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I.- Introduction.

Given a square free positive integer d one may consider the arithmetical
function r4(n) = #{n = 2? + dy?/x,y € Z} which can also be described as
the number of lattice points on the ellipse 22 + dy? = n and it has a natural
interpretation inside the ring of algebraic integers of the field Q(v/—d). The
main purpose of this paper is to analyse closely this function in connection
with the distribution of lattice points on “small arcs ” of those ellipses.

Let us denote by hy the number of elements of order two in the class field
group of Q(v/—d), then we may state our main result:

1
m-+ho
8[—2h2+2]+4
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Theorem 1. On the ellipse 2 + dy? = n, an arc of length n
contains, at most, m lattice points.

In other words, for every € > 0, there exists a finite constant C, such that
given an arc of length ni1=¢ on the ellipse 22 + dy? = n it contains no more
than C. lattice points. The particular case m = hsy + 2, which corresponds
to arcs of length n& is not difficult to prove by geometric arguments based
on curvature considerations. However, the general case is of a much more
intricate arithmetical nature.

Similary to the case of gau(ssi)an integers one has estimates of the form

J— € 3 rd n
ra(n) = O(n¢) and h;nﬂsolip (Tog 1)
of the theorem, one may asks what happens for arcs whose length is n®, % >

1

= oo for every € > 0. Therefore, in view
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a > i; this remains an open question which we have not been able to answer
with the methods introduced to prove theorem 1. There is a relationship
between upper bounds estimates for lattice points on arcs, restriction lemmas
of Fourier series and integrals and LP-properties of certain gaussian sums (see
[1], [2],[7],[10],[11] and [12]). The existence of this connection has stimulated
this research whose first published result [1] contains the case d = —1.

Another interesting question is to analyse how “well distributed” are the
lattice points on these ellipses when rg(n) is large enough. In the next
theorem we answer that question in the following sense: we consider the

quantity Dy(n) = Sd(n)/(zr/—%), for rq(n) > 4, where S4(n) denotes the area of

the polygon whose vertexs are the lattice points on the ellipse 22 + dy? = n.
Clearly these lattice points will be “better distributed” if Dg(n) is close
enough to the number 1. We have the following theorem

Theorem 2.

a) [Da(n) — 1| << e12Vd (bglﬂ

2
) for infinitely many integers n.
logn
b) For every e > 0 and for every integer k, there exists an ellipse x> +dy? =
n such that all its lattice points are placed an the arcs |2| < e and the number

of them s greater than k.

(2,1 ifd=1
c) The set {Dy(n),rq(n) > 4} is dense in the interval [%37 1] ifd=3
[0,1] for d #1,3.

In general one cannot expect a much better estimate than a) because it

1
is easy to show that |Dg(n) — 1| >> T and it is a well known that
ri(n
rq(n) = O(n®) for every € > 0.

Obviously estimates a) and b) yield respectively

Sd(n)

limsup ———= =1, linrr_ljgf Sa(n)

us :O
n—oo M ra(n)>4 V'




I1.- Proofs.

[A] PRELIMINARY RESULTS AND NOTATION.

For the sake of simplicity we shall discuss the details when d # —1
(mod 4). The straightforward modifications of the arguments to cover the
case d = —1 (mod 4) are left to the reader.

To each representation n = a? 4 db®> we shall associate the lattice point
(a,b) on the ellipse 22 +dy? = n, the point (a, bv/d) on the circle 2% +w? = n
and the algebraic integer a + bv/—d in Q(v/—d) whose norm is precisely
N(a +by/—d) = a® + db® = n.

Given a rational prime p we shall consider the principal ideal < p > in the
ring A of algebraic integers of the quadratic field Q(v/—d). It is well known
that < p > may be a prime ideal or may have a descomposition < p >= @109
as a product of two, not necessarily differents, prime ideals ;.

The Kronecker symbol (d/p) describes the situation: (d/p) = +1 if <

p >= p1p2, P1 # p2; (d/p) = —1 if < p > is prime and (d/p) = 0 if
< p >= 2. The fundamental theorem of arithmetic yields

(d/p)=-1 (d/pj)=1or0

which produces the unique factorization

<n>=[]<a > [[ei05

Obviously each representation of n = x2 + dy? corresponds to a descom-
position of the principal ideal < n >=< z + yv/—d >< z — yv/—d > with
norm

N[< z+yV—d >] = N[< z —yv/—d >] =n.

In such a situation the factors must to be of the form:

<z+yV—d>= H<qk>2 [[ee55 ™

<x—yv—d>= H<qk>2 Hp% %pjfg, 0<v <qj

which yields the condition that Br = 23, must be even. Therefore we shall
concentrate our attention in all the products

H<Qk >ﬁ’“HK3% Vi, 0<7 <o



and we will characterize those among them which correspond to principal
ideals.

Let us denote by FE4,..., E} the elements of the group of ideal classes in
Q(v/—d) where E; = I is the unity i.e. the class of principal ideals. There-
fore, modulo the unities of the ring A, there will be as many representations
of the form n = 22 4+ dy? as sets of integers 7;, 0 < ~; < «; such that

1] <a>*11eja05s 7 € Bn

that is ] Eié?')_w = I, where we have used E, ;) for the class of the ideal
p.%l
Let us denote by U the number of unities of the ring A, i.e.
4 ifd=1
U=<¢ 6 ifd=3

2 in the remainder cases.

and let us write the product

h
—Qy 2 2 7 _
Ul e {El + B2+ o+ (B2 ) } =Y anFBu
m=1

Then we have:

Lemma 3. The first coefficient ay is precisely the number of representations
of the integer n by the quadratic form x? + dy?.

Let us remark that the other coefficients have a similar interpretation
in terms of lattice points on the ellipses associated to the quadratic forms
corresponding to the other elements of the class group.

Corollary 4.

a) If h =1 then rq(n) = 0 if one of the 3’s is odd and rq(n) = U [[(1+«;)
if every By is even.

b) If every element of the class group, except the unity, has order two then:

( 0 if there is an odd exponent By or if HES(J]) #+ Fy
rq(n) =
¢ UTT( + «;) in other case.

¢) There exists a finite constant C(d) such that if all the exponents 3, are
even then we can find m < C(d) in such a way that the number mn has, at
least [M

N } different representations.



The proofs of parts a) and b) are immediate. To see ¢) let us observe first

t}éat

Ul ;
Z a; =U H(l—i—aj) and, therefore, there exists a; so that a; > {M] )
i=1

If it happens that ¢ = 1 then there is nothing to prove and we may take
m = 1. If i # 1 then we choose a prime p so that < p >= p1p9, p1 € Ei—1
and take m = p.

[B] THE ANGULAR REPRESENTATION.

Let (2°,y*) be a lattice point on the ellipse 22 + dy? = n with
< af >=< x® 4+ y*v—d > as its associated principal ideal.

Using the notation introduced in the preceding section we may write:

fys, 044—75
<o >=[]<a>*]lenez " 09 <y,

. 2v:—aj . .
in such a way that [ EVZJJ.) . Ey, where pj 1, ;2 will not be necessarily
principal, but one can find a positive integer n;/h such that E;L(JJ) = FE;

and, therefore, the ideals pyjl, p% became principal. That is, there exists
algebraic integers w; 1,w; 2 in the ring A so that p;”l =< wj1 >, pjg =<
Wj2 >.

Let us consider the ring B of algebraic integers of the field
Q(V—d, wjl-’/lnj , wjl-’/znj ). Then we know that @; 1, p; 2 have extensions @; 1, ;2
respectively, which are principal ideals in the ring B. More concretely,

1/n; 1/m;

1 i ~

01 = Bwjl-’/lnj =< w;}
which implies
<pj >= Bpj = §;10j2 =< (wj1wj2)"/™ >
and since Ap; = ©;,19;5,2 N A we may write
1/n; 2mi®; /n; _ —2mi®;

Wi1 = VPj€ Wi2 = = V/Pj€

for an appropiate angle ®;, -7 < ®; < 7.



In general, the ideal

H < qi ~Pr Hpj’lp]j ;i —< Hq H 043/2 27ri2(2'y;—aj)<1>j >

is a principal ideal when considered in the ring of integers of the field
Q(v—d wl/nl, 1/n1, ...). However, if it happens that [] Eizjj) = Ej, then
it is also principal in the ring A of algebraic integers of Q(v/—d). Therefore

we have proved the following.

Lemma 5. The integers x° + y°v/—d corresponding to the different repre-
sentations of n = (x°)? + d(y*)? are given by the formula:

\/ﬁ@Qﬂ—iZ)\jq;.j

where the angles ®; corresponds to rational primes p; such that (d/p;) =1
or 0 and have been defined above, while the rational integers \; satisfy the

. A]
relations —a; < \j <, A\j = a; (mod 2), HEV(j) = Ex.

[C] END OF THE PROOF OF THEOREM 1.

Let us consider an arc I" of length n®/2, on the ellipse 2% + dy? = n, which
contains m+1 lattice points and let < o/ >=< a; +bj\/—_d >, 7=1,....m+1
be the corresponding principal ideals. To each pair of them < a® >, < o >
we may associate the angle

Z” —LA

We have:
wst|_|z Jcb\<fn2

S t

where —2 5 J € Z for each j because A =N =y (mod 2).

A%t
J J
The elements of the class group given by the products HEv(ﬁ have,
J
at most, order two because

AS 2t

Iﬁ%f H%mﬂiﬁ=ﬁ=ﬁ

J




Therefore, if hy denotes the number of elements of the class group of
Al_At

Q(v/—d) whose order is two, then, among the products H EV(]) ,2<t<

J
ﬂ2<+'h2

hog +1
Let us denote by I the set of those t’s. For them we consider the products

< m + 1 there are, at least, which are equal.

AS 2t

HEV(J% . l<s<t, stel

We have

)\s_>\t >\s_>\1 >\1_>\t

115 HEum HEV(J) = £

J

for each pair s,t € I.
s t

Therefore, the angle Z J 5 J ®; will correspond to a representation

XS =t

J J
%+ dy? = Hpj
J

The least favourable case (i.e. y = 1) yields the estimate:

Vd

\A;—A§| 1/2

which implies the inequality

< |5 < Vdn T

|AS—A’5| )
[Ir, © <n'

Our next step is to multiply all together these inequalities obtanied for
such pairs (s,t). We get

() II p F 2N n_<[%})



Let us now recall the fact that —a; < )\3‘? < a; and observe that in order
to estimate ) [A\? — A4| the worst possible situation occurs when half of the
Aj are equal to —a; and the other half to a;. Therefore

1 m+h22 m+h2
A=A < Za ) —1
yois 1= o [555] o ([R55] )

{Oifaisodd

41 if a is even.

where

d(a) =

, n
We substitute this estimate in (*) and we use the fact H p?” = =35, <
I

n to finish the proof of the theorem.

[D] PROOF OF THEOREM 2.

We are proving the general case d # 1,3. The particular case d = 1 was
studied in [5] and the case d = 3 only needs some straightforward technical
variations whose details are left to the reader.

a) For each integer k let us consider

1 k(d)

l
1
dm?+1 and &' = arctan — arctan
Il « ) mZ::l mvd 2 mvd

1<m<k(d) m=Il+1

ng

where k(d) = [keV4],
l
By lemma 5, each angle o determines a lattice point (a;, b;) on the ellipse
T

22 + dy? = ny, i.e. a point (a;,b;v/d) on the circle 22 + y? = ny.

In general we don’t know if the ideals < iv/dm + 1 > are primes or not
and, obviously, we can not expect that the lattice points described above are
all the lattice points on the ellipse.

1 1
However, let us observe that ® — ®!~! = arctan —= < 2arctan —= and

IVd kv/d

1
Z 2arctan — > 2m.
k<l<k(d) l\/E
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Then, the distance between two neighbour points on the circle is smaller
than

1
2 arcta .
\/N ar nk\/&
Sa(n) Sy(ng)

The quanty ———= can be evaluated by the quotien
g /Vd ™
S/(ny) is the area of the polygon whose vertices are the corresponding points
on the circle 22 + y? = ny,.
An easy geometric argument allows us to estimate the area S/ (ny) of
i®!

)

where

the circle’s region not included in the polygon whose vertices are /npe

k <1< k(d). We have
0 < mng —8Sh(ng) < S(ng) <
k(d) <% (2arctan 1 ) - 1(2\/ ny sin arctan L) (y/n; cos arctan b )) =
1 1 )) B
kvd kv/d -
= k(d)ng <arctan LN l(2 arctan L + O( 1 ))) _ k(d)nk

1
= k(d)ny (arctan o sin (2 arctan

kVd 2 kvVd k3d? k3d>
log ny, . ..
Now, let us observe that k(d) >> ————. Then, if we divide by ny
log log ny,

and made the sustitution k = k(d)e_lz‘/g we obtain:

2

(1og log nk) 12/d

<|—F]) €
log ny,

Sy(n)

0<i-
TN

b) In reference [5], in order to prove the theorem for d = 1, a result about
the angular equidistribution of the primes a + bi € Z(i) is used. Here we
need the more general result (see, for example ref [9], pages 374-375):

Theorem A. Let h be the class-number of Q(v/—d). If N(a, 3,x) denotes
the number of prime ideals < a+ b/ —d > such that o < arctan #& < (B and

va? +db? <z, then

N(a, B,2) = (% + 0(1)) 10;;'

where U is the number of units of the ring of integers.
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Corolary B. For each a € [0,27) and for every € > 0, there exists an ideal
prime < a +byv/—d >, a+ by/—d = Va2 + db2e'® such that |® — | < e.

Taking o = 0 we can find, for each € > 0 and for each integer k, a prime
ideal < @ + dbe > such that |® x| < 1.

k
Let n, = (aik + dbf’k> . Acording with lemma 5, all the points (a, bv/d)

on the circle are given by the formula

meiwbg,k

where v runs over the set {y € Z;|v| < k,y =k (mod 2)}.
To finish the proof of b) we observe that the r4(n) = U(k + 1) > k and
|7®c.k| < € in all the cases.

c) We remember that Sd(n)/(%) = S)(n)/mn. Let a € [0,1], then there

exists 3 € (0, 7) such that the area of the dotted region is many.

The idea is to look for circles such that the polygons with vertices in the
corresponding points (a, b\/ﬁ) are close enough to the region described above.

BB B ode= b
527937~ o and € = oo
each j = 2,3, ...,k we can find a prime

aj + v —dbj = \/p_je%i‘bj such that 27®; — 2%\ <€

Let us consider Acording to lemma A, for
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k
We choose nj, = Hp? The points (a,bv/d) on the circle 22 4+ y? = ny,
=2
are given by the formula

\/n—ke2ﬁi{2j=2 v P;}

where v; takes the values —2,0 or 2.
All the integers r, 0 < r < 2¥~1 can be written in the form

r= ao(T)QO + al(r)21 + -+ ak_g(r)Qk_Q.

where the a;(r) takes values 0 or 1.
For every r we choose 7] = 2a;_;(r) and we have

: K :
r Bag—;(r)28~ kB pr kB

> 7P =2 J2—R+O(2W)ZW+O(2W)~

=1 i=2

Then, for each r, 0 < r < 28~ there exists a point (a,, b,v/d) on the circle
22 + 9% = ny, ar + b/ —d = /npe?™®r, such that

,_ kB

|2W<I>r—2f—f1|<e' e:ﬁ

Then, 27®,_; — 271D, | < %i_l + 2¢, r=1,..,25"1' -1 and

g /

|27T(D2k—1_1 — /8| < F + €.

Futhermore there are no lattice points on the arcs
ettt b+e<bO<m—pB—¢ t=0,1.

Now, with the same geometric argument used in the proof of b) and
making k£ — oo we obtain c).
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