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Abstract

We prove that if A C [, N] is a Sidon set with N'/2 — L elements, then any interval I C [1, N] of
length ¢N contains c|A| + E; elements of A, with

|Er| < 52NYA(1+ ¢ /2NYS) (1 + LYPN-Y®), Ly = max{0, L}.

In particular, if |[A] = N'/2 4+ O(N'/), and g(A) is the maximum gap in A, we deduce that g(A) <
N3/%. Also we prove that, under this condition, the exponent 3/4 is sharp.

1. Introduction

We say that A is a Sidon set if all the sums a + @/, a < @/, are different. Erdés and Turan [5] proved
that if A C [1,N] is a Sidon set then |A| < N'/2 4+ O(N'/*). On the other hand, Bose and Chowla [1]
proved that if N = p? + p + 1, then there exists a Sidon set A C [1, N] with p elements; i.e, the upper

bound (1.1) is sharp except for the error term.

Sidon sets of large size have notable properties of regularity. In [7], M. Koluntzakis proved that the
elements of a Sidon set of large size, |A| ~ N'/2, are well distribuited in the classes of residues of small

modulo. See [5] for an elementary proof of this result.
Erdés and Freud [4] proved that if |A| ~ N'/2 then the elements of A are well distributed in the

interval [1, N].

Theorem A (Erdds-Freud). Let ¢ > 0 and A C [1,N] a Sidon set with |A| ~ N'/? elements. Then,

any interval of length ¢N contains ~ ¢N'/? elements.
S.W. Graham [6] has proved a more precise result.

Theorem B (S. Graham). Let A C [1, N] be a Sidon set with N'/2 + O(N'/*) elements. Then, any
interval of length cN contains cN'/? + O(N?3/8) elements.

If we denote by g(A) = maxg, , q,ca{ar — ar—1} the maximum gap in A, from the Theorem B it is
easy to deduce that if A is a Sidon set A C [1, N] with N'/2 4 O(N'/4), then g(A) < N7/8.
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In this paper we shall use an identity (Lemma 2.1), which was introduced in [2] and [3], to obtain a

better result.

Theorem 1.1. Let A C [1,N] a Sidon set with N2 — L elements. Then, any interval of length ¢N
contains c|A| + Er elements of A, with

|Ef] < 52NYVA1 + 2NV 1+ LYPNTY®), Ly = max{0, L}.

In particular we deduce from this theorem the following corollary for gaps.
Corollary 1.1. If A C [1,N] is a Sidon set and |A| = NY/2 4 O(N'/%), then g(A) < N3/

It is easy to see that the exponent 3/4 is the best possible if A C [1, N] is a Sidon set with |A| =
N2 4 O(NY*). Consider N = p?> 4+ p+ 1, and a Sidon set A, A C [1, N] with p > /N — 1 elements.
If we split the interval [1, N] in intervals of length [N3/4], then, one of them contains less than 2N'/4
elements. If we remove these elements from A we have a Sidon set A’ with |A’| = N2 4 O(N'/%)

elements and g(A’) > N3/4,

We don’t know how to derive a better estimate for g(A) when the error term is less than N'/4. Tt is
related with the difficulty of improving the error term in the upper bound for finite Sidon sets. It would
be interesting to know a good upper bound for g(A) when A is a Sidon set of maximal size. Maybe, it
is possible an upper bound like g(A) <« N1/2+e,

It should be noted that the classical construction of Erdés and Turan [5] of Sidon sets, A, = {2kp +
(%), :k=0,1,...,p— 1}, gives g(A) < N'/2 for these sets. It seems not to be the case for the Ruzsa’s
construction [8] of finite Sidon sets. Numerical and heuristic arguments suggest that g(A)/N'/? — oo in
this case. In particular, it would imply that the Erdés’s Conjecture, F(N) < N'/2 4 O(1), is not true.

2. Proofs

The proof of the following lemma can be found in [2] or [3].

Lemma 2.1. Let A C [1, N] be a sequence of integers. Then, for any integer H > 1 we have

2 Y d(h)(H-h) = _HAAP —~ H|A|+ D
SN+ H-1 o
1<h<H
where )
_ H|A]

1<n<N+H-1

A(n) is the counting function of A and d(h) = #{h=a—da'; a,a’ € A}. O

A(n) — A(n — H) is the number of elements of A lying in the interval (n — H,n| and the quantity

Ni{‘}ﬂl is the expected value of A(n) — A(n — H). Then, Dy is a measure of the distribution of the

elements of A in the interval [1, N + H — 1].
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The argument of the proof of the Theorem 1.1 is the following: If | 4] is close to N/2, (L small), then
Dy is “small” and consequently, the number of elements of A lying in intervals of length H is “close”,
at least in average, to the expected number. From that we can deduce a “good” distribution in any
interval I = (aN, BN]. Upper and lower bounds for the error Ey = |[ANI|— (8 — «)|A| are obtained in

two different steps (Lemma 2.3 and Lemma 2.4).

Lemma 2.2. If A C [1,N] is a Sidon set with |A| = NY/2 — L then, for any integer H we have

3H?L, H? L
DH§W+W+2HN/

where Ly = max{0, L}.

Proof. We apply Lemma 2.1 to the sequence A. Since A is a Sidon set, hence d(h) < 1 for any integer
h>1and 237, oyepy 1 d(h)(H —h) < H?2. Also we use the trivial estimate for the size of a Sidon set,
|A| < 2N1/2,

H2| A2 H2N + H® — H? — H?|AJ]?

H? A
+H|Al = N+H-1 W14,

N N

Dy < H? +2HN1/2

_ H|A| <
S TNTHE THAl<

If L <0, then Dy < 2 4 2HN'/2,

If L > 0, then Dy < Z2(NV2 4 |A|)Ly + £ 4 2HN/? < 3H e+ 2 L 9gNY2. O

Let I = (aN,BN], c = f —a and we write |AN I| = c|A| + E;. We will choose H = [N3/4] in all the

proofs.
Lemma 2.3. E; < 10NY4(cY/2NV8 4 1)(LY?N-1/8 4 1),

Proof. We write Iy = (aN, BN + H], then ¢N + H — 1 < |Ig| < ¢N + H + 1. We have
> An H)> H|ANI|,
nely
since each a € AN is counted H times in the sum. Then,
H|A Ig|HA
> <A(n) —An—H) — ||) > H|ANT| - Ml HIA]

N+H-1 N+H-1
nely

|1H‘ (1 C)(H 1) HQ‘*”
= + _ | > — - 7/~ 7> R

Then

RS <A(”)_A(”_H)‘Nfﬁ|—1) =

nely

Now we apply Cauchy’s inequality, Lemma 2.1 and the trivial estimates |A| < 2N'/2 N3/4/2 < H <
N3/4 to get
H|A|

Er < H ' In|/?Dyf* + =5
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N1/4 + N1/2

L HAl
N

<H! ((CN)1/2 Y (H+ 1)1/2> ( Jr\@H1/2Nl/4>

< oN—3/4 (01/2N1/2 4 \/§N3/S) (\/§N1/2Li/2 4+ NB/8 4 \@Ns/s) 1 oNL/4

< 10NV (HANVE 1) (ZYANTYE ) O

Lemma 2.4. —F; < 52N'Y/4(cY/2N1/8 ¢ 1)(L1+/2N—1/8 +1).

Proof.

> A(n)—A(n—H) < H(|ANI|+|AN(aN — H,aN]|+|AN (BN, 5N + H]|).

nely

We apply Lemma 2.3 to the intervals (N — H,aN] and (8N, BN + H] to obtain an upper bound for

the last two terms.

H H1/2N1/8
[ AN (aN — H,aN]| +[AN (BN, BN + H]| < 2 |A] + 20N1/4 (Nl/? + 1> (LimN’l/S + 1)

< ANV 4 4ONYA(LYPNTVE £ 1) < 44NVA 4 40NVELY?,

Then,
H‘A| ‘IH|H|A| 1 1/2
An) — A(n — H) — —20 ) < glang| — 222 H(44N /4 4 40N )
Z((”) (n—H) N+H1>_ SR T - +
nely
I
= ErH + H|A| (c - ngl) +H (44N1/4 + 40N1/8L}/2) < ErH + H(44NV* + 40N/3 L),

because |Ig| > c¢N + H — 1.
Finally we apply Cauchy inequality and Lemma 2.2 to obtain

—Bp < 44NV 4 40NVELY? 4 gt Y

nely

A(n) — A(n— H)

HI|A|
N+H-1
< 44NV 4 40NVELY? 4 aN A 1,2 DY?

\/gHL:_L,'_/2 H3/2
N1/4 + N1/2

< 44NYA 4 AONVBLY? 4 o3/ ((cN)l/2 +(H + 1)1/2) ( + \/§H1/2N1/4>

<NV L AONVELY 4 oI (N2 1 VAN (VBNYPLY? 4 NS 4 VaNSSS)

<BNVA(1L+ ANV (14 LYANTYE). O

Lemma 2.3 and Lemma 2.4 imply Theorem 1.1. To prove Corollary 1.1, suppose that A = N'/2 — L,
with Ly < kN'/4 and let I be any interval of length &' N3/%. If we apply Lemma 2.4 we have
k/

il = 52N K21+ KY2) > BNYA — k' — 52NV + K (1 + EBY2).

[ANI| >

If we take k' large enough, k' > 10000k, then |A N I| > 0 for any interval of length greater than k' N3/4,
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