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Abstract. We discuss the relationship between various additive problems concerning
squares.

1. Squares in arithmetic progression

Let σ(k) denote the maximum of the number of squares in a+b, . . . , a+kb as we vary
over positive integers a and b. Erdős conjectured that σ(k) = o(k) which Szemerédi
[30] elegantly proved as follows: If there are more than δk squares amongst the integers
a+b, . . . , a+kb (where k is sufficiently large) then there exists four indices 1 ≤ i1 < i2 <
i3 < i4 ≤ k in arithmetic progression such that each a + ijb is a square, by Szemerédi’s
theorem. But then the a + ijb are four squares in arithmetic progression, contradicting
a result of Fermat. This result can be extended to any given field L which is a finite
extension of the rational numbers: From Faltings’ theorem we know that there are only
finitely many six term arithmetic progressions of squares in L, so from Szemerédi’s
theorem we again deduce that there are oL(k) squares of elements of L in any k term
arithmetic progression of numbers in L. (Xavier Xarles [31] recently proved that are

never six squares in arithmetic progression in Z[
√

d] for any d.)

In his seminal paper Trigonometric series with gaps [27] Rudin stated the following
conjecture:

Conjecture 1. σ(k) = O(k1/2).

It may be that the most squares appear in the arithmetic progression −1 + 24i, 1 ≤
i ≤ k once k ≥ 8 yielding that σ(k) =

√

8
3
k + O(1). Conjecture 1 evidently implies the

following slightly weaker version:

Conjecture 2. For any ε > 0 we have σ(k) = O(k1/2+ε).

Bombieri, Granville and Pintz [4] proved that σ(k) = O(k2/3+o(1)), and recently
Bombieri and Zannier [5] have proved that σ(k) = O(k3/5+o(1)).

2. Rudin’s approach

Let e(θ) := e2iπθ throughout. The following well-known conjecture was discussed by
Rudin (see the end of section 4.6 in [27]):
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Conjecture 3. For any 2 ≤ p < 4 there exists a constant Cp such that, for any
trigonometric polynomial f(θ) =

∑

k ake(k
2θ) we have

(2.1) ‖f‖p ≤ Cp‖f‖2.

Here, as usual, we define ‖f‖p
p :=

∫ 1

0
|f(t)|pdt for a trigonometric polynomial f . Con-

jecture 3 says that the set of squares is a Λ(p)-set for any 2 ≤ p < 4, where E is
a Λ(p)-set if there exists a constant Cp such that (2.1) holds for any f of the form
f(θ) =

∑

nk∈E ake(nkθ) (a so-called E−polynomial). By Hölder’s inequality we have,
for r < s < t,

(2.2) ‖f‖s(t−r)
s ≤ ‖f‖r(t−s)

r ‖f‖t(s−r)
t ;

taking r = 2 we see that if E is a Λ(t)-set then it is a Λ(s)-set for all s ≤ t.
Let r(n) denote the number of representations of n as the sum of two squares (of

positive integers). Taking f(θ) =
∑

1≤k≤x e(k2θ), we deduce that ‖f‖2
2 = x, whereas

‖f‖4
4 =

∑

n #{1 ≤ k, ℓ ≤ x : n = k2 + ℓ2}2 ≥ ∑

n≤x2 r(n)2 ≍ x2 log x; so we see that
(2.1) does not hold in general for p = 4.

Conjecture 3 has not been proved for any p > 2, though Rudin [27] has proved the
following theorem.

Theorem 1. If E is a Λ(p)-set, then any arithmetic progression of N terms contains
≪ N2/p elements of E. In particular, if Conjecture 3 holds for p then σ(k) = O(k2/p).

Proof: We use Fejér’s kernel κN(θ) :=
∑

|j|≤N(1 − |j|
N

) e(jθ). Note that ‖κN‖1 = 1

and ‖κN‖2
2 =

∑

|j|≤N(1 − |j|
N

)2 ≪ N so, by (2.2) with r = 1 < s = q < t = 2 we have

‖κN‖q
q ≪ 12−qN q−1 so that ‖κN‖q ≪ N1/p where 1

q
+ 1

p
= 1.

Suppose that n1, n2 . . . , nσ are the elements of E which lie in the arithmetic progres-
sion a+ ib, 1 ≤ i ≤ N . If nℓ = a+ ib for some i, 1 ≤ i ≤ N then nℓ = a+mb+ jb where

m = [(N +1)/2] and |j| ≤ N/2; and so 1− |j|
N

≥ 1
2
. Therefore, for g(θ) :=

∑

1≤ℓ≤σ e(nℓθ),
we have

∫ 1

0

g(−θ)e((a + bm)θ)κN (bθ)dθ ≥ σ

2
.

On the other hand, we have ‖g‖p ≤ Cp‖g‖2 ≪ √
σ since E is a Λ(p)-set and g is an

E-polynomial. Therefore, by Hölder’s inequality,

(2.3)

∣

∣

∣

∣

∫ 1

0

g(−θ)e((a + bm)θ)κN (bθ)dθ

∣

∣

∣

∣

≤ ‖g‖p ‖κN‖q ≪
√

σN1/p

and the result follows by combining the last two displayed equations.

It is known that Conjecture 3 is true for polynomials f(θ) =
∑

k≤N e(k2θ) and Antonio

Córdoba [18] proved that Conjecture 3 also holds for polynomials f(θ) =
∑

k≤N ake(k
2θ)

when the coefficients ak are positive real numbers and non-increasing.

3. Sumsets of squares

For a given finite set of integers E let fE(θ) =
∑

k∈E e(kθ). Mei-Chu Chang [11]
conjectured that for any ε > 0 we have

‖fE‖4 ≪ε ‖fE‖1+ε
2
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for any finite set of squares E. As ‖fE‖4
4 =

∑

n r2
E+E(n) where rE+E(n) is the number

of representations of n as a sum of two elements of E, her conjecture is equivalent to:

Conjecture 4 (Mei-Chu Chang). For any ε > 0 we have that

(3.1) ‖fE‖4
4 =

∑

n

r2
E+E(n) ≪ |E|2+ε = ‖fE‖4+2ε

2

for any finite set E of squares.

We saw above that
∑

n r2
E+E(n) ≫ |E|2 log |E| in the special case E = {12, . . . , k2},

so conjecture 4 is sharp, in the sense one cannot entirely remove the ε.
Trivially we have

‖fE‖4
4 =

∑

n

r2
E+E(n) ≤ max rE+E(n)

∑

n

rE+E(n) ≤ |E| · |E|2 = |E|3

for any set E; it is surprisingly difficult to improve this estimate when E is a set of
squares. The best such result is due to Mei-Chu Chang [11] who proved that

∑

n

r2
E+E(n) ≪ |E|3/ log1/12 |E|

for any set E of squares. Assuming a major conjecture of arithmetic geometry we can
improve Chang’s result, in a proof reminiscent of that in [4]:1

Theorem 2. Assume the Bombieri-Lang conjecture. Then, for any set E of squares,
and any set of integers A, we have

∑

n

r2
E+A(n) ≪ |A|2|E| 34 + |A||E|.

In particular
∑

n

r2
E+E(n) ≪ |E| 114 .

Proof: One consequence of [10] is that there exists an integer B, such that if the
Bombieri-Lang conjecture is true then for any polynomial f(x) ∈ Z[x] of degree five
or six which does not have repeated roots, there are no more than B rational numbers
m for which f(m) is a square. For any given set of five elements a1, . . . , a5 ∈ A consider
all integers n for which there exist b1, . . . , b5 ∈ E with n = a1 + b2

1 = · · · = a5 + b2
5.

Evidently f(n) = (b1 . . . b5)
2 where f(x) =

∏5
i=1(x − ai), and so there cannot be more

than B such integers n. Therefore,
∑

n

(

rE+A(n)

5

)

=
∑

n

#{a1, . . . , a5 ∈ E : ∃b2
1, . . . , b

2
5 ∈ E, with n = a2

i +b2
i , i = 1, . . . , 5}

=
∑

a1,...,a5∈A

#{n : ∃b2
1, . . . , b

2
5 ∈ E, with n = ai + b2

i , i = 1, . . . , 5} ≤ B

(|A|
5

)

.

We have
∑

n rE+A(n) = |E||A|; and so
∑

n rE+A(n)5 ≪∑

n

(

rE+A(n)
5

)

+
∑

n rE+A(n) ≪
|A|5 + |A||E| ≪ |A|5. Therefore, by Holder’s inequality, we have

∑

n

r2
E+A(n) ≤

(

∑

n

rE+A(n)

)3/4 (
∑

n

r5
E+A(n)

)1/4

≪ |A|2|E| 34 + |A||E|.

1The final versions of Theorems 2 and 3 were inspired by email correspondance with Joszef Solymosi.
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Theorem 3. Assume the Bombieri-Lang conjecture. Then, for any set E of squares,
and any set of integers A, we have

|E + A| ≫



















|E||A| if |A| ≪ |E|1/4

|E|5/4 if |E|1/4 ≪ |A| ≪ |E|
|E||A|1/4 if |E| ≪ |A| ≪ |E|4/3

|A| if |E|4/3 ≪ |A|.
Proof:

|E|2|A|2 =
(

∑

rE+A(n)
)2

≤ |E + A|
∑

r2
E+A(n) ≪ |E + A|(|A|2|E|3/4 + |A||E|).

It proves the inequality for |A| ≪ |E|. For |A| ≫ |E| we use a different argument.

There are |A|
(|E|

4

)

4-tuples (a+b1, . . . , a+b4) with b1 < · · · < b4 and each bi ∈ E, a ∈
A. Moreover there are

(|E+A|
4

)

possible 4-tuples. Now any such 4-tuple (x1, . . . , x4) give

rise to the integral point (b
1/2
1 , (b2b3b4)

1/2) on Y 2 = (X2 + x2 − x1)(X
2 + x3 − x1)(X

2 +

x4 − x1). By Bombieri-Lang there are ≪ 1 such points and so |A|
(|E|

4

)

≪
(|E+A|

4

)

which implies |E + A| ≫ |E||A|1/4 and the theorem follows since the obvious estimate
|E + A| ≥ |A| always is true.

It should be noted that corollary above is sharp when |A| ≪ |E|1/4. The following
conjecture deals with the most interesting case, A = E.

Conjecture 5 (Ruzsa). If E is a finite set on squares then, for every ε > 0 we have

|E + E| ≫ |E|2−ε.

Theorem 4. Conjecture 4 implies Conjecture 5 with the same ε.

Proof: By the Cauchy-Schwarz inequality we have

|E|4 = (
∑

n

rE+E(n))2 ≤ |E + E| ·
∑

n

r2
E+E(n)

and the result follows.

Theorem 5. Conjecture 5 implies Conjecture 2 with εconj 2 = εconj 5/(4 − 2εconj 5).

Proof: If E is a set of squares which is a subset of an arithmetic progression P of length
k then E + E ⊂ P + P . From conjecture 5 we deduce that

|E|2−ε ≪ |E + E| ≤ |P + P | = 2k − 1

and the result follows.

In particular, theorems 2, 4 and 5 show that the Bombieri-Lang conjecture implies
σ(k) ≪ k4/5, which is easily obtained by applying directly the Bombieri-Lang conjecture
to our arithmetic progression. To do better than this suppose that there are σr,s squares
amongst a + ib, 1 ≤ i ≤ k which are ≡ r (mod s); that is the squares amongst a +
rb + jsb, 0 ≤ j ≤ [k/s]. This gives rise to

(

σr,s

6

)

rational points on the set of curves
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y2 = x
∏5

j=1(x + nj) for 0 ≤ n1 < n2 < · · · < n5 ≤ [k/s]. Summing over all r (mod s)

and all s > σ/10 we get

k5

σ5
≫
(

10k/σ

5

)

≫
∑

s>σ/10

∑

r (mod s)

(

σr,s

6

)

≫
∑

s>σ/10

s

(

[σ/s]

6

)

≫ σ2

and we obtain σ(k) ≪ k5/7. Anyway this upper bound was improved unconditionally
in [4] and [5].

Email correspondence with Solymosi inspired the following result:

Theorem 6. Assume the Bombieri-Lang conjecture. There exists a constant c > 0 such
that for any finite set E of squares we have rE+E(n) ≤ c

√

|E + E| for all integers n.

Proof: Suppose, on the contrary, that rE+E(n) > c
√

|E + E| for some integer n. Let
A := {a : a + a′ = n, a, a′ ∈ E}, so that

max
m

rA+A(m) ≥ 1

|A + A|
∑

m

rA+A(m) =
|A|2

|A + A| =
rE+E(n)2

|A + A| ≥ c2|E + E|
|E + E| = c2.

Now for each a for which m − a ∈ A ⊂ E, we have m − a, n − a, n − m + a ∈ E and
therefore an integral point on the curve y2 = (x2−m)(x2−n)(x2+n−m). If c2 is greater
then the constant B involved in the Bombieri-Lang conjecture we get a contradiction.

Corollary 1. Assume the Bombieri-Lang conjecture. For any finite set E of squares
we have |E + E| ≫ |E|4/3.

Proof: We deduce, from the Theorem, that

|E|2 =
∑

n

rE+E(n) ≤ |E + E|max
n

rE+E(n) ≤ c|E + E|3/2,

and the result follows.

An affine cube of dimension d in Z is a set of integers {b0 +
∑

i∈I bi : I ⊂ {1, . . . , d}}
for non-zero integers b0, . . . , bd. In [28], Solymosi states

Conjecture 6 (Solymosi). There exists an integer d > 0 such that there is no affine
cube of dimension d of distinct squares.

This was asked earlier as a question by Brown, Erdős and Freedman in [9], and
Hegyvári and Sárközy [21] have proved that an affine cube of squares, all ≤ n, has
dimension ≤ 48(log n)1/3.

This conjecture follows from the Bombieri-Lang conjecture for if there were an affine
cube of dimension d then for any x2 ∈ {b0 +

∑

i∈I bi : I ⊂ {3, . . . , d}} we have that
x2 + b1, x

2 + b2, x
2 + b1 + b2 are also squares, in which case there are ≥ 2d−2 integers x

for which f(x) = (x2 + b1)(x
2 + b2)(x

2 + b1 + b2) is also square; and so 2d−2 ≤ B, as in
the proof of theorem 2.

In [28], Solymosi gives a beautiful proof that for any set of real numbers A, if |A +

A| ≪d |A|1+
1

2d−1−1 then A contains many affine cubes of dimension d. Therefore we
deduce a weak version of Ruzsa’s conjecture from Solymosi’s conjecture:
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Theorem 7. Conjecture 6 implies that there exists δ > 0 for which |A + A| ≫ |A|1+δ,
for any set A of squares.

The Erdős-Szemerédi conjecture states that for any set of integers A we have

|A + A| + |A ⋄ A| ≫ε |A|2−ε.

In fact they gave a stronger version, reminiscent of the Balog-Szemerédi-Gowers theo-
rem:

Conjecture 7 (Erdős-Szemerédi). If A is a finite set on integers and G ⊂ A × A with
|G| ≫ |A|1+ε/2 then

(3.2) |{a + b : (a, b) ∈ G}| + |{ab : (a, b) ∈ G}| ≫ε |G|1−ε.

Mei-Chu Chang [11] proved that a little more than Conjecture 7 implies Conjecture
4:

Theorem 8. If (3.2) holds whenever |G| ≥ 1
2
|A| then Conjecture 4 holds.

Proof: Let B be a set of k non-negative integers and E = {b2 : b ∈ B}. Define
GM := {(a+, a−) : ∃b, b′ ∈ B with a+ = b + b′, a− = b − b′, and b2 − b′2 ∈ M} where
M ⊂ E −E; and so AM := {a+, a− : (a+, a−) ∈ GM} ⊂ (B + B) ∪ (B −B). Therefore
|AM | ≤ 2|GM |.

Since {a + a′ : (a, a′) ∈ G} and {a − a′ : (a, a′) ∈ G} are subsets of {2b : b ∈ B},
they have ≤ k elements; and {aa′ : (a, a′) ∈ G} ⊂ M . Therefore (3.2) implies that
|GM |1−ε ≪ε |M | + k. Since, trivially, |GM | ≤ k2 we have

∑

m∈M rE−E(m) = |GM | ≪
k2ε(|M | + k).

Now let M be the set of integers m for which rE−E(m) ≥ k3ε, so that
∑

m∈M rE−E(m) ≥
k3ε|M | and hence

∑

m∈M rE−E(m) ≪ k1+2ε by combining the last two equations. There-
fore, as rE−E(m) ≤ k,

‖fE‖4
4 =

∑

m

rE−E(m)2 ≤
∑

m∈E−E

k6ε + k
∑

m∈M

rE−E(m) ≪ k2+6ε.

She also proves a further, and stronger result along similar lines:

Conjecture 8 (Mei-Chu Chang). If A is a finite set of integers and G ⊂ A × A then

(3.3) |{a + b : (a, b) ∈ G}| · |{a − b : (a, b) ∈ G}| · |{ab : (a, b) ∈ G}| ≫ε |G|2−ε.

Theorem 9. Conjecture 8 holds if and only if Conjecture 4 holds.

Proof: Assume Conjecture 8 and define B, A and GM as in the proof of theorem 8,
so that (

∑

m∈M rE−E(m))2 = |GM |2 ≪ k2+2ε|M |. We partition E − E into the sets
Mj := {m : 2j−1 ≤ rE−E(m) < 2j} for j = 1, 2, . . . , J := [log(2k)/ log 2]; then
(2j−1|Mj |)2 ≤ (

∑

m∈Mj
rE−E(m))2 ≪ k2+2ε|Mj| so that

∑

m∈Mj
rE−E(m)2 ≤ 22j|Mj | ≪

k2+2ε. Hence

‖fE‖4
4 =

∑

m

rE−E(m)2 <
∑

j

∑

m∈Mj

rE−E(m)2 ≪ Jk2+2ε ≪ k2+3ε,

as desired.
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Now assume Conjecture 4 and let Gn := {(a, b) ∈ G : ab = n}. Then |G|2 =
(
∑

n |Gn|)2 ≤ |{ab : (a, b) ∈ G}| ·∑n |Gn|2, while

∑

n

|Gn|2 =

∫ 1

0

∣

∣

∣

∣

∣

∣

∑

(a,b)∈G

e(4abt)

∣

∣

∣

∣

∣

∣

2

dt =

∫ 1

0

∣

∣

∣

∣

∣

∣

∑

(a,b)∈G

e((a + b)2t)e(−(a − b)2t)

∣

∣

∣

∣

∣

∣

2

dt

which, letting E± := {r2 : r = a ± b, (a, b) ∈ G}, is

≤
∫ 1

0

∣

∣

∣

∣

∣

∣

∑

r2∈E+

e(r2t)
∑

s2∈E−

e(−s2t)

∣

∣

∣

∣

∣

∣

2

dt ≤ ‖fE+‖2‖fE−
‖2

by the Cauchy-Schwarz inequality. Since ‖fE±
‖2 ≪ |{a ± b : (a, b) ∈ G}| · |G|2ε by

Conjecture 4, our result follows by combining the above information.

4. Solutions of a quadratic congruence in short intervals

We begin with a connection between additive combinatorics and the Chinese Remain-
der Theorem. Suppose that n = rs with (r, s) = 1; and that for given sets of residues
Ω(r) ⊂ Z/rZ and Ω(s) ⊂ Z/sZ we have Ω(n) ⊂ Z/nZ in the sense that m ∈ Ω(n) if
and only if there exists u ∈ Ω(r) and v ∈ Ω(s) such that m ≡ u (mod r) and m ≡ v
(mod s). When (r, n/r) = 1 consider the map which embeds Z/rZ → Z/nZ by taking u
(mod r) and replaces it by U (mod n) for which U ≡ u (mod r) and U ≡ 0 (mod n/r);
we denote by Ω(r, n) the image of Ω(r) under this map. The key remark, which follows
immediately from the definitions, is that

Ω(n) = Ω(r, n) + Ω(s, n).

Thus if n = pe1
1 . . . pek

k where the primes pi are distinct then

Ω(n) = Ω(pe1
1 , n) + Ω(pe2

2 , n) + · · · + Ω(pek
k , n).

Particularly interesting is where Ωf (n) is the set of solutions m (mod n) to f(m) ≡ 0
(mod n), for given f(x) ∈ Z[x]. We are mostly interested in deciding when there are
many elements of Ωf (n) in a short interval where f has degree two. A priori this seems
unlikely since the elements of the Ω(r, n) are so well spread out, that is they have a
distance ≥ n/r between any pair of elements because they are all divisible by n/r.

The next theorem involves the distribution of the elements of Ω(n) in the simplest
non-trivial case, in which each Ω(p

ej

j ) has just two elements, namely {0, 1}, so that Ω(n)
is the set of solutions of x(x − 1) ≡ 0 (mod n) (see also [3]).

Theorem 10. Let Ω(n) be the set of solutions of x(x − 1) ≡ 0 (mod n). Then

(1) Ω(n) has an element in the interval (1, n/k + 1).
(2) For any ε > 0 there exists n = p1 . . . pk such that Ω(n) ∩ (1, ( 1

k
− ε)n] = ∅.

(3) For any ε > 0 there exists n = p1 . . . pk such that if x ∈ Ω(n) then |x| < εn.

Proof. Let Ω(p
ej

j , n) = {0, xj} where xj ≡ 1 (mod p
ej

j ) and xj ≡ 0 (mod pei
i ) for any

i 6= j. Then Ω(n) = {0, x1}+· · ·+{0, xk}. Let s0 = n and sr be the least positive residue
of x1 + · · · + xr (mod n) for r = 1, . . . , k so that sk = 1. By the pigeonhole principle,
there exists 0 ≤ l < m ≤ k such that sl and sm lie in the same interval (jn/k, (j+1)n/k],
and so |sl−sm| < n/k with sm−sl ≡ xl+1+· · ·+xm (mod n) ∈ Ω(n). If sm−sl > 1 then
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we are done. Now sk − s0 ≡ 1 (mod n) but is not = 1, so sm − sl 6= 0, 1. Thus we must
consider when sm − sl < 0. In this case x1 + · · ·+ xl + xm+1 + · · ·+ xk (mod n) ∈ Ω(n)
and is ≡ sk − (sm − sl) ≡ 1 − (sm − sl), and the result follows.

To prove (2) let us take k−1 primes p1, . . . , pk−1 > k, and integers aj = [pj/k] for j =
1, . . . , k − 1. Let P = p1 · · ·pk−1 and determine r (mod P ) by the Chinese Remainder
Theorem satisfying raj(P/pj) ≡ 1 (mod pj) for j = 1, . . . , k− 1. Now let pk be a prime
≡ r (mod P ), and let ak the least positive integer satisfying akP ≡ 1 (mod pk). Let
n = p1 · · · pk so that xi = ain/pi for i = 1, . . . , k. Now n/k ≥ xi > n/k − n/pi > 0 for
i = 1, . . . , k − 1 and since x1 + · · · + xk ≡ 1 (mod n) with 1 ≤ xk < n we deduce that

x1 + · · ·+xk = n+1 and therefore 1+n/k ≤ xk < 1+n/k+n
∑k−1

i=1 1/pi. Now elements

of Ω(n) are of the form
∑

i∈I xi and we have |∑i∈I xi − n|I|/k| ≤ 1 + 2n
∑k−1

i=1 1/pi,
and this is < εn provided pi > 2k/ε for each pi. Finally, since the cases I = ∅ and
I = {1, . . . , k} correspond to the cases x = 0 and x = 1 respectively, we have that any
other element is greater than (1/k − ε)n.

To prove (3) we mimic the proof of (2) but now choosing non-zero integers aj satisfying
|aj

pj
| < ε

2k
for j = 1, . . . , k − 1. This implies that |ak/pk| < ε/2 and then |∑i∈I xi| < εn.

In the other direction, we give a lower bound for the length of intervals containing k
elements of Ω(n).

Theorem 11. Let integer d ≥ 2 be given, and suppose that for each prime power q
we are given a set of residues Ω(q) ⊂ (Z/qZ) which contains no more than d elements.
Let Ω(n) be determined for all integers n using the Chinese Remainder Theorem, as
described at the start of this section. Then, for any k ≥ d, there are no more than

k integers x ∈ Ω(n) in any interval of length nαd(k), where αd(k) = 1−εd(k)
d

> 0 with

0 < εd(k) = d−1
k

+ O( d2

k2 ).

Proof. Let x1, . . . , xk+1 elements of Ω(n) such that x1 < · · · < xk+1 < x1 + nαd(k).
Let q a prime power dividing n. Each xi belongs to one of the d classes (mod q) in
Ω(q). Write r1, . . . , rd to denote the number of these xi belonging to each class. Then
∏

1≤i<j≤k+1(xj − xi) is a multiple of q
Pd

i=1 (ri
2 ). The minimum of

∑d
i=1

(

ri

2

)

under the

restriction
∑

i ri = k+1 is d
(

r
2

)

+rs where r, s are determined by k+1 = rd+s, 0 ≤ s < d.
Finally

nαd(k)(k+1
2 ) >

∏

1≤i<j≤k+1

(xi − xj) > nd(r
2)+rs

and we get a contradiction, by taking αd(k) = (d
(

r
2

)

+ rs)/
(

k+1
2

)

.

The next theorem is an easy consequence of the proof above.

Theorem 12. If x1 < · · · < xk are solutions to the equation x2
i ≡ a (mod b), then

xk − x1 > b
1
2
− 1

2ℓ , where ℓ is the largest odd integer ≤ k.

First proof. For any maximal prime power q dividing b, (a, q) must be an square so we
can write xi = yi

∏

q(a, q)1/2 with y2
i ≡ a′ (mod q′) where q′ = q/(a, q) and (a′, q′) = 1.

Let Ω(q′) be the solutions of y2 ≡ a′ (mod q′). Now, since (a′, q′) = 1 we have that
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|Ω(q′)| ≤ 2 and we can apply theorem 11 to obtain that

xk − x1 = (yk − y1)
∏

q

(a, q)1/2 ≥
(

∏

q

q/(a, q)

)α2(k−1)
∏

q

(a, q)
1/2

≥ (
∏

q

q)α2(k−1).

Now, notice that α2(k − 1) = 1/2 − 1/(2l) where l is the largest odd number ≤ k.

Second proof. Write x2
j = a+rjb where r1 = 1 < r2 < · · · < rk (if necessary, by replacing

a in the hypothesis by x2
1−b). Consider the k-by-k Vandermonde matrix V with (i, j)th

entry xi−1
j . The row with i = 1 + 2I has jth entry (a + rjb)

I ; by subtracting suitable
multiples of the rows 1 + 2ℓ, ℓ < I, we obtain a matrix V1 with the same determinant
where the (2I + 1, j) entry is now (rjb)

I . Similarly the row with i = 2I + 2 has jth
entry xj(a+ rjb)

I ; by subtracting suitable multiples of the rows 2+2ℓ, ℓ < I, we obtain
a matrix V2 with the same determinant where the (2I + 2, j) entry is now xj(rjb)

I .
Finally we arrive at a matrix W by dividing out bI from rows 2I + 1 and 2I + 2 for all
I. Then the determinant of V , which is

∏

1≤i<j≤k(xj − xi), equals b[(k−1)2/4] times the
determinant of W , which is also an integer, and the result follows.

The advantage of this new proof is that if we can get non-trivial lower bounds on the
determinant of W then we can improve Theorem 12. We note that W has (2I + 1, j)
entry rI

j , and (2I + 2, j) entry xjr
I
j .

Remark: Taking k = ℓ to be the smallest odd integer ≥ log b
log 4

, then we can split our
interval into two pieces to deduce from Theorem 12 a weak version of Conjecture 9:
There are no more than log 4b

log 2
solutions x to the equation x2 ≡ a (mod b) in any interval

of length b1/2. From this it follows that the number of solutions x to the equation x2 ≡ a
(mod b) in any interval of length L is

≪ 1 +
log L

log
(

1 + b1/2

L

) .

This result, with ‘1/2’ replaced by ‘1/d’, was proved for the roots of any degree d
polynomial mod b by Konyagin and Steger in [23].

A slightly improvement on the theorem above would have interesting consequences.

Conjecture 9. There exists a constant N such that there are no more than N solutions
0 < x1 < x2 < · · · < xN < x1 + b1/2 to the equation x2

i ≡ a (mod b), for any given a
and b.

Theorem 13. Conjecture 9 implies Conjecture 1.

Proof. Suppose that there are ℓ ≫ k1/2 squares amongst a + b, a + 2b, . . . , a + kb, which
we will denote x2

1 < x2
2 < · · · < x2

ℓ . By conjecture 9 we have xℓ − x1 ≥ [(ℓ − 1)/N ]b1/2,
whereas (k − 1)b ≥ (xℓ + x1)(xℓ − x1) ≥ (xℓ − x1)

2. Therefore [(ℓ − 1)/N ]2 ≤ (k − 1)
which implies that ℓ ≤ N(1 +

√
k − 1).

Conjecture 9 would follow easily from theorem 11 if we could get the exponent 1/2
for some k, instead of 1/2 − ε2(k). Conjecture 9 can be strengthened and generalized
as follows:
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Conjecture 10. Let integer d ≥ 1 be given, and suppose that for each prime power q
we are given a set of residues Ω(q) ⊂ (Z/qZ) which contains no more than d elements.
Ω(b) is determined for all integers b using the Chinese Remainder Theorem, as described
at the start of this section. Then, for any ε > 0 there exists a constant N(d, ε) such
that for any integer b there are no more than N(d, ε) integers n, 0 ≤ n < b1−ε with
n ∈ Ω(b).

In theorem 11 we proved such a result with the exponent ‘1−ε’ replaced by ‘1/d−ε’.
We strongly believe Conjecture 10 with ‘1−ε’ replaced by ‘1/d’, analogous to Conjecture
9. In a 1995 email to the second author, Bjorn Poonen asked Conjecture 10 with ‘1− ε’
replaced by ‘1/2’ for d = 4; his interest lies in the fact that this would imply the uniform
boundedness conjecture for rational preperiodic points of quadratic polynomials (see
[25]).

Conjecture 10 does not cover the case Ωf (b) = {m (mod b) : f(m) ≡ 0 (mod n)}
for all monic polynomials f of degree d since, for example, the polynomial (x− a)d ≡ 0
(mod pk) has got pk−⌈k/d⌉ solutions (mod pk), rather than d. One may avoid this
difficulty by restricting attention to squarefree moduli (as in a conjecture posed by
Croot [19]); or, to be less restrictive, note that if f(x) has more than d solutions
(mod pk) then f must have a repeated root mod p, so that p divides the discriminant
of f :

Conjecture 11. Fix integer d ≥ 2. For any ε > 0 there exists a constant N(d, ε) such
that for any monic f(x) ∈ Z[x] there are no more than N(d, ε) integers n, 0 ≤ n < b1−ε,
with f(n) ≡ 0 (mod b) for any integer b such that if p2 divides b then p does not divide
the discriminant of f .

5. Lattice points on circles

Conjecture 12. There exists δ > 0 and integer m > 0 such that if a2
i + b2

i = n with
ai, bi > 0 and a2

i ≡ a2
1 (mod q) for i = 1, . . . , m then q = O(n1−δ).

Theorem 14. Conjecture 12 implies Conjecture 1

Proof. Suppose that x2
1 < · · · < x2

r are distinct squares belonging to the arithmetic

progression a + b, a + 2b, . . . , a + kb with (a, b) = 1, where r >
√

8lk, with l sufficiently
large > m. We may assume that (a, b) = 1 and that b is even. There are r2 sums x2

i +x2
j

each of which takes one of the values 2a + 2b, 2a + 3b, . . . , 2a + 2kb, and so one of these
values, say n, is taken ≥ r2/(2k− 1) > 4l times. Therefore we can write n = r2

j + s2
j for

j = 1, 2, . . . , 4l for distinct pairs (rj, sj), and let vj = rj + isj . Note that n ≡ 2 (mod 8).

Let Π =
∏

1≤i<j≤4l(vj − vi) 6= 0. We will prove that |Π| ≥ b4( l
2)(n/2)(

2l
2), by considering

the powers of the prime divisors of b and n which divide Π. Note that (n/2, b) = 1.
Suppose pe‖b where p is a prime, and select w (mod pe) so that w2 ≡ a (mod pe).

Note that each rj, sj ≡ w or − w (mod pe): We partition the vj into four subsets
J1, J2, J3, J4 depending on the value of (rj (mod pe), sj (mod pe)). Note then that pe

divides vj −vi if vi, vj belong to the same subset, and so pe to the power
∑

i

(|Ji|
2

)

> 4
(

l
2

)

divides Π.
Now let p be an odd prime with pe‖n. If p ≡ 3 (mod 4) then pe/2 must divide each rj

and sj so that then p(e/2)(4l
2) divides Π. If p ≡ 1 (mod 4) let us suppose π is a prime in

Z[i] dividing p; then πej π̄e−ej divides vj for some 0 ≤ ej ≤ e. If ei ≤ ej we deduce that
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πeiπ̄e−ej divides vj − vi. We now partition the values of j into sets J0, . . . , Je depending
on the value of ej . The power of π dividing Π is thus

∑e
i=0 i

∑e
g=i+1 |Ji||Jg|+

∑e
i=0(e−

i)
(|Ji|

2

)

, and the power of π̄ dividing Π is thus
∑g

i=0(e−g)
∑g−1

i=0 |Ji||Jg|+
∑e

i=0(e−i)
(|Ji|

2

)

.

It is easy to show that
∑

0≤i<g≤e(i+e−g)mimg +e
∑e

i=0

(

mi

2

)

, under the conditions that
∑

i mi is fixed and each mi ≥ 0, is minimized when m0 = me, m1 = · · · = me−1 = 0.

Therefore the power of π plus the power of π̄ dividing Π is ≥ 2e
(

2l
2

)

.

Finally |rj−ri|, |sj−si| ≤ (x2
r−x2

1)/(xr +x1) ≤ (k−1)b/(2
√

a + b), and so |vj−vi|2 ≤
(k−1)2b2/(2(a+b)), giving that |Π| ≤ (k2b2/(2(a+b)))(1/2)(4l

2). Putting these all together
with the fact that n > 2(a + b), we obtain 22l−1(a + b)3l−1 ≤ k4l−1b3l. However this
implies that n ≤ 2k(a+ b) ≤ 21/2k5/2b1+1/(3l−1) ≪ k5/2n(1+1/(3l−1))(1−δ) ≪ k5/2n1−δ/2, for
l sufficiently large; and therefore a + b < n ≪ kO(1).

Let u1, . . . ud be the distinct integers in [1, b/2] for which each u2
j ≡ a (mod b), so that

d ≍ 2ω(b), by the Chinese Remainder Theorem, where ω(b) denotes the number of prime
factors of b. The number of xi ≡ uj (mod b/2) is ≤ 1 + ((a + kb)1/2 − a1/2)/(b/2) ≤
1+2(k/b)1/2; and thus r ≪ 2ω(b) + k1/22ω(b)/b1/2. This is ≪ k1/2 provided ω(b) ≪ log k,
which happens when b ≪ kO(log log k) by the prime number theorem. The result follows.

Here is a flowchart of the relationships between the conjectures above:
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10.

If |Ω(q)| ≤ d, for any prime power q|b
then |Ω(b) ∩ [0, b1−ε]| < C(d, ε)

��

11.

If f(x) ∈ Z[x], is monic, degree d and
p2|b =⇒ p ∤ disc(f) then

f(n) ≡ 0 (mod b) has no more than
N(d, ε) solutions 0 ≤ n ≤ b1−ε

+3

9.

∃ m such that x2
i ≡ r (mod q),

1 ≤ i ≤ m =⇒ max |xi − xj| > q1/2

��

3. (Rudin)

For any 2 ≤ p < 4 ∃Cp such that

if f(θ) =
∑

k ake(k
2θ)

then ‖f‖p ≤ Cp‖f‖2

��

1. (Rudin)

σ(k) ≪ k1/2
+3

2. (Rudin)

σ(k) ≪ k1/2+ε

12.

∃δ > 0, ∃m such that
a2

i + b2
i = n, a2

i ≡ a2
1 (mod q)

1 ≤ i ≤ m =⇒ q = O(n1−δ)

KS

5. (Ruzsa)

If E ⊂ squares,
|E + E| ≫ |E|2−ε

KS

8. (Mei Chu−Chang)

|{a + b : (a, b) ∈ G}|×
|{a − b : (a, b) ∈ G}|×

|{ab : (a, b) ∈ G}| ≫ε |G|2−ε

ks +3

4. (Mei Chu−Chang)

If E ⊂ squares,
∑

m r2
E+E(m) ≪ |E|2+ε

KS

7. (Erdos−Szemeredi−Chang)

If G ⊂ A × A, and |G| ≥ |A|/2 then
|{a + b : (a, b) ∈ G}|+

|{ab : (a, b) ∈ G}| ≫ε |G|1−ε

KS

Dependencies: ε2 = ε5/(4 − 2ε5), ε2 = 2/p − 1/2, ε4 = 3ε7/2, ε4 = 3ε8/4, ε5 = ε4, ε8 = 4ε4.



13

If E ⊂ squares and A ⊂ Z,
∑

m r2
E+A(m) ≪ |A|2|E|3/4 + |A||E|

Bombieri-Lang
Conjecture

+3

KS

%-R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

�� ��

If E ⊂ squares and A ⊂ Z,

|E + A| ≫



















|E||A| if |A| ≪ |E| 14
|E| 54 if |E| 14 ≪ |A| ≪ |E|
|E||A| 14 if |E| ≪ |A| ≪ |E| 43
|A| if |E| 43 ≪ |A|.

6. (Solymosi)

∃d > 0 such that there is no affine
cube of dimension d of distinct squares

��

If E ⊂ squares,

rE+E(n) ≪
√

|E + E|

��

If E ⊂ squares, ∃ǫd > 0
such that |E + E| ≫ |E|1+ǫd

If E ⊂ squares,
|E + E| ≫ |E|4/3

Conjecture 13. For any α < 1/2, there exists a constant Cα such that for any N we
have

#{(a, b), a2 + b2 = n, N ≤ |b| < N + nα} ≤ Cα.

A special case of interest is where N = 0:

(5.1) #{(a, b), a2 + b2 = n, |b| < nα} ≤ Cα.

Heath-Brown pointed out that one has to be careful in making an analogous conjecture
in higher dimension as the following example shows: Select integer r which has many
representations a the sum of two squares; for example, if r is the product of k distinct
primes that are ≡ 1 (mod 4) then r has 2k such representations. Now let N be an
arbitrarily large integer and consider the set of representations of n = N2 + r as the
sum of three squares. Evidently we have ≥ 2k such representations in an interval whose
size, which depends only on k, is independent of n. However, one can get around this
kind of example in formulating the analogy to conjecture 13 in 3-dimensions, since all
of these solutions live in a fixed hyperplane. Thus we may be able to get a uniform
bound on the number of such lattice points in a small box, no more than three of which
belong to the same hyperplane.

It is simple to prove (5.1) for any α ≤ 1/4 (and Conjecture 13 for α ≤ 1/4 with

N ≪ n
1
2
−α), but we cannot prove (5.1) for any α > 1/4. Conjecture 13 and the special

case 5.1 are equivalent to the following conjectures respectively:

Conjecture 14. The number of lattice points {(x, y) ∈ Z2 : x2 + y2 = R2} in an arc
of length R1−ε is bounded uniformly in R.
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Conjecture 15. The number of lattice points {(x, y) ∈ Z2 : x2 + y2 = R2} in an arc
of length R1−ε around the diagonal is bounded uniformly in R.

Conjectures 13 and 14 are just a rephrasing of one another, and obviously imply
(5.1) and Conjecture 15. In the other direction, if we have points αj := xj + iyj on
x2 + y2 = R2 in an arc of length R1−ε then we have points αjα0 = aj + ibj satisfying
a2

j + b2
j = R2 with |bj | ≪ R1−ε contradicting (5.1), and we have points (1 + i)αjα0 on

x2+y2 = 2R2 in an arc of length ≪ R1−ε around the diagonal, contradicting Conjecture
15.

The following result is proved in [15]:

Theorem 15. There are no more than k lattice points {(x, y) ∈ Z2 : x2 + y2 = R2} in

an arc of length R
1
2
− 1

4[k/2]+2 .

Proof. We may assume that R2 =
∏

p≡1 (mod 4) pe, as the result for general R2 is easily
deduced from this case. Let pp be the Gaussian factorization of p. Then each lattice
point νi, 1 ≤ i ≤ k+1 can be identified with a divisor of R2 of the form νi =

∏

p peipe−ei.

Therefore νi − νj is divisible by pmin{ei,ej}pmin{e−ei,e−ej}, so that |νi − νj |2 is divisible by
pe−|ei−ej |. Hence, since

∑

1≤i<j≤k+1 |ei − ej | ≤ e[k+1
2

](k − [k+1
2

]), we have

∏

1≤i<j≤k+1

|νi − νj |2 ≥
∏

p

p
P

1≤i<j≤k+1 e−|ei−ej | ≥
(

∏

p

pe

)(k+1
2 )−[ k+1

2
](k−[ k+1

2
])

and the result follows.

It seems to be a difficult problem to decide whether the exponent 1
2
− 1

4[k/2]+2
is sharp

for each k in Theorem 15. We know that it is sharp for k = 1, 2, 3 but we don’t know
what happens for larger k. More precisely:

(1) Obviously an arc of length
√

2 contains no more than one lattice point; whereas
the lattice points (n, n + 1), (n + 1, n) lie on an arc of length

√
2 + o(1).

(2) It was shown in [14] that an arc of length (16R)1/3 contains no more than two
lattice points. On the other hand the lattice points (4n3−1, 2n2+2n), (4n3, 2n2+
1), (4n3 + 1, 2n2 − 2n) lie on an arc of length (16Rn)1/3 + o(1).

(3) It was shown in [17] that an arc of length (40 + 40
3

√
10)1/3R1/3, with R >

√
65,

contains no more than three lattice points, whereas there exists an infinite fam-
ily of circles x2 + y2 = R2

n containing four lattice points on an arc of length

(40 + 40
3

√
10)1/3R

1/3
n + o(1). Other than in the examples arising from this fam-

ily, an arc of length (40 + 20
√

5)1/3R1/3 contains no more than three lattice
points, whereas the four lattice points (x0 −2Gn−2, y0−2Gn+1), (x0 +Gn−3, y0 +
Gn), (x0 + Gn−2, y0 + Gn+1), (x0 − Gn−1, y0 − Gn+2), where x0 := 1

2
F3n+2, y0 =

1
2
F3n−1, Gm = (−1)mFm and Fm is the mth Fibonacci number, lie on the circle

x2 + y2 = 5
2
F2n−2F2nF2n+2 = R2

n on an arc of length (40 + 20
√

5)1/3R
1/3
n + o(1).

(4) Theorem 15 is the best result known for all k ≥ 4. In particular it implies that
an arc of length R2/5 contains at most 4 lattice points, and we do not know
whether the exponent 2/5 can be improved: Are there infinitely many circles

x2 + y2 = R2
n with four lattice points on an arc of length ≪ R

2/5
n ?
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6. Incomplete trigonometric sums of squares

The L4 norm of a trigonometric polynomial has an interesting number theory inter-
pretation. For f(θ) =

∑

nk∈E ake(nkθ) we can write

‖f‖4
4 =

∫ 1

0

∣

∣

∣

∣

∣

∑

k

ake(nkθ)

∣

∣

∣

∣

∣

4

dθ =

∫ 1

0

∣

∣

∣

∣

∣

∣

∑

m





∑

nk+nj=m

akaj



 e(mθ)

∣

∣

∣

∣

∣

∣

2

dθ

=
∑

m

∣

∣

∣

∣

∣

∣

∑

nk+nj=m

akaj

∣

∣

∣

∣

∣

∣

2

≤
∑

m

rE+E(m)
∑

nk+nj=m

|ak|2|aj|2

≤
(

∑

k

|ak|2
)2

max
m

rE+E(m)

using the Cauchy-Schwarz inequality to obtain the first inequality, so that

(6.1) ‖f‖4 ≤ ‖f‖2

(

∑

k

max
m

rE+E(m)

)1/4

.

If E is the set of squares then rE+E(m) ≤ τ(m) ≪ mε; so, by (6.1), we have

‖f‖4 ≪ N ε‖f‖2

for any E-polynomial f where E = {12, . . . , N2}. Bourgain [6] conjectured the more
refined:

Conjecture 16. There exists a constant δ such that for any E-polynomial f where
E = {12, . . . , N2}, we have

‖f‖4 ≪ ‖f‖2(log N)δ.

Note that δ must be ≥ 1/4; since we saw, in the second section, that ‖f‖4 ∼ C(log N)1/4‖f‖2

for f(θ) =
∑

1≤k≤N e(k2θ).

The corresponding conjecture when f(θ) =
∑

k∈E e(k2θ) and E ⊂ {12, . . . , N2} is the
following.

Conjecture 17. There exists C > 0 such that if E ⊂ {12, . . . , N2} then
∑

m r2
E+E(m) ≪

|E|2(log N)C .

Actually we can prove that both conjectures are equivalents.

Theorem 16. Conjectures 16 and 17 are equivalent.

Proof: Conjecture 17 is a special case of Conjecture 16, so we must prove that Conjecture
16 follows from Conjecture 17. We may divide the coefficients of f by ‖f‖2 to ensure that
‖f‖2 = (

∑

k |ak|2)1/2 = 1, and therefore every |ak| ≤ 1. Define E0 = {k, |ak| ≤ N−1}
and Ej = {k, 2j−1/N < |ak| ≤ 2j/N} for all j ≥ 1. Since f =

∑

j≥0 fj (where each fj is

the appropriate Ej-polynomial), we have ‖f‖4 ≤
∑

j≥0 ‖fj‖4 by the triangle inequality.
By Conjecture 17 we have

‖fj‖4
4 =

∑

n

∣

∣

∣

∣

∣

∣

∣

∣

∑

k2+j2=n
k,j∈Ej

akaj

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ (2j/N)4
∑

n

r2
Ej+Ej

(n) ≪ (log N)C(2j/N)4|Ej |2.
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Now
∑

k∈Ej
|ak|2 ≍ |Ej |(22j/N2) for all j ≥ 1, and |E0|/N2,

∑

k∈E0
|ak|2 ≪ 1/N ,

which imply that
∑

j≥0 |Ej|(22j/N2) ≍ 1. Since |Ej| = 0 for j > ⌈log2 N⌉, we deduce
that

1

(log N)C/4

∑

j≥0

‖fj‖4 ≪
∑

j≥0

2j|Ej |1/2

N
≪





⌈log2 N⌉
∑

j=0

1
∑

j≥1

22j |Ej|
N2





1/2

≪ (log N)1/2.

Therefore Conjecture 16 follows with δ = C/4 + 1/2.

Also we prove the following related result which slightly improves on Theorem 2 of
[15].

Theorem 17. If E = {k2 : N ≤ k ≤ N + ∆} with ∆ ≤ N and f(θ) =
∑

r∈E e(rθ), so
that ‖f‖2

2 ∼ ∆, then

‖f‖4
4 ≍ ∆2 + ∆3 · log N

N
.

In particular, ‖f‖4 ≪ ‖f‖2 if and only if ∆ ≪ (log N)/N .

Proof: Note that ‖f‖2
2 = |E| and

‖f‖4 =
∑

n

rE+E(n)2 = 2|E|2 − |E| + 2
∑

n

((

rE+E(n)

2

)

−
[

rE+E(n)

2

])

;

and that the sum counts twice the number of representations k2
1 + k2

2 = k2
3 + k2

4 with
N ≤ k1, k2, k3, k4 ≤ N + ∆ and {k1, k2} 6= {k3, k4}. Let a + ib =gcd(k1 + ik2, k3 + ik4)
and so k1 + ik2 = (a + ib)(x − iy) with k3 + ik4 = (a + ib)(x + iy)u for some integers
a, b, x, y where u = 1,−1, i or −i is a unit. Therefore k1 = ax + by, k2 = bx − ay, and
the four values of u lead to the four possibilities {k3, k4} = {±(bx + ay),±(ax − by)}.
All four cases work much the same so just consider k3 = bx + ay, k4 = ax − by. Then
N ≤ ax = (k1 + k4)/2, bx = (k3 + k2)/2 ≤ N + ∆ and |by| = |k1 − k4|/2, |ay| =
|k3 − k2|/2 ≤ ∆/2. Multiplying through a, b, x, y by −1 if necessary, we may assume
a > 0. Therefore 1 + ∆/N ≥ b/a ≥ (1 + ∆/N)−1 so that

b = a + O(a∆/N), N/a ≤ x ≤ N/a + ∆/a, |y| ≤ ∆/2a.

We may assume that a < ∆ else y = 0 in which case {k1, k2} 6= {k3, k4}. Therefore,
for a given a the number of possibilities for b, x and y is ≪ (a∆/N)(∆/a)2 = ∆3/aN .
Summing up over all a, 1 ≤ a ≤ ∆, gives that ‖f‖4 ≪ ∆3(log ∆)/N .

On the other hand if integers a, b, x, y satisfy

a ∈ [7N/∆, ∆/2], b ∈ [a(1 − ∆/7N), a], ax ∈ [N + ∆/2, N + 2∆/3], ay ∈ [1, ∆/3],

then N ≤ k1 = ax + by < k2 = bx − ay, k3 = bx + ay < k4 = ax − by ≤ N + ∆ for
∆ ≤ N/3, and so ‖f‖4 ≫ ∆2 + ∆3(log(∆2/N))/N .

Conjecture 18. The exists η such that for any E-polynomial f with E = {N2, . . . , (N+
N/(log N)η)2}, we have

‖f‖4 ≪ ‖f‖2.

Conjecture 18 probably holds with η = 1. If E = ∪r
i=1Ei then we can write any E-

polynomial f as f =
∑r

i=1 fi, and by the triangle inequality we have |f |4 ≤∑r
i=1 |fi|4.

Therefore Conjecture 18 implies Bourgain’s Conjecture 16 with δ = η/2.

In [15] the following weaker conjecture was posed.



17

Conjecture 19. For any α < 1, for any trigonometric polynomial f with frequencies
in the set {N2, . . . , (N + Nα)2}, we have

‖f‖4 ≪α ‖f‖2.

Conjecture 19 is trivial for α ≤ 1/2, yet is completely open for any α > 1/2. From
(6.1) we immediately deduce:

Theorem 18. Conjecture 13 implies Conjecture 19 .

The next conjectures 20 and 21 correspond to conjectures 18 and 19, respectively, in
the particular case f(θ) =

∑

k2∈E e(k2θ) and are also open.

Conjecture 20. There exists δ > 0 such that if E ⊂ {k2, N ≤ k ≤ N + N/ logδ N}
then

∑

m r2
E+E(m) ≪ |E|2.

Conjecture 21. If E ⊂ {k2, N ≤ k ≤ N + N1−ε} then
∑

m r2
E+E(m) ≪ |E|2.

We now give a flowchart describing the relationships between the conjectures in the
second half of the paper.

16. (Bourgain) If f(θ) =
∑

k≤N ake(k
2θ)

then ‖f‖4 ≪ ‖f‖2(log N)O(1)
ks +3

17. If E ⊂ {12, . . . , N2} then
∑

m r2
E+E(m) ≪ |E|2(log N)O(1)

18. ∃δ > 0 such that if

f(θ) =
∑

N≤k≤N+N/ logδ N ake(k
2θ)

then ‖f‖4 ≪ ‖f‖2

+3

20. ∃δ > 0 such that if

E ⊂ {k2, N ≤ k ≤ N + N/ logδ N}
then

∑

m r2
E+E(m) ≪ |E|2

KS

19. If f(θ) =
∑

N≤k≤N+N1−ε ake(k
2θ)

then ‖f‖4 ≪ε ‖f‖2

��

+3
21. If E ⊂ {k2, N ≤ k ≤ N + N1−ε}

then
∑

m r2
E+E(m) ≪ε |E|2

��

14. An arc of length R1−ε around the
diagonal contains at most Cε lattice points

KS

15. An arc of length R1−ε

contains at most Cε lattice points

KS

7. Sidon sets of squares

A set of integers A is called a Sidon set if we have {a, b} = {c, d} whenever a+b = c+d
with a, b, c, d ∈ A. More generally A is a B2[g]-set if there are ≤ g solutions to n = a+ b
with a, b ∈ A, for all integers n (so that a Sidon set is a B2[1]-set). The set of squares
is not a Sidon set, nor a B2[g]-set for any g; however it is close enough to have inspired
Rudin in his seminal article [27], as well as several sections of this paper.
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One question is to find the largest Sidon set A ⊂ {12, . . . , N2}. Evidently A = {(N −
[
√

N ] + k)2, k = 0, . . . , [
√

N ] − 1} is a Sidon set of size [
√

N ]. Alon and Erdős [1] used
the probabilistic method to obtain a Sidon set A ⊂ {12, . . . , N2} with |A| ≫ε N2/3−ε

(and Lefmann and Thiele [24] improved this to |A| ≫ε N2/3).
We “measure” the size of infinite Sidon sets {ak} by giving an upper bound for ak.

Erdős and Renyi [20] proved that there exists an infinite B2[g]-set {ak} with ak ≪
k2+ 2

g
+o(1), for any g. In [12], the first author showed that one may take all the ak

to be squares; and in [13] he showed that there exists an infinite B2[g]-set {ak} with

ak ≪ k2+ 1
g (log k)

1
g
+o(1). Here we adapt this latter approach to the set of squares.

Theorem 19. For any positive integer g there exists an infinite B2[g] sequence of
squares {ak} such that

ak ≪ k2+ 1
g (log k)Og(1)

Proof: Let X1, X2, . . . be an infinite sequence of independent random variables, each of
which take values 0 or 1, where

pb := P(Xb = 1) =
1

b
1

2g+1 (log(2 + b))βg

.

where βg > 1 is a number we will choose later. For each selection of random variables
we construct a set of integers B = {b ≥ 1 : Xb = 1} = {b1 < b2 < . . . }. By the central

limit theorem we have B(x) ∼ c x1− 1
2g+1 /(log x)βg with probability 1 or, equivalently,

bk ∼ c′ (k(log k)βg)1+ 1
2g .

We will remove from our sequence of integers B any integer b0 such that there exists
n for which there are g + 1 distinct representations of n as the sum of two squares of
elements of B, in which b0 is the very largest element of B involved. Let D ⊂ B denote
the set of such integers b0. Then the set {c2 : c ∈ B \ D} is the desired B2[g] sequence
of squares.

Now, if b0 ∈ D then, by definition, there exits b′0, b1, b
′
1, . . . bg, b

′
g ∈ B with b′g ≤ bg <

· · · < b1 < b0, for which

n = b2
0 + b′

2
0 = b2

1 + b′
2
1 = · · · = b2

g + b′
2
g.

Define R(n) = {(b, b′), b ≥ b′, b2 + b′2 = n}, and r(n) = |R(n)|. Then the probability
that b0 ∈ D because of this particular value of n is

E(Xb0Xb′0

∑

(b1,b′1),...,(bg,b′g)∈R(b20+b′20)
bg<···<b1<b0

Xb1Xb′1 · · ·XbgXb′g).

The bj , b
′
j are all distinct except in the special case that n = 2b2

g with bg = b′g. Thus, other

than in this special case, E(Xb0Xb′0Xb1Xb′1 · · ·XbgXb′g) =
∏g

j=0 pbj
pb′j ≤ (pb0pb′0)

g+1,

since pbj
pb′j ≤ pb0pb′0 for all j. This gives a contribution above of ≤ (pb0pb′0)

g+1
(

r(n)−1
g

)

.

The terms with n = 2b2
g similarly contribute ≤ (pb0pb′0)

g+1/2
(

r(n)−2
g−1

)

≤ p2g+1
b0

r(n)g−1 ≪
r(n)g−1/b′0. Therefore

E(D(x) −D(x/2)) ≪
∑

b′0≤b0
x/2<b0≤x

(pb0pb′0)
g+1r(b2

0 + b′
2
0)

g +
∑

b′0<b<b0≤x
b′20+b20=2b2

1

b′0
r(2b2)g−1.
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For the second sum note that r(m) ≪ mo(1) and that for any n (and in particular
for n = b′20 ) we have #{(y, z), n = 2z2 − y2, y, z ≤ x} ≪ (nx)o(1), and so its total
contribution is ≪ xo(1)

∑

b′0≤x 1/b0 = xo(1).

For the first term we apply Hölder’s inequality with p = 2 − 1
g+1

and q = 2 + 1
g

to

obtain

≤









∑

b′0≤b0
x/2<b0≤x

(pb0pb′0)
2g+1









g+1
2g+1

(

∑

b′0≤b0≤x

r2g+1(b2
0 + b′

2
0)

)
g

2g+1

.

As βg > 1, we have

∑

b′0≤b0
x/2<b0≤x

(pb0pb′0)
2g+1 ≪

∑

x/2<b0≤x

1

b0(log b0)βg(2g+1)

∑

b′0≤b0

1

b′0(log b′0)βg(2g+1)

≪ 1

(log x)βg(2g+1)
,

and
∑

b′0≤b0≤x

r2g+1(b2
0 + b′

2
0) ≤

∑

n≤2x2

r2g+2(n) ≪ x2(log x)22g+1−1,

so that

E(D(x) −D(x/2)) ≪ x
2g

2g+1 (log x)eg where eg := g

(

22g+1 − 1

2g + 1

)

− βg(g + 1).

Markov inequality’s tells us that P (D(2j) ≥ j2E(D(2j) −D(2j−1))) ≤ 1/j2 so that
∑

j≥1 P
(

D(2j) −D(2j−1) ≫ j2+eg(2j)
2g

2g+1 )
)

< ∞. The Borel-Cantelli lemma then im-

plies that

D(2j) −D(2j−1) ≪ j2+eg(2j)
2g

2g+1 = o(B(2j) − B(2j−1))

with probability 1, provided βg > 22g+1−1
2g+1

+ 2
g
. Thus there exists a B2[g]-sequence of the

form A := {b2 : b ∈ B \ D} = {ak}, where ak ≪ k2+ 1
g (log k)βg(2+ 1

g
).

Corollary 2. There exists an infinite Sidon sequence of squares {ak} with ak ≪ k3(log k)12.

Proof: Take g = 1 and β = 4 in the proof above. A more carefully analysis would allow
to put 10 + o(1) instead of 12.

8. Generalized arithmetic progressions of squares

A generalized arithmetic progression (GAP) is a set of numbers of the form {x0 +
∑d

i=1 jixi : 0 ≤ ji ≤ Ji − 1} for some integers J1, J2, . . . , Jd and each xi 6= 0. We have
seen that many questions in this article are closely related to GAPs of squares of integers
and, at the beginning we noted that Fermat proved there are no arithmetic progressions
of squares of length 4, and so we may assume each Jd ≤ 3. We also saw Solymosi’s
conjecture 6 which claims that there are no GAPs of squares with each Ji = 2 and d
sufficiently large. This leaves us with only a few cases left to examine:
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We begin by examining arithmetic progressions of length 3 of squares: If x2, y2, z2 are
in arithmetic progression then they satisfy the Diophantine equation x2 + z2 = 2y2. All
integer solutions to this equation can be parameterized as

x = r(t2 − 2t − 1), y = r(t2 + 1), z = r(t2 + 2t − 1), where t ∈ Q and r ∈ Z.

Therefore the common difference ∆ of this arithmetic progression is given by ∆ =
z2 − y2 = 4r2(t3 − t). Integers which are a square multiple of numbers of the form
t3 − t, t ∈ Q are known as congruent numbers and have a rich, beautiful history in
arithmetic geometry (see Koblitz’s delightful book [22]). They appear naturally when
we study right-angled triangles whose sides are rationals because these triangles can
be parameterized as s(t2 − 1), 2st, s(t2 + 1) with s, t ∈ Q, and so have area s2(t3 − t)
(there is a direct correspondence here since we may take the right-angled triangle to
have sides x + z, z − x, 2y which has area z2 − x2 = 2∆). It is a highly non-trivial
problem to classify the congruent numbers; indeed this is one of the basic questions of
modern arithmetic geometry, see [22].

So can we have a 2-by-3 GAP? This would require having two different ways to obtain
the same congruent number. The theory of elliptic curves tells us exactly how to do
this: We begin with the elliptic curve

(8.1) E∆ : ∆Y 2 = X3 − X

and the 3-term arithmetic progressions of rational squares are in 1-to-1 correspondence
with the rational points (t, 1/2r) on (8.1). Now the rational points on an elliptic curve
form an abelian group and so if P = (t, 1/2r) is a rational point on E∆ then there are
rational points 2P, 3P, . . . . This is all explained in detail in [22]. All we need is to note
that 2P = (T, 1/2R) where

T =
(t2 + 1)2

4(t3 − t)
=

y2

∆
and R =

8r(t3 − t)2

(t2 + 1)(t2 + 2t − 1)(t2 − 2t − 1)
=

∆2

2xyz
.

So we have infinitely many 2-by-3 GAPs of squares where the common difference of the
3-term arithmetic progressions is ∆, for any congruent number ∆.

How about 3-by-3 GAPs of squares? Let us suppose that the common difference
in one direction is ∆; having a 3-by-3 GAP is then equivalent to having y2

1, y
2
2, y

2
3 in

arithmetic progression. But note that y2
i = ∆Ti = ∆x(2Pi) (where x(Q) denotes the

x-coordinate of Q on a given elliptic curve). Therefore 3-by-3 GAPs of squares are in
1-to-1 correspondence with the sets of congruent numbers and triples of rational points,
(∆; P1, P2, P3) : P1, P2, P3 ∈ E∆(Q) for which the x-coordinates x(2P1), x(2P2), x(2P3)
are in arithmetic progression (other than the triples −1, 0, 1 which do not correspond
to squares of interest).

In [8] it is proved that if there is such an arithmetic progression of rational points
then the rank of E∆ must be at least 2; that is there are at least two points of infinite
order in the group of points that are independent. Bremner became interested in the
same issue from a seemingly quite different motivation:

A 3-by-3 magic square is a 3-by-3 array of numbers where each row, column and diag-
onal has the same sum. Solving the linear equations that arise it may be parameterized
as





u + v u − v − ∆ u + ∆
u − v + ∆ u u + v − ∆

u − ∆ u + v + ∆ u − v
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The entries of the magic square form the 3-by-3 GAP {(u − v − ∆) + j1v + j2∆ : 0 ≤
j1, j2 ≤ 2}. Hence the question of finding a non-trival 3-by-3 magic square with entries
from a given set E is equivalent to the question of finding a non-trival 3-by-3 GAP with
entries from a given set E; in particular when E is the set of squares. (This connection
is beautifully explained in [26].)

We believe that the existence of non-trivial 3-by-3 GAPs of squares, and equivalently
of non-trivial 3-by-3 magic squares of squares, remain open.

9. The abc-conjecture

In [4] it was shown that the large sieve implies that if there are ≫
√

k log k squares

amongst a + b, a + 2b, . . . , a + kb then b ≥ e
√

k. We wish to obtain an upper bound on
b also. We shall do so assuming one of the most important conjectures of arithmetic
geometry:

Conjecture 22. (The abc-conjecture) If a + b = c where a, b and c are coprime
positive integers then r(abc) ≫ c1−o(1) where r(abc) is the product of the distinct primes
dividing abc.

Unconditional results on the abc-conjecture are from this objective, giving only that
r(abc) ≫ (log c)3−o(1), for some A > 0 (see [29]). Nonetheless, by considering the
strongest feasible version of certain results on linear forms of logarithms, Baker [2]
made a conjecture which implies the stronger

(9.1) r(abc) ≫ c/ exp((log c)τ ),

with τ = 1/2 + o(1).

Lemma 1. Suppose that A + tjB is a square for j = 1, 2, 3, 4, 5, where A, B and the
tj are integers and (A, B) = 1. Let T = maxj |tj |. Then (9.1) implies that A +
B ≪ exp(O(T 9τ/(1−τ))). Moreover if B ≫ A5/6−ε then we may improve this to B ≪
exp(O(T 6τ/(1−τ))).

Proof: There is always a partial fraction decomposition

1
∏5

j=1(x + tj)
=

5
∑

j=1

ej

x + tj
where ej =

1
∏5

i=1, i6=j(ti − tj)
,

so that
∑

j ejt
ℓ
j = 0 for 0 ≤ ℓ ≤ 3. Let L be the smallest integer such that each

Ej := Lej is an integer. Define the polynomials

h(x) :=
∏

1≤j≤5
Ej>0

(x + tj)
Ej and g(x) :=

∏

1≤j≤5
Ej<0

(x + tj)
−Ej , with f(x) := h(x) − g(x).

If h(x) has degree D then the coefficient of xD−i in f(x) is a polynomial in the
∑

j ejt
ℓ
j

with 0 ≤ ℓ ≤ i, so we deduce that f(x) has degree D − 4. Now let a = BDh(A/B), b =
BDg(A/B), c = B4 · BD−4f(A/B) and then a′ = a/(a, b), b′ = b/(a, b), c′ = c/(a, b).
Thus r(a′b′c′) ≤ r(

∏5
j=1(A+tjB))|B||c′/B4| ≤∏5

j=1(A+tjB)1/2|c′|/B3. Now
∏5

j=1(A+

tjB) ≪ B6−2ε provided T = Bo(1) and A ≪ B6/5−ε, in which case r(a′b′c′) ≪ |c′|/Bε.
Then, by (9.1), we have (log c)τ ≫ log B. Now c = a + b ≪ (A + TB)D so that
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log c ≪ D log B; we deduce that B ≪ exp(O(Dτ/(1−τ))). Finally note that D ≪
maxℓ |Eℓ| ≤

∏

1≤i<j≤5, i,j 6=ℓ |ti − tj | ≪ T 6, and the second result follows.

In case that A ≫ B6/5−ε we may replace tj by 1/tj in our construction of polynomials

given above. In that case we get new exponents e∗j = ejt
3
j

∏5
i=1 ti and therefore |E∗

j | ≤
|tj|3Ej . We now have integers a∗ = κAdh∗(B

A
), b∗ = κAdg∗(B

A
), c∗ = κA4 · Ad−4f ∗(B

A
)

where κ :=
∏

j t
|E∗

j |
j and d is the degree of h∗. Thus we have that either A ≪ TO(1) or

A ≪ exp(O(dτ/(1−τ))) and d ≪ T 9.

We can apply this directly: If there are ≫
√

k squares amongst a+b, a+2b, . . . , a+kb
then there must be i1 < · · · < i5 with i5 < i1 +O(

√
k) such that each a+ ijb is a square.

Thus by Lemma 1 with A = a + iib, B = b, tj = ij − i1, assuming (9.1) with Baker’s
τ = 1/2 + o(1), we obtain a + b ≪ exp(k9/2+o(1)). Therefore we may, in future, restrict
our attention to the case k1/2 ≪ log(a + b) ≪ k9/2+o(1).
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