INFINITE $B_2[g]$ **SEQUENCES**

Javier Cilleruelo Universidad Autónoma de Madrid 28049 Madrid, Spain franciscojavier.cilleruelo@uam.es

> Carlos Trujillo¹ Universidad del Cauca Popayan, Colombia

ABSTRACT. We exhibit, for any integer $g \ge 2$, an infinite sequence $A \in B_2[g]$ such that $\limsup_{x\to\infty} \frac{A(x)}{\sqrt{x}} = \frac{3}{2\sqrt{2}}\sqrt{g-1}$. In adition, we obtain better estimates for small values of g. For example, we exhibit an infinite sequence $A \in B_2[2]$ such that $\limsup_{x\to\infty} \frac{A(x)}{\sqrt{x}} = \sqrt{3/2}$

INTRODUCTION

For $g \in \mathbb{N}$, $B_2[g]$ denotes the class of all sets $A \subset \mathbb{N}$ such that for all $n \in \mathbb{N}$ the equation a + a' = n, $a, a' \in A$ $a \leq a'$ has at most g solutions. The sets $B_2[1]$ are called *Sidon* sets.

In [6] Erdős proved that if A is an infinite Sidon sequence then $\liminf_{x\to\infty} \frac{A(x)}{x^{1/2}} = 0$ where $A(x) = \#\{a \leq x; a \in A\}$ is the counting function. On the other hand he showed that there exists an infinite Sidon sequence such that $\limsup_{x\to\infty} \frac{A(x)}{x^{1/2}} = 1/2$. This limit was improved to $1/\sqrt{2}$ by Kruckeberg [5]. Much less is known on infinite $B_2[g]$ sequences for g > 1. It is conjectured that $\liminf_{x\to\infty} \frac{A(x)}{x^{1/2}} = 0$ for any infinite $B_2[g]$ sequence, but it is unknown even for g = 2.

Respect the limit superior, Kolountzakis [4] proved that there is an infinite $B_2[2]$ sequence A such that $\limsup_{x\to\infty} \frac{A(x)}{x^{1/2}} = 1$. Xingde Jia [3] worked on this topic and, although his method doesn't work for usual $B_2[g]$ sequences, he gets interesting upper bounds for sequences such that, fixed m, the number of solutions of $n \equiv a + a' \pmod{m}$, $a \leq a'$, $a, a' \in A$, is less or equal than g, for any integer n.

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TEX

¹Partially supported by COLCIENCIAS, Colombia and UNIVERSIDAD DEL CAUCA

We have proceeded in a different way and we improve the previous lower bounds on infinite $B_2[g]$ sequences for $g \ge 2$.

Theorem 1. For all $g \ge 2$ there exists an infinite $B_2[g]$ sequence A such that $\limsup_{x\to\infty} \frac{A(x)}{\sqrt{x}} = L_g$ where

$$L_g = \begin{cases} \sqrt{3/2}, & g = 2\\ 3/2, & g = 3\\ \sqrt{\frac{36}{11}}, & g = 4\\ \sqrt{\frac{9}{2}}, & g = 5\\ \sqrt{\frac{100}{17}}, & g = 6\\ \sqrt{\frac{27}{4}}, & g = 7\\ \sqrt{8}, & g = 8\\ \frac{3}{2\sqrt{2}}\sqrt{g-1}, & g \ge 9. \end{cases}$$

PROOF OF THEOREM 1.

To prove the theorem we only need to show that any $B_2[g]$ sequence $A_0 = \{n_1 < n_2 < \cdots < n_k\}$ can be extended to a $B_2[g]$ sequence $A = \{n_1 < \cdots < n_k < n_{k+1} < \cdots < n_l\}$ where $\frac{l}{\sqrt{n_l}} = \frac{A(n_l)}{\sqrt{n_l}} \ge L_g + o(1)$.

For the construction of A we need two special sets C_g and B_p , whose properties are stated in the following two Propositions. The proof of the Propositions is postponed to the end of the section.

Proposition 1. For any prime p, there exists a set $B_p \subset (p^{1/2}, p^2 - p^{1/2})$ such that

 $\begin{array}{l} i) \ If \ b+b'\equiv b''+b''' \ (\mathrm{mod} \ p^2-1), \ b,b',b'',b''' \in B_p \ then \ \{b,b'\} = \{b'',b'''\};\\ ii) \ |b-b'| > p^{1/2} \ for \ all \ differents \ b,b' \in B_p;\\ iii) \ |B_p| > p-4p^{1/2}. \end{array}$

Proposition 2. For all $g \ge 2$ there exists an integer u_g and a set $C_g \subset [0, u_g]$ such that, if $r(n) = \#\{n = c + c'; c, c' \in C_g\}$, then i) $r(n) \le g$ for all integer n; ii) $r(c) \le g - 1$ and $r(c - 1) \le g - 1$ for all $c \in C_g$; iii) $\frac{|C_g|}{\sqrt{u_g + 1}} = L_g$, where L_g is defined as in Theorem 1. The construction of A. Taking $x = n_k$, p a prime, $x^2 and <math>m = p^2 - 1$ we define

$$A = A_0 \cup D$$
 where $D = \bigcup_{c \in C_g} (B_p + cm + 2x)$

and the sets B_p and C_q are defined as in the Propositions 1 and 2.

Obviously A is an extension of A_0 . Then we need to prove that A is a $B_2[g]$ sequence satisfying $\frac{|A|}{\sqrt{n_l}} = L_g + o(1)$ where n_l is the last element of A.

Proposition 3. A is a $B_2[g]$ sequence.

Proof. If $n \leq 2x$, then all the representations of n as a sum of two elements of A are of the form $a + a' \ a, a' \in A_0$. Because A_0 is a $B_2[g]$ sequence, there are at most g representations.

If n > 2x, there is at most one representation of the form a + d, $a \in A_0, d \in D$. Otherwise, if n = a + d = a' + d' then $x > |a - a'| = |d - d'| = |b - b' + (c_i - c_{i'})m| > p^{1/2} > x$. In this inequality we have used the property ii) of Proposition 1 when $c_i = c_{i'}$ and the condition $B_p \subset (p^{1/2}, p^2 - p^{1/2})$ when $c_i \neq c_{i'}$. We consider two cases:

1) $n \in A_0 + D$. Suppose that there are more than g representations,

$$n = a + d = d_1 + d'_1 = \dots = d_g + d'_g$$

 $n = a + (b + cm + 2x) =$

 $= (b_1 + c_{j_1}m + 2x) + (b'_1 + c_{j'_1}m + 2x) = \dots = (b_g + c_{j_g}m + 2x) + (b'_g + c_{j'_g}m + 2x).$

We can suppose that d_i and d'_i are such that $b_i \leq b'_i$ and for the property i) of Proposition 1 we have that $b_i = b_j$ and $b'_i = b'_j$ for all i, j.

Then we can write

$$a + b - b_1 - b'_1 - 2x + cm = (c_1 + c'_1)m = \dots = (c_g + c'_g)m.$$

We observe that $a + b - b_1 - b'_1 - 2x < x + (p^2 - p^{1/2}) - p^{1/2} - p^{1/2} - 2x < p^2 - 3p^{1/2} < m$ and $a + b - b_1 - b'_1 - 2x > 1 + p^{1/2} - (p^2 - p^{1/2}) - (p^2 - p^{1/2}) - 2x = -2m + 3p^{1/2} - 2x - 1 > -2m$ where we have used $x < p^{1/2}$ in the last inequality. Then, $a + b - b_1 - b'_1 - 2x$ is 0 or -m. If we divide by m we have g representations of c or c - 1 as sums of elements of C_g . But this is impossible because the property ii) of Proposition 2.

2) $n \notin A_0 + D$. Then all the representations are in the form d + d'. If we have ordered d and d' as before we have also that $b_i = b_j$ and $b'_i = b'_j$ for all i, j. If there are more than g representations we will have more than g different representations of an integer in the form $c_i + c'_i$, which is impossible because of the property i) of Proposition 2. **Proposition 4.** $\frac{|A|}{\sqrt{n_l}} = L_g + o(1)$, where n_l is the last element of A.

Proof. $|A| = |A_0| + |C_g||B_p| \ge |C_g|m^{1/2}(1 + o(1))$ and $|A| \subset [1, (u_g + 1)m + o(m)]$

It is clear that

$$\frac{|A|}{\sqrt{n_l}} = \frac{|C_g|m^{1/2}(1+o(1))}{\sqrt{m(u_g+1)+o(m)}} = L_g + o(1),$$

in view of property iii) of Proposition 2.

Proof of Proposition 1. Chowla and Erdős [2] proved that for every prime p there exists a Sidon sequence $B \subset [1, p^2 - 1]$ with p terms such that if $b + b' \equiv b'' + b''' \pmod{p^2 - 1}$ then $\{b, b'\} = \{b'', b'''\}$.

The set B_p we are looking for will be the set B except for the elements lying in the intervals $[1, p^{1/2}] \cup [p^2 - p^{1/2}, p^2 - 1]$ and those b, b' such that $|b - b'| < p^{1/2}$.

Because all the differences b - b' are different we need to pick up at most $4p^{1/2}$ elements from B.

Proof of Proposition 2. We take $C_2 = \{1, 2, 5\}, C_3 = \{0, 1, 3\}, C_4 = \{0, 1, 2, 4, 7, 10\}, C_5 = \{0, 1, 2, 3, 5, 7\}, C_6 = \{0, 1, 2, 3, 4, 6, 8, 11, 13, 16\}, C_7 = \{0, 1, 2, 3, 4, 5, 7, 9, 11\}, C_8 = \{0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17\},$

It is easy to prove that these sets satisfy the conditions of Proposition 2.

In [1] it was proved that the set $A^g = \{k; 0 \le k \le g-1\} \cup \{g-1+2k; 1 \le k \le [g/2]\}$ satisfies that $r(n) \le g$ for any integer n. Then, for $g \ge 9$, we take $C_g = A^{g-1}$ and we have $r(n) \le g-1$ for

Then, for $g \ge 9$, we take $C_g = A^{g-1}$ and we have $r(n) \le g-1$ for any integer n. In particular, C_g satisfies the conditions i) and ii) of Proposition 2.

Also it is easy to see that iii) of Proposition 2 is satisfied.

References

[1] J.Cilleruelo, I.Ruzsa and C. Trujillo, "Upper and lower bound for finite $B_h[g]$ sequences, g > 1", preprint.

[2] H.Halberstam and K.F.Roth, "Sequences", Springer-Verlag, New York. 1983.

[3] X.-D. Jia, " $B_h[g]$ sequences with large upper density", Journal of Number Theory, 56, 298-308 (1996).

[4] M.N.Kolountzakis, "The density of $B_h[g]$ sequences and the minimum of dense cosine sums". Journal of Number Theory ${\bf 56}$, 4-11 (1996)

[5] F. Kruckeberg, " B_2 Folgen und verwandte Zahlenfolgen", J. Reine Angew. Math. **106**, 53-60 (1961).

[6] A. Stöhr, "Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe", II, J. Reine Angew. Math. **194** 111-140 (1955).