/s_1$ and $s_4 = m_4/s_2$, we have $m_2 = s_3s_4$, $m_3 = s_1s_3$, and $m_4 = s_2s_4$.

We write

$$\sum_{m} \binom{d(m)}{2} = \sum_{1 \le l \le n^{1-2\alpha}} \sum_{m \in I_l} \binom{d(m)}{2},$$

where $I_l = [l^2 n^{2\alpha}, (l+1)^2 n^{2\alpha})$. We observe that the union of the intervals, namely $[n^{2\alpha}, (1+n^{1-2\alpha})^2 n^{2\alpha})$, covers all the possible m with $d(m) \neq 0$.

Now we estimate $\sum_{m \in I_l} {d(m) \choose 2}$ for a fixed l, by viewing the binomials as counting unordered pairs of distinct pairs whose difference of squares is m. Let $a^2 - b^2 = c^2 - d^2$ (a > cand b > d) be such a pair of distinct representations of some m, which is counted in the above sum $\sum_{m \in I_l} {d(m) \choose 2}$. Since $m \in I_l$ we have

$$l^2 n^{2\alpha} \le a^2 - b^2 < (l+1)^2 n^{2\alpha}$$

Thus,

$$l^2 n^{2\alpha} \le a^2 < (l+1)^2 n^{2\alpha} + b^2 \le ((l+1)^2 + 1)n^{2\alpha} < (l+2)^2 n^{2\alpha}.$$

The same inequality holds for c, so we have

$$ln^{\alpha} \le a, c < (l+2)n^{\alpha}. \tag{4}$$

Applying Lemma 3 to (a - c)(a + c) = (b - d)(b + d) (clearly, the two products are distinct), we obtain a quadruple of integers (s_1, s_2, s_3, s_4) satisfying

$$s_1s_2 = a - c,$$
 $s_3s_4 = a + c,$
 $s_1s_3 = b - d,$ $s_2s_4 = b + d,$

Using (4) and $0 \le b, d \le n^{\alpha}$ we have the following inequalities:

$$1 \le s_1 s_2, \, s_1 s_3, \, s_2 s_4 \le 2n^{\alpha}, \\ 2ln^{\alpha} \le s_3 s_4 < (2l+4)n^{\alpha}.$$
(5)

It is clear from the above inequalities that $s_i \leq 2n^{\alpha}$, for $i = 1, \ldots, 4$. From $s_2 s_4 \leq 2n^{\alpha}$, $s_1 s_3 \leq 2n^{\alpha}$, and $2ln^{\alpha} \leq s_3 s_4$, we also deduce that

$$1 \le s_2 \le \frac{s_3}{l} \qquad \text{and} \qquad 1 \le s_1 \le \frac{s_4}{l}. \tag{6}$$

Choose s_3 between 1 and $2n^{\alpha}$. Then choose s_4 , according to (5), in the range $\left[\frac{2ln^{\alpha}}{s_3}, \frac{(2l+4)n^{\alpha}}{s_3}\right]$. Then choose s_1 and s_2 , according to (6), in $\frac{s_3}{l} \cdot \frac{s_4}{l} \leq \frac{(2l+4)n^{\alpha}}{l^2}$ ways. The overall number of quadruples (s_1, s_2, s_3, s_4) under consideration is thus at most

$$\sum_{1 \le s_3 \le 2n^{\alpha}} \frac{4n^{\alpha}}{s_3} \cdot \frac{(2l+4)n^{\alpha}}{l^2} = O\left(\frac{n^{2\alpha}\log n}{l}\right)$$

Finally we have

$$\sum_{m} \binom{d(m)}{2} \leq \sum_{1 \leq l \leq n^{1-2\alpha}} \sum_{m \in I_l} \binom{d(m)}{2} = O\left(\sum_{l \leq n^{1-2\alpha}} \frac{n^{2\alpha} \log n}{l}\right) = O\left(n^{2\alpha} \log^2 n\right).$$

Discussion. Theorem 1 is closely related to a special case of a fairly deep conjecture in number theory, stated as Conjecture 13 in Cilleruelo and Granville [3]. This special case, given in [3, Eq. (5.1)], asserts that, for any integer N, and any fixed $\beta < 1/2$,

$$|\{(a,b) \in \mathbb{Z}^2 \mid a^2 + b^2 = N, |b| < N^{\beta}\}| \le C_{\beta},$$

where C_{β} is a *constant* that depends on β (but not on N). A simple geometric argument shows that this is true for $\beta \leq 1/4$ but it is unknown for any $1/4 < \beta < 1/2$. If that latter conjecture were true, a somewhat weaker version of Theorem 1 would follow. Indeed, let N be an integer that can be written as $i^2 + j^2$, for $\frac{1}{2}n^{1-\alpha} \leq i \leq n^{1-\alpha}$ and $j \leq n^{\alpha}$. Then $N = \Theta(n^{2(1-\alpha)})$, and $j = O(N^{\beta})$, for $\beta = \alpha/(2(1-\alpha)) < 1/2$.

Conjecture 13 of [3] would then imply that the number of pairs (i, j) as above is at most the constant C_{β} . In other words, each of the $\Theta(n)$ distances in the portion of $R_{\alpha}(n)$ with $i \geq \frac{1}{2}n^{1-\alpha}$, interpreted as a distance from the origin (0,0), can be attained at most C_{β} times. Hence $D_{\alpha}(n) = \Theta(n)$, as asserted in Theorem 1.

The general form of conjecture 13 [3] asserts that the number of integer lattice points on an arc of length N^{β} on the circle $a^2 + b^2 = N$ is bounded by some constant C_{β} , for any $\beta < 1/2$. Cilleruelo and Córdoba [2] have proved this for $\beta < 1/4$. See also Bourgain and Rudnick [1] for some consequences of this conjecture.

A heuristic argument that supports the above conjecture is the following: It is well known that the quantity r(N), that counts the number of lattice points on the circle $x^2 + y^2 = N$, satisfies $r(N) \ll N^{\varepsilon}$ for any $\varepsilon > 0$. If the lattice points were distributed at random along the circle, an easy calculation would show that the probability that an arc of length N^{β} contains k lattice points is bounded by $\binom{r(N)}{k}N^{(k-1)(\beta-1/2)}$. Now, for any $\beta < 1/2$, there exists k such that the infinite sum $\sum_N \binom{r(N)}{k}N^{(k-1)(\beta-1/2)}$ converges, and the Borel–Cantelli Lemma would then imply that, with probability 1, only a finite number of circles can contain k lattice points on arcs of length N^{β} .

Acknowledgements. The authors would like to thank Zeev Rudnick for useful discussions on some of the number-theoretic issues.

References

- J. Bourgain and Z. Rudnick, On the geometry of the nodal lines of eigenfunctions of the two-dimensional torus, Annales Henri Poincaré, 12 (2011), 1027–1053.
- [2] J. Cilleruelo and A. Córdoba, Trigonometric polynomials and lattice points, Proc. Amer. Math. Soc. 115 (1992), 899–905.
- [3] J. Cilleruelo and A. Granville, Lattice points on circles, squares in arithmetic progressions and sumsets of squares, in *Additive Combinatorics*, CRM Proceedings and Lecture Notes, Vol. 43, Amer. Math. Soc. Press, RI, 2007, 241–262.
- [4] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.
- [5] P. Erdős, On some problems of elementary and combinatorial geometry, Ann. Mat. Pura Appl. 103 (1975), 99–108.
- [6] P. Erdős, On some metric and combinatorial geometric problems, *Discrete Math.* 60 (1986), 147–153.
- [7] J. Garibaldi, A. Iosevich, and S. Senger, *The Erdős Distance Problem*, Student Math. Library, Vol. 56, Amer. Math. Soc., Providence, RI, 2011.
- [8] L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Annals Math., to appear. Also in arXiv:1011.4105.
- [9] J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley-Interscience, New York, 1995.
- [10] J. Pach and F. de Zeeuw, Distinct distances on algebraic curves in the plane, Proc. 30th annu. ACM sympos. Comput. Geom. (2014), to appear.

- [11] A. Sheffer, Distinct Distances: Open Problems and Current Bounds, arXiv:1406.1949.
- [12] A. Sheffer, J. Zahl, and F. de Zeeuw, Few distinct distances implies no heavy lines or circles, *Combinatorica*, to appear.