GAPS IN SUMSETS OF s PSEUDO s-TH POWER SEQUENCES
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ABSTRACT. We study the length of the gaps between consecutive members in
the sumset sA when A is a pseudo s-th power sequence, with s > 2. We show
that, almost surely, lim sup(bn+1 — bn)/log(bn) = s°s!/T'*(1/s), where by, are
the elements of sA.

1. INTRODUCTION

Erd8s and Rényi [3] proposed in 1960 a probabilistic model for sequences A
growing like the s-th powers: they build a probability space (U, T, P) and a sequence
of independent random variables (&,)neny with values in {0,1} and P(§, = 1) =
%n’”l/s; to any u € U, they associate the sequence of integers A = A, such that
n € A, if and only if &, (u) = 1. In short, the events {n € A} are independent and
P(n € A) = In~1+Y/¢. The counting function of these random sequences A satisfies
almost surely the asymptotic relation |A N [1,z]| ~ x'/* whence the terminology
pseudo s-th powers. Erdés and Rényi studied the random variable r4(A,n) which
counts the number of representations of n in the form n = a; + -+ + as, a1 <
-+ < ag, a; € A. For the simplest case s = 2 they proved that r9(A,n) converges
to a Poisson distribution with parameter /8, when n — oo. They also claimed
the analogous result for s > 2 but their analysis did not take into account the
dependence of some events. J. H. Goguel [4] proved indeed that for each integer
d, the sequence of the integers n such that rs(A,n) = d has almost surely the
density Ae=*s/d!, where A\, = I'*(1/s)/(s%s!). B. Landreau [5] gave a proof of
this result based on correlation inequalities and also showed that the sequence of
random variables (r5(A4,n)),, converges in law towards the Poisson distribution with
parameter Ag.

In particular, both the sets of the integers belonging, or not belonging, to sA =
{a1 + -+ as : a; € A} have almost surely a positive density and it makes sense
to study the length of the gaps in sA. The aim of the paper is to obtain a precise
estimate for the maximal length of such gaps.

Theorem 1. For any s > 2 the sequence sA = (by,),, sum of s copies of a pseudo
s-th power sequence A, satisfies almost surely

. bnt1 — bn s%s!
1 1 - .
(1) P Tlogh, | T3(1/s)

We remark that this result is heuristically consistent with the easier fact that for a
random sequence S with P(n € S) = 1—e~*, we have im sup(s,,+1 — $m)/ 10g 8,n =
1/X almost surely.
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2. NOTATION AND GENERAL LEMMAS

2.1. Notation. We retain the notation of the introduction, for the probability
space (U, T, P) and the definition of the random sequences A = A,,, where the
events {n € A} are independent and P(n € A) = %n’lﬂ/s. We further use the
following notation.

i) We write w to denote a set of distinct integers and we denote by E,, and
E¢, the events

E, :={wc A} and ES ={w¢ A}

respectively. We write w ~ w’ to mean that wNw’ # () but w # w’: e remark
that w ~ ' if and only if the events E,, and E,, are distinct an dependent.
If w={x1,...,2,} we write

ow)={az1+ - +ax,: a1 +---+a,=s, a; > 1}

for the set of all integers that can be written as a sum of s integers using
all the integers x4, ..., x,. We denote by 2, the family of sets

D, ={w: z€o(w)}

ii) Given « > 0, we denote by I; the interval [i,7 + «logi] and we denote by
F;; the event

F;:={sAnI; =0}.
We denote by @7, the family of sets
Q, ={w: ow)NI; #0}.
iii) We finally let Ay = d/s)

sls®

2.2. Probabilistic lemmas. We use the following generalization of the Borel-
Cantelli Lemma, proved indeed by P. Erdds and A. Rényi in 1959 [2].

Theorem 2 (Borel-Cantelli Lemma). Let (F;);en be a sequence of events and let

If the sequence (Zy,), is bounded, then, with probability 1, only finitely many of
the events F; occur.

If the sequence (Z,)n tends to infinity and
lim Yi<icj<n P(FiNFy) — P(F)P(F))

2
n—00 Zn

:0,

then, with probability 1, infinitely many of the events F; occur.

Theorem 3 (Janson’s Correlation Inequality [1]). Let (Ey),eq be a finite collection
of events which are intersections of elementary independent events and assume that
P(E,) <1/2 for any w € Q. Then

[1PES) <P(() E) <[] P(ES) xexp (2> P(EsNEy)),

weN weN weN wrw!

where w ~ w’' means that the events E,, and E,, are distinct and dependent.
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2.3. A technical lemma.

Lemma 1. Given 1 <t < s—1 and positive integers a1, .. .,a; we have, as z tends
to infinity:
i)
Z (1,1 L xt)—l-&-l/s < Z—l—&-t/s.

T1yeey Tt
a1r1+tarri=z

i)
x1-w) Y (2= (agzy + -+ avay T2« s 0 2.
> ( ) g
L1ye..,T¢
a1T1+tarre<z
i)

1<z <<z
T+ tzs=2

Proof. i) We have
Z (ya) TV = (agap)' T Z (arzy - - - agwy) ~1H/S

L1y, T1y..,Tt
a1T1+tarri=2 a1z1+ - tarre=z
1-1/s —1+41/s
< (a1 ayp) / 2: (y1---ys) /s
Yiy--3Yt
Y1+ Fyi=z

If y1 + -+ + y = z then at least one of them, say y;, is greater than z/t and is
determined by y1,...,%:—1. Thus,

Z (xq--- xt)71+1/s < Vs Z (y1 - 'y1571)71+1/S

Ziseees Tt Y1, Yt—1<2

a1T1+tatri=z
t—1
< Z*lJrl/s (Z y1+1/s>

y<z
< ZflJrl/s(Zl/s)tfl < Zflth/s'

ii) We have

Z (1) Y (2 = (arwy + -+ atxt))fm/s

L1,.--,T¢
a1+ tarre<z

= Z (2 —m) 2/ Z (CoRERF ) R

m<z L1yeeey Tt
a1+ Farri=m

(byi)) < . (z—m) 2/ om 1ttt/

m<z

< Z (Z _ m)—2t/sm—1+t/s + Z (Z _ m)—2t/sm—1+t/s
m<z/2 z/2<m<z

< Z—Zt/szt/s + z—1+t/s Z (Z _ m)—2t/s

z/2<m<z
< s g lt/s (1 +10gz+2172t/s>

& 2S4S og
< 2z Ylogz.
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Remark 1. Ezcept in the case when s =2 and t = 1, the upper bound in ii) may
be replaced by z=1/5.

iii) It follows from Lemma 3 of [5].

3. PROOF OF THEOREM 1

3.1. Combinatorial lemmas.

Lemma 2. We have

as z — oQ.

Proof.
(2) Y P(E,) =Y PE,)+ > PE,).

we, weN, weN,
jwl=s jwl<s—1

The main contribution comes from the first sum.

Z P(E,) = sis Z (21 2s) " H5 N,

weN, 1<z 1< <wy
|w|=s T1+-txTs=2

as z — 00, by Lemma 1 iii). For the second sum we have

Z P(E,) < Z Z (z1---a,) /s

wEe, r<s—1 0Q1,--,0r aizi+-+a,z,=2
jwl<s 1 art- o=

(Lemma 1,7)) < Z 2571 7 1s,
r<s—1

Lemma 3. For any z < 2z’ we have

Z P(E,NE,) < 2z *logz.

’
w~w

weN, weN,,

Proof. If w € 1, then there exist some r < s and some positive integers aq,...,a,
with a; +---+a, = s such that a1z; +---+a,x, = z. Thus, any pair of sets w ~ w’
with w e Q,, W € Q,, z <2 is of the form

W={T1, ., Ty U1, Up
/
w :{xla"'axtvvt-‘rla"'?’UT/}
with 1 <t < r,r’ < s and positive integers a1, ...,a, and by,..., b with

121 + -0+ QX F+ Gpp1Up1 o0 AUy = 2
blxl + 4 btl't —+ bt+1vt+1 —+ e+ br/’l)r/ = Z/.

Of course if r =t then w = {x1,...,2,} and ' > t + 1. Otherwise w = w’. And
similarly, when ' = ¢, we have r >t + 1.

Given z,2',t,r,7",a1,...,a.,b1,...,b~ we estimate the sum

2*: P(E,NE,)
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where the sum is extended to the pairs w ~ w’ satisfying the above conditions. We
distinguish several cases according to the values of r and 7’.

e Ifr>t+1andr’ >t+1, we have

S Z (:Tl s xt)_1+1/s X Z (ut+1 s UT)_1+1/S

T1,...,Tt U410y Ur,
a1zitetarre <z Q41 Ut1+ AUy
biz1+-+biwi <z =z—(ar1z1+Farxy)

x > (Vg1 -+ vr) T

Vtt1se-5Upt
bt+1vt+1+~~+brx v,
=z'—(biz1+-+bixy)

By Lemma 1 i) we have

r—t_ =t
< Z (:101---:rt)_1+é (z—(army 4 -+ awmy)) = (2 = (byzy + - + b)) ©
Gll’lil'zz.‘i':;ttrt<2
b1x1+~~+btact<z’

< S (@ z) Y (e (o aewe) T (2~ (bua o b))
alxlil'?:.-i.-fttmt<z
bizi+- bz <z’

Using the inequality AB < A% + B2, we get

Z P(E,NEw) < Z (@1 - mt)_lﬂ/s (z = (121 + -+ atxt))izt/s
wre! alﬂilil'j:;r’;:zt<z
+ Z (21 @) Y (2 — (b 4 - + btxt))_%/s
L1yeeey Tt

bizi+-tbizi <z’
(Lemma 1,4)) < 2 Y*logz.
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e r=tand r’ >t 4 1. In this case we have

*

> P(E,NEw) < 3 (21 @)~ LTV

’ T1,..., Tt

w~w ar1x1+Farxri=z

bizi+-tbize <z’

X Z (vt-‘rl ...UT,)_1+1/S
V41 yeeey Uyt
bip1vepr++bvy
=z'—(brzi+-+bixy)
r/—t _
(Lemma 11)) < Z (1 -~ ~xt)_1+1/s X (2" = (bywy + - + byzy)) ° !
alxlf_l.f:'_{_’;:wtzz
bizi+-tbize <z’
< > (zy--m) VP 2T 2TV
L1y Tt
a1+ tarxrr=z
e v’ =t and r > ¢+ 1 is similar to the previous one.
O
Lemma 4. Let « > 0 and the interval I; = [i,i + alogi]. For any i < j we have
Y P(E,NE.)<i'/*(logi)*(log j).
UJNUJ/
wey,, w'EQIj
Proof.
> P(E,NE.,) < > > P(E,NEy)
wrw! z€l;, 2’€l; wrw’
wey,, w’eQIj we,, weN,,
< Z 2"V log z < (logi)?(log j)i~ /.
z€l;, z’€l;
O

Lemma 5. We have
[T Plsg) =i+,

UJEQ[i

Proof. We observe that

IT I pEo) < II PED < T PED =11 II PED.

z€I, weQ, wey, wey, zel; weN,

|w|=s lw|=s

Writing P(ES) = 1 — P(E,,) and taking logarithms we have

log (H II P(Ei)) = > Y log(l- P(E,))

zel;, we, zel; we,
~ =2 D PR
zel; we),
(Lemma 2) ~ — Z As
z€l;
~  —alglogi.
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On the other hand,

og | [T I P(ES) >3 log(1l— P(E))

zel, weQ, zel, we,
lw|=s |w|=s
~ =2 2 PR
ze€l, we,
|w|=s

DIND U

zel;, *1<---<xs
T1+txs=2

(Lemma 1iil)) ~ —Xs;alogi.

|
Lemma 6. We have
P(F;) = i@+l
Proof. We observe that
Fi= (] ES
wey,
Since P(E,,) < 1/2 for any w, Theorem 3 applies and we have
II PE) <PF)< ] PES) xexp|2 Y P(E,NE)
wey, wey, wrw'
w,w’EQIi
After Lemma 5 we only need to prove
> P(E,NEy)=o(1).
w,f);VGwQIi
But it is a consequence of Lemma 4 with j = 4.
Y P(E,NEy)<it/sto),
w,oi;/vgﬂzi
|

Lemma 7. Ifi < j and I; N I; = () then

I[I PES) < PF)P(E)1+0G Y log j)).
wEQIiUQIj

Proof. 1t is clear that
-1

II pEH=| 11 rE) || II PED II PE)

UJEQ]I.USZIJ. UJEQIi UJEQ]]. weﬂjiﬂﬂjj

The lower bound of the Janson’s inequality, applied to the first two products, gives
-1

[T PE)<PE)PE) I[I P&

WEQIiUQIj UJEQIiﬁQ[j
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The logarithm of the last factor is

- Z log(l - P(Ew)) ~ Z P(Ew)

wEQIiOQIj (—UGQI,LQQIJ

Since I; N I; = 0, if w € @7, N Qy, then |w| < s — 1. Thus

Yo PE) < ) P(B)

WEQIiI'TQ]]. WEQIJ»
' lw|<s—1
< 2 X >, (@)
z€ljr<s—lai+--+ar=s T1yeesTr
a1+ tarrr=z
(Lemma 1 7)) < j~Y*(logj).
Thus
-1
1 rE) <140 "*(log4))
wEQIiﬁQI].
which ends the proof of the Lemma. O

3.2. End of the proof. After these Lemmas we are ready to finish the proof of
Theorem 1.

If @ > 1/A; then
ZP(Fz) _ ZifaAero(l) < 00

and Theorem 2 implies that with probability 1 only finite many events F; occur.

This proves that

) br+1 — by

limsup —— < 1/A,.
2P Togh, <Y

If &« < 1/Xs then
Zy= 3" P(F) = Yo tolh)  ploehssolt) L o
i<n i<n
If in addition
.. P(F;NF;))— P(F;)P(F;
" i Zisisen PO ) = PIP(E)

n—oo Z’I2L

Theorem 2 implies that with probability 1 infinitely many events F; occur and

) br+1 — br
limsup —— > 1/\,.

We next prove (3). We observe that

FnF= () ES,

wEQIiUQIJ,

so we can use Janson inequality to get

P(F,NF;) < II PES) xexp|2 > P(E,NE,)
wEQIiUQIJ, w~w
w,w’EQIiUSZIj
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Observe that
Z P(E,NE,) < Z P(E,NE,)

/www’ wf/ww’
w,w EjSUQIj w,w €Qr,

+ Y P(E,NE.)

!
UJ’/\/OJ
w,w EQIj

+ > P(E,NE.).

’
~

wey,, w'GQIJ.

Applying Lemma 4 to the three sums we have

Y. P(BunEy)<i/*(logi)® + j~"/*(log)? +i '/*(logi)* (log ),

w~w’
w,w'GQIi UQIj

and so

4  ep|2 Y PE.NE.) §1+O(i_1/s(logi)2(logj)).

w,w'EQIi UQIj

Thus,

(5) PEnF) < J[ P(ES) x (1403~ (logi)*(log 4)))-
wEQIiUQIj

Since a < Ag, the number § = (1 — a)y)/2 is positive. Now we split the sum in
(3) into three sums:

A, = > P(F.NF))— P(F,)P(F)
1<i<j<n
<i<j—oalogj
Y. P(F.NF;)— P(F,)P(F))
1<i<j<n
iSnB
As, = > P(F;NF;)— P(F;)P(F})

1<i<j<n
Jj—logj<i<j

nB

AZn

i) Estimate of Ay,. Since in this case we have I; N I; = (), we can apply
Lemma 7 to (5) to get

[I P(E) < PE)PE)L+ O log ).

WwER, UQ,
This inequality and (5) gives
P(F, 1 F}) < P(F)P(F;) x (1+0(~*(log ) (log 1)),
S0
P(F;NFj) = P(F)P(Fy) < P(F,)P(Fy)i~"/*(logi)*(log j)
< n Pt p(R)P(F).
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Thus
(6) Ar < 0t N PR P(Fy) < n~ Pt Z2,
,j<n

ii) Estimate of As,. In this case we use the crude estimate

(7) P(F;NF;) — P(Fi)P(Fj) < P(F;n Fj) < P(Fj).
We have
(8) Nop < DN P(Fy) <D j°P(Fy) <nfZ, <n Ptz
j<n i<jh ji<n

since Z,, = nlmorsto(l) — p2p+o(1)
iii) Estimate of As,. Again we use (7) and we have
9) Az < D) P(Fy) <alogn) P(F;) <n0tez2
Jj<nj—alogj<i<yj Jj<n
Finally, using the estimates in (6),(8) and(9) we have
Pi<icj<n PEFNF)) — P(F)P(F))
z
This ends the proof of (3) and hence that of Theorem 1.

« p-B/sto(1) | —B+o(l) | p—2B+0(1) _y (.
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