A note on distinct distances in rectangular lattices*

Javier Cilleruelo ${ }^{\dagger}$
Micha Sharir ${ }^{\ddagger}$
Adam Sheffer ${ }^{\S}$

July 18, 2014

Abstract

In his famous 1946 paper, Erdős [4] proved that the points of a $\sqrt{n} \times \sqrt{n}$ portion of the integer lattice determine $\Theta(n / \sqrt{\log n})$ distinct distances, and a variant of his technique derives the same bound for $\sqrt{n} \times \sqrt{n}$ portions of several other types of lattices (e.g., see [11]). In this note we consider distinct distances in rectangular lattices of the form $\left\{(i, j) \in \mathbb{Z}^{2} \mid 0 \leq i \leq n^{1-\alpha}, 0 \leq j \leq n^{\alpha}\right\}$, for some $0<\alpha<1 / 2$, and show that the number of distinct distances in such a lattice is $\Theta(n)$. In a sense, our proof "bypasses" a deep conjecture in number theory, posed by Cilleruelo and Granville [3]. A positive resolution of this conjecture would also have implied our bound.

Keywords. Discrete geometry, distinct distances, lattice.
Given a set \mathcal{P} of n points in \mathbb{R}^{2}, let $D(\mathcal{P})$ denote the number of distinct distances that are determined by pairs of points from \mathcal{P}. Let $D(n)=\min _{|\mathcal{P}|=n} D(\mathcal{P})$; that is, $D(n)$ is the minimum number of distinct distances that any set of n points in \mathbb{R}^{2} must always determine. In his celebrated 1946 paper [4], Erdős derived the bound $D(n)=O(n / \sqrt{\log n})$ by considering a $\sqrt{n} \times \sqrt{n}$ integer lattice. Recently, after 65 years and a series of progressively larger lower bounds ${ }^{1}$, Guth and Katz [8] provided an almost matching lower bound $D(n)=$ $\Omega(n / \log n)$.

While the problem of finding the asymptotic value of $D(n)$ is almost completely solved, hardly anything is known about which point sets determine a small number of distinct distances. Consider a set \mathcal{P} of n points in the plane, such that $D(P)=O(n / \sqrt{\log n})$. Erdős conjectured [6] that any such set "has lattice structure." A variant of a proof of Szemerédi implies that there exists a line that contains $\Omega(\sqrt{\log n})$ points of \mathcal{P} (Szemerédi's proof was communicated by Erdős in [5] and can be found in [9, Theorem 13.7]). A recent result of Pach and de Zeeuw [10] implies that any constant-degree curve that contains no lines and

[^0]circles cannot be incident to more than $O\left(n^{3 / 4}\right)$ points of \mathcal{P}. Another recent result, by Sheffer, Zahl, and de Zeeuw [12] implies that no line can contain $\Omega\left(n^{7 / 8}\right)$ points of \mathcal{P}, and no circle can contain $\Omega\left(n^{5 / 6}\right)$ such points.

In this note we make some progress towards the understanding of the structure of such sets, by showing that rectangular lattices cannot have a sublinear number of distinct distances. Specifically, we consider the number of distinct distances that are determined by an $n^{1-\alpha} \times n^{\alpha}$ integer lattice, for some $0<\alpha \leq 1 / 2$. We denote this number by $D_{\alpha}(n)$.

The case $\alpha=1 / 2$ is the case of the square $\sqrt{n} \times \sqrt{n}$ lattice, which determines $D_{1 / 2}(n)=$ $\Theta(n / \sqrt{\log n})$ distinct distances, as already mentioned above. Surprisingly, we show here a different estimate for $\alpha<1 / 2$.

Theorem 1. For $\alpha<1 / 2$, the number of distinct distances that are determined by an $n^{1-\alpha} \times n^{\alpha}$ integer lattice is

$$
D_{\alpha}(n)=n+o(n)
$$

Proof. We consider the rectangular lattice

$$
R_{\alpha}(n)=\left\{(i, j) \in \mathbb{Z}^{2} \quad \mid 0 \leq i \leq n^{1-\alpha}, 0 \leq j \leq n^{\alpha}\right\}
$$

Notice that every distance between a pair of points of $R_{\alpha}(n)$ is also spanned by $(0,0)$ and another point of $R_{\alpha}(n)$. This immediately implies $D_{\alpha}(n) \leq n+O\left(n^{1-\alpha}\right)$. In the rest of the proof we derive a lower bound for $D_{\alpha}(n)$. For this purpose, we consider the sublattice

$$
R_{\alpha}^{\prime}(n)=\left\{(i, j) \in \mathbb{Z}^{2} \quad \mid 2 n^{\alpha} \leq i \leq n^{1-\alpha}, 0 \leq j \leq n^{\alpha}\right\}
$$

since $\alpha<1 / 2, R_{\alpha}^{\prime}(n) \neq \emptyset$ for $n \geq n_{0}(\alpha)$, a suitable constant depending on α. We also consider the functions

$$
\begin{aligned}
& r(m)=\mid\left\{(i, j) \in R_{\alpha}^{\prime}(n) \mid\right. \\
& d(m)=\left|\left\{(i, j) \in i_{\alpha}^{2}+j^{2}=m\right\}\right| \\
&\left.d(n) \mid i^{2}-j^{2}=m\right\} \mid
\end{aligned}
$$

Observe that the smallest (resp., largest) value of m for which $d(m) \neq 0$ is $3 n^{2 \alpha}$ (resp., $\left.n^{2-2 \alpha}\right)$.

We have the identities

$$
\begin{align*}
\sum_{m} r(m) & =\sum_{m} d(m) \tag{1}\\
\sum_{m} r^{2}(m) & =\sum_{m} d^{2}(m) \tag{2}
\end{align*}
$$

The identity (1) is trivial. To see (2) we observe that the sum $\sum_{m} r^{2}(m)$ counts the number of ordered quadruples $\left(i, j, i^{\prime}, j^{\prime}\right)$, for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in R_{\alpha}^{\prime}(n)$, such that $i^{2}+j^{2}=$ $i^{\prime 2}+j^{\prime 2}$. But this quantity also counts the number of those ordered quadruples $\left(i, j, i^{\prime}, j^{\prime}\right)$, for $\left(i, j^{\prime}\right),\left(i^{\prime}, j\right) \in R_{\alpha}^{\prime}(n)$, such that $i^{2}-j^{\prime 2}=i^{\prime 2}-j^{2}$, which is the value of the sum $\sum_{m} d^{2}(m)$. Putting (1) and (2) together we have

$$
\begin{equation*}
\sum_{m}\binom{r(m)}{2}=\sum_{m}\binom{d(m)}{2} \tag{3}
\end{equation*}
$$

Writing M_{k} for the set of those m with $r(m)=k$, we have $\sum_{k} k\left|M_{k}\right|=\left|R_{\alpha}^{\prime}(n)\right|$. On the other hand,

$$
\begin{aligned}
D_{\alpha}(n) & \geq \sum_{k \geq 1}\left|M_{k}\right| \\
& =\sum_{k \geq 1} k\left|M_{k}\right|-\sum_{k \geq 1}(k-1)\left|M_{k}\right| \\
& =\left|R_{\alpha}^{\prime}(n)\right|-\sum_{k \geq 2}(k-1)\left|M_{k}\right| .
\end{aligned}
$$

Thus $D_{\alpha}(n) \geq n-O\left(n^{2 \alpha}+n^{1-\alpha}\right)-\sum_{k \geq 2}(k-1)\left|M_{k}\right|$. Using the inequality $k-1 \leq\binom{ k}{2}$ and (3), we have

$$
\sum_{k \geq 2}(k-1)\left|M_{k}\right| \leq \sum_{k \geq 2}\binom{k}{2}\left|M_{k}\right|=\sum_{m}\binom{r(m)}{2}=\sum_{m}\binom{d(m)}{2} .
$$

Theorem 1 is therefore a trivial consequence of the following proposition.

Proposition 2.

$$
\sum_{m}\binom{d(m)}{2}=O\left(n^{2 \alpha} \log ^{2} n\right) .
$$

Proof. We need the following easy lemma.
Lemma 3. If a positive integer m can be written as the product of two integers in two different ways, say $m=m_{1} m_{2}=m_{3} m_{4}$, then there exists a quadruple of positive integers $\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ satisfying

$$
m_{1}=s_{1} s_{2}, \quad m_{2}=s_{3} s_{4}, \quad m_{3}=s_{1} s_{3}, \quad m_{4}=s_{2} s_{4} .
$$

Proof. Since m_{1} divides $m_{3} m_{4}$, we have $m_{1}=s_{1} s_{2}$ for some $s_{1} \mid m_{3}$ and some $s_{2} \mid m_{4}$. Putting $s_{3}=m_{3} / s_{1}$ and $s_{4}=m_{4} / s_{2}$, we have $m_{2}=s_{3} s_{4}, m_{3}=s_{1} s_{3}$, and $m_{4}=s_{2} s_{4}$.

We write

$$
\sum_{m}\binom{d(m)}{2}=\sum_{1 \leq l \leq n^{1-2 \alpha}} \sum_{m \in I_{l}}\binom{d(m)}{2}
$$

where $I_{l}=\left[l^{2} n^{2 \alpha},(l+1)^{2} n^{2 \alpha}\right)$. We observe that the union of the intervals, namely $\left[n^{2 \alpha},(1+\right.$ $\left.n^{1-2 \alpha}\right)^{2} n^{2 \alpha}$), covers all the possible m with $d(m) \neq 0$.

Now we estimate $\sum_{m \in I_{l}}\binom{d(m)}{2}$ for a fixed l, by viewing the binomials as counting unordered pairs of distinct pairs whose difference of squares is m. Let $a^{2}-b^{2}=c^{2}-d^{2}(a>c$ and $b>d)$ be such a pair of distinct representations of some m, which is counted in the above sum $\sum_{m \in I_{l}}\binom{d(m)}{2}$. Since $m \in I_{l}$ we have

$$
l^{2} n^{2 \alpha} \leq a^{2}-b^{2}<(l+1)^{2} n^{2 \alpha} .
$$

Thus,

$$
l^{2} n^{2 \alpha} \leq a^{2}<(l+1)^{2} n^{2 \alpha}+b^{2} \leq\left((l+1)^{2}+1\right) n^{2 \alpha}<(l+2)^{2} n^{2 \alpha} .
$$

The same inequality holds for c, so we have

$$
\begin{equation*}
l n^{\alpha} \leq a, c<(l+2) n^{\alpha} . \tag{4}
\end{equation*}
$$

Applying Lemma 3 to $(a-c)(a+c)=(b-d)(b+d)$ (clearly, the two products are distinct), we obtain a quadruple of integers $\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ satisfying

$$
\begin{array}{ll}
s_{1} s_{2}=a-c, & s_{3} s_{4}=a+c, \\
s_{1} s_{3}=b-d, & s_{2} s_{4}=b+d .
\end{array}
$$

Using (4) and $0 \leq b, d \leq n^{\alpha}$ we have the following inequalities:

$$
\begin{align*}
& 1 \leq s_{1} s_{2}, s_{1} s_{3}, s_{2} s_{4} \leq 2 n^{\alpha}, \\
& 2 l n^{\alpha} \leq s_{3} s_{4}<(2 l+4) n^{\alpha} . \tag{5}
\end{align*}
$$

It is clear from the above inequalities that $s_{i} \leq 2 n^{\alpha}$, for $i=1, \ldots, 4$. From $s_{2} s_{4} \leq$ $2 n^{\alpha}, s_{1} s_{3} \leq 2 n^{\alpha}$, and $2 l n^{\alpha} \leq s_{3} s_{4}$, we also deduce that

$$
\begin{equation*}
1 \leq s_{2} \leq \frac{s_{3}}{l} \quad \text { and } \quad 1 \leq s_{1} \leq \frac{s_{4}}{l} \tag{6}
\end{equation*}
$$

Choose s_{3} between 1 and $2 n^{\alpha}$. Then choose s_{4}, according to (5), in the range $\left[\frac{2 l n^{\alpha}}{s_{3}}, \frac{(2 l+4) n^{\alpha}}{s_{3}}\right)$. Then choose s_{1} and s_{2}, according to (6), in $\frac{s_{3}}{l} \cdot \frac{s_{4}}{l} \leq \frac{(2 l+4) n^{\alpha}}{l^{2}}$ ways. The overall number of quadruples ($s_{1}, s_{2}, s_{3}, s_{4}$) under consideration is thus at most

$$
\sum_{1 \leq s_{3} \leq 2 n^{\alpha}} \frac{4 n^{\alpha}}{s_{3}} \cdot \frac{(2 l+4) n^{\alpha}}{l^{2}}=O\left(\frac{n^{2 \alpha} \log n}{l}\right) .
$$

Finally we have

$$
\sum_{m}\binom{d(m)}{2} \leq \sum_{1 \leq l \leq n^{1-2 \alpha}} \sum_{m \in I_{l}}\binom{d(m)}{2}=O\left(\sum_{l \leq n^{1-2 \alpha}} \frac{n^{2 \alpha} \log n}{l}\right)=O\left(n^{2 \alpha} \log ^{2} n\right)
$$

Discussion. Theorem 1 is closely related to a special case of a fairly deep conjecture in number theory, stated as Conjecture 13 in Cilleruelo and Granville [3]. This special case, given in [3, Eq. (5.1)], asserts that, for any integer N, and any fixed $\beta<1 / 2$,

$$
\left|\left\{(a, b) \in \mathbb{Z}^{2}\left|a^{2}+b^{2}=N,|b|<N^{\beta}\right\} \mid \leq C_{\beta},\right.\right.
$$

where C_{β} is a constant that depends on β (but not on N). A simple geometric argument shows that this is true for $\beta \leq 1 / 4$ but it is unknown for any $1 / 4<\beta<1 / 2$. If that latter conjecture were true, a somewhat weaker version of Theorem 1 would follow. Indeed, let N be an integer that can be written as $i^{2}+j^{2}$, for $\frac{1}{2} n^{1-\alpha} \leq i \leq n^{1-\alpha}$ and $j \leq n^{\alpha}$. Then $N=\Theta\left(n^{2(1-\alpha)}\right)$, and $j=O\left(N^{\beta}\right)$, for $\beta=\alpha /(2(1-\alpha))<1 / 2$.

Conjecture 13 of [3] would then imply that the number of pairs (i, j) as above is at most the constant C_{β}. In other words, each of the $\Theta(n)$ distances in the portion of $R_{\alpha}(n)$ with
$i \geq \frac{1}{2} n^{1-\alpha}$, interpreted as a distance from the origin (0,0), can be attained at most C_{β} times. Hence $D_{\alpha}(n)=\Theta(n)$, as asserted in Theorem 1 .

The general form of conjecture 13 [3] asserts that the number of integer lattice points on an arc of length N^{β} on the circle $a^{2}+b^{2}=N$ is bounded by some constant C_{β}, for any $\beta<1 / 2$. Cilleruelo and Córdoba [2] have proved this for $\beta<1 / 4$. See also Bourgain and Rudnick [1] for some consequences of this conjecture.

A heuristic argument that supports the above conjecture is the following: It is well known that the quantity $r(N)$, that counts the number of lattice points on the circle $x^{2}+y^{2}=N$, satisfies $r(N) \ll N^{\varepsilon}$ for any $\varepsilon>0$. If the lattice points were distributed at random along the circle, an easy calculation would show that the probability that an arc of length N^{β} contains k lattice points is bounded by $\binom{r(N)}{k} N^{(k-1)(\beta-1 / 2)}$. Now, for any $\beta<1 / 2$, there exists k such that the infinite sum $\sum_{N}\binom{r(N)}{k} N^{(k-1)(\beta-1 / 2)}$ converges, and the Borel-Cantelli Lemma would then imply that, with probability 1 , only a finite number of circles can contain k lattice points on arcs of length N^{β}.

Acknowledgements. The authors would like to thank Zeev Rudnick for useful discussions on some of the number-theoretic issues.

References

[1] J. Bourgain and Z. Rudnick, On the geometry of the nodal lines of eigenfunctions of the two-dimensional torus, Annales Henri Poincaré, 12 (2011), 1027-1053.
[2] J. Cilleruelo and A. Córdoba, Trigonometric polynomials and lattice points, Proc. Amer. Math. Soc. 115 (1992), 899-905.
[3] J. Cilleruelo and A. Granville, Lattice points on circles, squares in arithmetic progressions and sumsets of squares, in Additive Combinatorics, CRM Proceedings and Lecture Notes, Vol. 43, Amer. Math. Soc. Press, RI, 2007, 241-262.
[4] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
[5] P. Erdős, On some problems of elementary and combinatorial geometry, Ann. Mat. Pura Appl. 103 (1975), 99-108.
[6] P. Erdős, On some metric and combinatorial geometric problems, Discrete Math. 60 (1986), 147-153.
[7] J. Garibaldi, A. Iosevich, and S. Senger, The Erdős Distance Problem, Student Math. Library, Vol. 56, Amer. Math. Soc., Providence, RI, 2011.
[8] L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Annals Math., to appear. Also in arXiv:1011.4105.
[9] J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley-Interscience, New York, 1995.
[10] J. Pach and F. de Zeeuw, Distinct distances on algebraic curves in the plane, Proc. 30th annu. ACM sympos. Comput. Geom. (2014), to appear.
[11] A. Sheffer, Distinct Distances: Open Problems and Current Bounds, arXiv:1406.1949.
[12] A. Sheffer, J. Zahl, and F. de Zeeuw, Few distinct distances implies no heavy lines or circles, Combinatorica, to appear.

[^0]: *Work by Javier Cilleruelo has been supported by grants MTM 2011-22851 of MICINN and ICMAT Severo Ochoa project SEV-2011-0087. Work by Adam Sheffer and Micha Sharir has been supported by Grants 338/09 and 892/13 from the Israel Science Fund, by the Israeli Centers of Research Excellence (ICORE) program (Center No. 4/11), and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.
 ${ }^{\dagger}$ Instituto de Ciencias Matematicas (CSIC-UAM-UC3M-UCM), and Departamento de Matematicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain. franciscojavier.cilleruelo@uam.es
 ${ }^{\ddagger}$ School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. michas@tau.ac.il
 ${ }^{\S}$ Corresponding author. School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. sheffera@tau.ac.il
 ${ }^{1}$ For a comprehensive list of the previous bounds, see [7] and http://www.cs.umd.edu/~gasarch/erdos_ dist/erdos_dist.html (version of February 2014).

