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Abstract. We exhibit, for any integer g ≥ 2, an infinite sequence A ∈
B2[g] such that lim supx→∞

A(x)√
x

= 3
2
√

2

√
g − 1. In adition, we obtain

better estimates for small values of g. For example, we exhibit an infinite

sequence A ∈ B2[2] such that lim supx→∞
A(x)√

x
=

√
3/2

Introduction

For g ∈ N, B2[g] denotes the class of all sets A ⊂ N such that for
all n ∈ N the equation a + a′ = n, a, a′ ∈ A a ≤ a′ has at most g
solutions. The sets B2[1] are called Sidon sets.

In [6] Erdős proved that if A is an infinite Sidon sequence then
lim infx→∞

A(x)
x1/2 = 0 where A(x) = #{a ≤ x; a ∈ A} is the count-

ing function. On the other hand he showed that there exists an infinite
Sidon sequence such that lim supx→∞

A(x)
x1/2 = 1/2. This limit was im-

proved to 1/
√

2 by Kruckeberg [5]. Much less is known on infinite B2[g]
sequences for g > 1. It is conjectured that lim infx→∞

A(x)
x1/2 = 0 for any

infinite B2[g] sequence, but it is unknown even for g = 2.
Respect the limit superior, Kolountzakis [4] proved that there is an

infinite B2[2] sequence A such that lim supx→∞
A(x)
x1/2 = 1. Xingde Jia [3]

worked on this topic and, although his method doesn’t work for usual
B2[g] sequences, he gets interesting upper bounds for sequences such
that, fixed m, the number of solutions of n ≡ a + a′ (mod m), a ≤ a′,
a, a′ ∈ A, is less or equal than g, for any integer n.
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We have proceeded in a different way and we improve the previous
lower bounds on infinite B2[g] sequences for g ≥ 2.

Theorem 1. For all g ≥ 2 there exists an infinite B2[g] sequence A

such that lim supx→∞
A(x)√

x
= Lg where

Lg =





√
3/2, g = 2

3/2, g = 3√
36
11 , g = 4

√
9
2 , g = 5

√
100
17 , g = 6

√
27
4 , g = 7

√
8, g = 8
3

2
√

2

√
g − 1, g ≥ 9.

Proof of theorem 1.

To prove the theorem we only need to show that any B2[g] sequence
A0 = {n1 < n2 < · · · < nk} can be extended to a B2[g] sequence
A = {n1 < · · · < nk < nk+1 < · · · < nl} where l√

nl
= A(nl)√

nl
≥ Lg + o(1).

For the construction of A we need two special sets Cg and Bp, whose
properties are stated in the following two Propositions. The proof of the
Propositions is postponed to the end of the section.

Proposition 1. For any prime p, there exists a set Bp ⊂ (p1/2, p2−p1/2)
such that

i) If b + b′ ≡ b′′ + b′′′ (mod p2 − 1), b, b′, b′′, b′′′ ∈ Bp then {b, b′} =
{b′′, b′′′};

ii) |b− b′| > p1/2 for all differents b, b′ ∈ Bp;
iii) |Bp| > p− 4p1/2.

Proposition 2. For all g ≥ 2 there exists an integer ug and a set
Cg ⊂ [0, ug] such that, if r(n) = #{n = c + c′; c, c′ ∈ Cg}, then

i) r(n) ≤ g for all integer n;
ii) r(c) ≤ g − 1 and r(c− 1) ≤ g − 1 for all c ∈ Cg;
iii) |Cg|√

ug+1
= Lg, where Lg is defined as in Theorem 1.
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The construction of A. Taking x = nk, p a prime, x2 < p < 2x2 and
m = p2 − 1 we define

A = A0 ∪D where D =
⋃

c∈Cg

(Bp + cm + 2x)

and the sets Bp and Cg are defined as in the Propositions 1 and 2.
Obviously A is an extension of A0. Then we need to prove that A is

a B2[g] sequence satisfying |A|√
nl

= Lg + o(1) where nl is the last element
of A.

Proposition 3. A is a B2[g] sequence.

Proof. If n ≤ 2x, then all the representations of n as a sum of two
elements of A are of the form a + a′ a, a′ ∈ A0. Because A0 is a B2[g]
sequence, there are at most g representations.

If n > 2x, there is at most one representation of the form a + d,
a ∈ A0, d ∈ D. Otherwise, if n = a + d = a′ + d′ then x > |a − a′| =
|d − d′| = |b − b′ + (ci − ci′)m| > p1/2 > x. In this inequality we have
used the property ii) of Proposition 1 when ci = ci′ and the condition
Bp ⊂ (p1/2, p2 − p1/2) when ci 6= ci′ . We consider two cases:

1) n ∈ A0 + D. Suppose that there are more than g representations,

n = a + d = d1 + d′1 = · · · = dg + d′g

n = a + (b + cm + 2x) =

= (b1+cj1m+2x)+(b′1+cj′1m+2x) = · · · = (bg+cjgm+2x)+(b′g+cj′gm+2x).

We can suppose that di and d′i are such that bi ≤ b′i and for the property
i) of Proposition 1 we have that bi = bj and b′i = b′j for all i, j.

Then we can write

a + b− b1 − b′1 − 2x + cm = (c1 + c′1)m = · · · = (cg + c′g)m.

We observe that a+b−b1−b′1−2x < x+(p2−p1/2)−p1/2−p1/2−2x <
p2 − 3p1/2 < m and a + b− b1 − b′1 − 2x > 1 + p1/2 − (p2 − p1/2)− (p2 −
p1/2)− 2x = −2m + 3p1/2− 2x− 1 > −2m where we have used x < p1/2

in the last inequality. Then, a+ b− b1− b′1− 2x is 0 or −m. If we divide
by m we have g representations of c or c− 1 as sums of elements of Cg.
But this is impossible because the property ii) of Proposition 2.

2) n 6∈ A0 +D. Then all the representations are in the form d+d′. If
we have ordered d and d′ as before we have also that bi = bj and b′i = b′j
for all i, j. If there are more than g representations we will have more
than g different representations of an integer in the form ci + c′i, which
is impossible because of the propery i) of Proposition 2.
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Proposition 4. |A|√
nl

= Lg + o(1), where nl is the last element of A.

Proof. |A| = |A0| + |Cg||Bp| ≥ |Cg|m1/2(1 + o(1)) and |A| ⊂ [1, (ug +
1)m + o(m)]

It is clear that

|A|√
nl

=
|Cg|m1/2(1 + o(1))√

m(ug + 1) + o(m)
= Lg + o(1),

in view of property iii) of Proposition 2.

Proof of Proposition 1. Chowla and Erdős [2] proved that for every prime
p there exists a Sidon sequence B ⊂ [1, p2 − 1] with p terms such that if
b + b′ ≡ b′′ + b′′′ (mod p2 − 1) then {b, b′} = {b′′, b′′′}.

The set Bp we are looking for will be the set B except for the elements
lying in the intervals [1, p1/2]∪ [p2−p1/2, p2−1] and those b, b′ such that
|b− b′| < p1/2.

Because all the differences b − b′ are different we need to pick up at
most 4p1/2 elements from B.

Proof of Proposition 2. We take C2 = {1, 2, 5}, C3 = {0, 1, 3} C4 =
{0, 1, 2, 4, 7, 10}, C5 = {0, 1, 2, 3, 5, 7}, C6 = {0, 1, 2, 3, 4, 6, 8, 11, 13, 16},
C7 = {0, 1, 2, 3, 4, 5, 7, 9, 11}, C8 = {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17},

It is easy to prove that these sets satisfy the conditions of Proposition
2.

In [1] it was proved that the set Ag = {k; 0 ≤ k ≤ g− 1} ∪ {g− 1 +
2k; 1 ≤ k ≤ [g/2]} satisfies that r(n) ≤ g for any integer n.

Then, for g ≥ 9, we take Cg = Ag−1 and we have r(n) ≤ g − 1 for
any integer n. In particular, Cg satisfies the conditions i) and ii) of
Proposition 2.

Also it is easy to see that iii) of Proposition 2 is satisfied.

References

[1] J.Cilleruelo, I.Ruzsa and C. Trujillo, “Upper and lower bound for finite Bh[g]
sequences, g > 1 ”, preprint .

[2] H.Halberstam and K.F.Roth, “Sequences”, Springer-Verlag, New York. 1983.

[3] X.-D. Jia, “Bh[g] sequences with large upper density”, Journal of Number
Theory, 56 ,298-308 (1996).

[4] M.N.Kolountzakis, “The density of Bh[g] sequences and the minimun of dense
cosine sums”. Journal of Number Theory 56 , 4-11 (1996)

[5] F. Kruckeberg, “B2 Folgen und verwandte Zahlenfolgen”, J. Reine Angew.
Math. 106 , 53-60 (1961).
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