LATTICE POINTS ON ELLIPSES

J.Cilleruelo and A.Córdoba
Departamento de Matemáticas. Universidad Autónoma de Madrid

Madrid 28049. España

I.- Introduction.

Given a square free positive integer d one may consider the arithmetical function $r_{d}(n)=\#\left\{n=x^{2}+d y^{2} / x, y \in Z\right\}$ which can also be described as the number of lattice points on the ellipse $x^{2}+d y^{2}=n$ and it has a natural interpretation inside the ring of algebraic integers of the field $Q(\sqrt{-d})$. The main purpose of this paper is to analyse closely this function in connection with the distribution of lattice points on "small arcs " of those ellipses.

Let us denote by h_{2} the number of elements of order two in the class field group of $Q(\sqrt{-d})$, then we may state our main result:
Theorem 1. On the ellipse $x^{2}+d y^{2}=n$, an arc of length $n^{\frac{1}{4}-\frac{1}{8\left[\frac{m+h_{2}}{2 h_{2}+2}\right]+4}}$ contains, at most, m lattice points.

In other words, for every $\epsilon>0$, there exists a finite constant C_{ϵ} such that given an arc of length $n^{\frac{1}{4}-\epsilon}$ on the ellipse $x^{2}+d y^{2}=n$ it contains no more than C_{ϵ} lattice points. The particular case $m=h_{2}+2$, which corresponds to arcs of length $n^{\frac{1}{6}}$ is not difficult to prove by geometric arguments based on curvature considerations. However, the general case is of a much more intricate arithmetical nature.

Similary to the case of gaussian integers one has estimates of the form $r_{d}(n)=O\left(n^{\epsilon}\right)$ and $\limsup _{n \rightarrow \infty} \frac{r_{d}(n)}{(\log n)^{\epsilon}}=\infty$ for every $\epsilon>0$. Therefore, in view of the theorem, one may asks what happens for arcs whose length is $n^{\alpha}, \frac{1}{2}>$
$\alpha \geq \frac{1}{4}$; this remains an open question which we have not been able to answer with the methods introduced to prove theorem 1. There is a relationship between upper bounds estimates for lattice points on arcs, restriction lemmas of Fourier series and integrals and L^{p}-properties of certain gaussian sums (see [1], [2], [7],[10],[11] and [12]). The existence of this connection has stimulated this research whose first published result [1] contains the case $d=-1$.

Another interesting question is to analyse how "well distributed" are the lattice points on these ellipses when $r_{d}(n)$ is large enough. In the next theorem we answer that question in the following sense: we consider the quantity $\mathcal{D}_{d}(n)=\mathcal{S}_{d}(n) /\left(\frac{\pi n}{\sqrt{d}}\right)$, for $r_{d}(n) \geq 4$, where $\mathcal{S}_{d}(n)$ denotes the area of the polygon whose vertexs are the lattice points on the ellipse $x^{2}+d y^{2}=n$. Clearly these lattice points will be "better distributed" if $\mathcal{D}_{d}(n)$ is close enough to the number 1 . We have the following theorem

Theorem 2.

a) $\left|\mathcal{D}_{d}(n)-1\right| \ll e^{12 \sqrt{d}}\left(\frac{\log \log n}{\log n}\right)^{2}$ for infinitely many integers n.
b) For every $\epsilon>0$ and for every integer k, there exists an ellipse $x^{2}+d y^{2}=$ n such that all its lattice points are placed an the arcs $\left|\frac{y}{x}\right|<\epsilon$ and the number of them is greater than k.
c) The set $\left\{\mathcal{D}_{d}(n), r_{d}(n) \geq 4\right\}$ is dense in the interval $\left\{\begin{array}{l}{\left[\frac{2}{\pi}, 1\right] \text { if } d=1} \\ {\left[\frac{3 \sqrt{3}}{2 \pi}, 1\right] \text { if } d=3} \\ {[0,1] \text { for } d \neq 1,3 .}\end{array}\right.$

In general one cannot expect a much better estimate than a) because it is easy to show that $\left|\mathcal{D}_{d}(n)-1\right| \gg \frac{1}{d r_{d}^{2}(n)}$, and it is a well known that $r_{d}(n)=O\left(n^{\epsilon}\right)$ for every $\epsilon>0$.

Obviously estimates a) and b) yield respectively

$$
\limsup _{n \rightarrow \infty} \frac{\mathcal{S}_{d}(n)}{\frac{\pi}{\sqrt{d}} n}=1, \quad \liminf _{\substack{n \rightarrow \infty \\ r_{d}(n) \geq 4}} \frac{\mathcal{S}_{d}(n)}{\frac{\pi}{\sqrt{d}} n}=0
$$

II.- Proofs.

[A] Preliminary results and notation.

For the sake of simplicity we shall discuss the details when $d \not \equiv-1$ $(\bmod 4)$. The straightforward modifications of the arguments to cover the case $d \equiv-1(\bmod 4)$ are left to the reader.

To each representation $n=a^{2}+d b^{2}$ we shall associate the lattice point (a, b) on the ellipse $x^{2}+d y^{2}=n$, the point $(a, b \sqrt{d})$ on the circle $z^{2}+w^{2}=n$ and the algebraic integer $a+b \sqrt{-d}$ in $Q(\sqrt{-d})$ whose norm is precisely $N(a+b \sqrt{-d})=a^{2}+d b^{2}=n$.

Given a rational prime p we shall consider the principal ideal $\langle p\rangle$ in the ring A of algebraic integers of the quadratic field $Q(\sqrt{-d})$. It is well known that $\langle p\rangle$ may be a prime ideal or may have a descomposition $\langle p\rangle=\wp_{1} \wp_{2}$ as a product of two, not necessarily differents, prime ideals \wp_{j}.

The Kronecker symbol (d / p) describes the situation: $(d / p)=+1$ if $<$ $p>=\wp_{1} \wp_{2}, \wp_{1} \neq \wp_{2} ;(d / p)=-1$ if $<p>$ is prime and $(d / p)=0$ if $\langle p\rangle=\wp^{2}$. The fundamental theorem of arithmetic yields

$$
n=\prod_{(d / p)=-1} q_{k}^{\tilde{\beta}_{k}} \prod_{\left(d / p_{j}\right)=1 \text { or } 0} p_{j}^{\alpha_{j}}
$$

which produces the unique factorization

$$
<n>=\prod<q_{k}>^{\tilde{\mathcal{B}}_{k}} \prod \wp_{j, 1}^{\alpha_{j}} \wp_{j, 2}^{\alpha_{j}}
$$

Obviously each representation of $n=x^{2}+d y^{2}$ corresponds to a descomposition of the principal ideal $\langle n>=<x+y \sqrt{-d}><x-y \sqrt{-d}>$ with norm

$$
N[<x+y \sqrt{-d}>]=N[<x-y \sqrt{-d}>]=n .
$$

In such a situation the factors must to be of the form:

$$
\begin{gathered}
<x+y \sqrt{-d}>=\prod<q_{k}>^{\frac{\bar{\beta}_{k}}{2}} \prod \wp_{j, 1}^{\gamma_{j}} \wp_{j, 2}^{\alpha_{j}-\gamma_{j}} \\
<x-y \sqrt{-d}>=\prod<q_{k}>^{\frac{\bar{\beta}_{k}}{2}} \prod \wp_{j, 1}^{\alpha_{j}-\gamma_{j}} \wp_{j, 2}^{\gamma_{j}}, \quad 0 \leq \gamma_{j} \leq \alpha_{j}
\end{gathered}
$$

which yields the condition that $\tilde{\beta}_{k}=2 \beta_{k}$ must be even. Therefore we shall concentrate our attention in all the products

$$
\prod<q_{k}>^{\beta_{k}} \prod \wp_{j, 1}^{\alpha_{j}-\gamma_{j}} \wp_{j, 2}^{\gamma_{j}}, \quad 0 \leq \gamma_{j} \leq \alpha_{j}
$$

and we will characterize those among them which correspond to principal ideals.

Let us denote by E_{1}, \ldots, E_{h} the elements of the group of ideal classes in $Q(\sqrt{-d})$ where $E_{1}=I$ is the unity i.e. the class of principal ideals. Therefore, modulo the unities of the ring A, there will be as many representations of the form $n=x^{2}+d y^{2}$ as sets of integers $\gamma_{j}, \quad 0 \leq \gamma_{j} \leq \alpha_{j}$ such that

$$
\prod<q_{k}>^{\beta_{k}} \prod \wp_{j, 1}^{\gamma_{j}} \wp_{j, 2}^{\alpha_{j}-\gamma_{j}} \in E_{1}
$$

that is $\prod E_{\nu(j)}^{2 \alpha_{j}-\gamma_{j}}=E_{1}$, where we have used $E_{\nu(j)}$ for the class of the ideal $\wp_{j, 1}$.

Let us denote by \mathcal{U} the number of unities of the ring A, i.e.

$$
\mathcal{U}= \begin{cases}4 & \text { if } d=1 \\ 6 & \text { if } d=3 \\ 2 & \text { in the remainder cases }\end{cases}
$$

and let us write the product

$$
\mathcal{U} \prod E_{\nu(j)}^{-\alpha_{j}} \prod\left\{E_{1}+E_{\nu(j)}^{2}+\ldots+\left(E_{\nu(j)}^{2}\right)^{\alpha_{j}}\right\}=\sum_{m=1}^{h} a_{m} E_{m}
$$

Then we have:
Lemma 3. The first coefficient a_{1} is precisely the number of representations of the integer n by the quadratic form $x^{2}+d y^{2}$.

Let us remark that the other coefficients have a similar interpretation in terms of lattice points on the ellipses associated to the quadratic forms corresponding to the other elements of the class group.

Corollary 4.

a) If $h=1$ then $r_{d}(n)=0$ if one of the β 's is odd and $r_{d}(n)=\mathcal{U} \prod\left(1+\alpha_{j}\right)$ if every β_{k} is even.
b) If every element of the class group, except the unity, has order two then:

$$
r_{d}(n)=\left\{\begin{array}{l}
0 \text { if there is an odd exponent } \beta_{k} \text { or if } \prod E_{\nu(j)}^{\alpha_{j}} \neq E_{1} \\
\mathcal{U} \prod\left(1+\alpha_{j}\right) \text { in other case. }
\end{array}\right.
$$

c) There exists a finite constant $C(d)$ such that if all the exponents $\tilde{\beta}_{k}$ are even then we can find $m \leq C(d)$ in such a way that the number mn has, at least, $\left[\frac{\mathcal{U} \prod\left(1+\alpha_{j}\right)}{h}\right]$ different representations.

The proofs of parts a) and b) are immediate. To see c) let us observe first that
$\sum_{i=1}^{h} a_{i}=\mathcal{U} \prod\left(1+\alpha_{j}\right)$ and, therefore, there exists a_{i} so that $a_{i} \geq\left[\frac{\mathcal{U} \prod\left(1+\alpha_{j}\right)}{h}\right]$.
If it happens that $i=1$ then there is nothing to prove and we may take $m=1$. If $i \neq 1$ then we choose a prime p so that $\langle p\rangle=\wp_{1} \wp_{2}, \wp_{1} \in E_{i}^{-1}$ and take $m=p$.

[B] The angular representation.

Let $\left(x^{s}, y^{s}\right)$ be a lattice point on the ellipse $x^{2}+d y^{2}=n$ with $<\alpha^{s}>=<x^{s}+y^{s} \sqrt{-d}>$ as its associated principal ideal.

Using the notation introduced in the preceding section we may write:

$$
<\alpha^{s}>=\prod<q_{k}>^{\beta_{k}} \prod \wp_{j, 1}^{\gamma_{j}^{s}} \wp_{j, 2}^{\alpha_{j}-\gamma_{j}^{s}}, \quad 0 \leq \gamma_{j}^{s} \leq \alpha_{j},
$$

in such a way that $\prod E_{\nu(j)}^{2 \gamma_{j}^{s}-\alpha_{j}}=E_{1}$, where $\wp_{j, 1}, \wp_{j, 2}$ will not be necessarily principal, but one can find a positive integer n_{j} / h such that $E_{\nu(j)}^{n_{j}}=E_{1}$ and, therefore, the ideals $\wp_{j, 1}^{n_{j}}, \wp_{j, 2}^{n_{j}}$ became principal. That is, there exists algebraic integers $\omega_{j, 1}, \omega_{j, 2}$ in the ring A so that $\wp_{j, 1}^{n_{j}}=<\omega_{j, 1}>, \wp_{j, 2}^{n_{j}}=<$ $\omega_{j, 2}>$.

Let us consider the ring B of algebraic integers of the field $Q\left(\sqrt{-d}, \omega_{j, 1}^{1 / n_{j}}, \omega_{j, 2}^{1 / n_{j}}\right)$. Then we know that $\wp_{j, 1}, \wp_{j, 2}$ have extensions $\tilde{\wp}_{j, 1}, \tilde{\wp}_{j, 2}$ respectively, which are principal ideals in the ring B. More concretely,

$$
\tilde{\wp}_{j, 1}=B \omega_{j, 1}^{1 / n_{j}}=<\omega_{j, 1}^{1 / n_{j}}>\quad \tilde{\wp}_{j, 2}=B \omega_{j, 2}^{1 / n_{j}}=<\omega_{j, 2}^{1 / n_{j}}>
$$

which implies

$$
<p_{j}>=B p_{j}=\tilde{\wp}_{j, 1} \tilde{\wp}_{j, 2}=<\left(\omega_{j, 1} \omega_{j, 2}\right)^{1 / n_{j}}>
$$

and since $A p_{j}=\tilde{\wp}_{j, 1} \tilde{\wp}_{j, 2} \cap A$ we may write

$$
\omega_{j, 1}^{1 / n_{j}}=\sqrt{p_{j}} e^{2 \pi i \Phi_{j}} \quad \omega_{j, 2}^{1 / n_{j}}=\sqrt{p_{j}} e^{-2 \pi i \Phi_{j}}
$$

for an appropiate angle $\Phi_{j},-\pi<\Phi_{j} \leq \pi$.

In general, the ideal

$$
\prod<q_{k}>^{\beta_{k}} \prod \wp_{j, 1}^{\gamma_{j}} \wp_{j, 2}^{\alpha_{j}-\gamma_{j}^{s}}=<\left(\prod q_{k}^{\beta_{k}} \prod p_{j}^{\alpha_{j} / 2}\right) e^{2 \pi i \sum\left(2 \gamma_{j}^{s}-\alpha_{j}\right) \Phi_{j}}>
$$

is a principal ideal when considered in the ring of integers of the field $Q\left(\sqrt{-d}, \omega_{1,1}^{1 / n_{1}}, \omega_{1,2}^{1 / n_{1}}, \ldots\right)$. However, if it happens that $\prod E_{\nu(j)}^{2 \gamma_{j}^{s}-\alpha_{j}}=E_{1}$, then it is also principal in the ring A of algebraic integers of $Q(\sqrt{-d})$. Therefore we have proved the following.
Lemma 5. The integers $x^{s}+y^{s} \sqrt{-d}$ corresponding to the different representations of $n=\left(x^{s}\right)^{2}+d\left(y^{s}\right)^{2}$ are given by the formula:

$$
\sqrt{n} e^{2 \pi i \sum \lambda_{j} \Phi_{j}}
$$

where the angles Φ_{j} corresponds to rational primes p_{j} such that $\left(d / p_{j}\right)=1$ or 0 and have been defined above, while the rational integers λ_{j} satisfy the relations $-\alpha_{j} \leq \lambda_{j} \leq \alpha_{j}, \lambda_{j} \equiv \alpha_{j}(\bmod 2), \prod E_{\nu(j)}^{\lambda_{j}}=E_{1}$.

[C] End of the proof of Theorem 1.

Let us consider an arc Γ of length $n^{\alpha / 2}$, on the ellipse $x^{2}+d y^{2}=n$, which contains $m+1$ lattice points and let $\left\langle\alpha^{j}\right\rangle=\left\langle a_{j}+b_{j} \sqrt{-d}\right\rangle, j=1, \ldots, m+1$ be the corresponding principal ideals. To each pair of them $\left\langle\alpha^{s}\right\rangle,\left\langle\alpha^{t}\right\rangle$ we may associate the angle

$$
\Psi^{s, t}=\frac{1}{2}\left\{\sum_{j} \lambda_{j}^{s} \Phi_{j}-\sum_{j} \lambda_{j}^{t} \Phi_{j}\right\}
$$

We have:

$$
\left|\Psi^{s, t}\right|=\left|\sum_{j} \frac{\lambda_{j}^{s}-\lambda_{j}^{t}}{2} \Phi_{j}\right|<\sqrt{d} n^{\frac{\alpha-1}{2}}
$$

where $\frac{\lambda_{j}^{s}-\lambda_{j}^{t}}{2} \in Z$ for each j because $\lambda_{j}^{s} \equiv \lambda_{j}^{t} \equiv \alpha_{j}(\bmod 2)$.
The elements of the class group given by the products $\prod_{j} E_{\nu(j)}^{\frac{\lambda_{j}^{s}-\lambda_{j}^{t}}{2}}$ have, at most, order two because

$$
\left[\prod_{j} E_{\nu(j)}^{\frac{\lambda_{j}^{s}-\lambda_{j}^{t}}{2}}\right]^{2}=\prod_{j} E_{\nu(j)}^{\lambda_{j}^{s}} \prod_{j} E_{\nu(j)}^{-\lambda_{j}^{t}}=E_{1}^{2}=E_{1} .
$$

Therefore, if h_{2} denotes the number of elements of the class group of $Q(\sqrt{-d})$ whose order is two, then, among the products $\prod_{j} E_{\nu(j)}^{\frac{\lambda_{j}^{1}-\lambda_{j}^{t}}{2}}, 2 \leq t \leq$ $\leq m+1$ there are, at least, $\left[\frac{m+h_{2}}{h_{2}+1}\right]$ which are equal.

Let us denote by I the set of those t 's. For them we consider the products

$$
\prod_{j} E_{\nu(j)}^{\frac{\lambda_{j}^{s}-\lambda_{j}^{t}}{2}}, \quad 1<s<t, \quad s, t \in I
$$

We have

$$
\prod_{j} E_{\nu(j)}^{\frac{\lambda_{j}^{s}-\lambda_{j}^{t}}{2}}=\prod_{j} E_{\nu(j)}^{\frac{\lambda_{j}^{s}-\lambda_{j}^{1}}{2}} \prod_{j} E_{\nu(j)}^{\frac{\lambda_{j}^{1}-\lambda_{j}^{t}}{2}}=E_{1} .
$$

for each pair $s, t \in I$.
Therefore, the angle $\sum_{j} \frac{\lambda_{j}^{s}-\lambda_{j}^{t}}{2} \Phi_{j}$ will correspond to a representation

$$
x^{2}+d y^{2}=\prod_{j} p_{j}^{\frac{\left|\lambda_{j}^{s}-\lambda_{j}^{t}\right|}{2}}
$$

The least favourable case (i.e. $y=1$) yields the estimate:

$$
\frac{\sqrt{d}}{\left(\prod p_{j}^{\frac{\left|\lambda_{j}^{s}-\lambda_{j}^{t}\right|}{2}}\right)^{1 / 2}}<\left|\Psi^{s, t}\right|<\sqrt{d} n^{\frac{\alpha-1}{2}}
$$

which implies the inequality

$$
\prod p_{j}^{-\frac{\left|\lambda_{j}^{s}-\lambda_{j}^{t}\right|}{4}}<n^{\frac{\alpha-1}{2}}
$$

Our next step is to multiply all together these inequalities obtanied for such pairs (s, t). We get
(*)

$$
\prod_{j} p_{j}^{-\frac{1}{4} \sum_{s, t}\left|\lambda_{j}^{s}-\lambda_{j}^{t}\right|} \leq n^{\frac{\alpha-1}{2}\binom{\left[\frac{m+h_{2}}{h_{2}+1}\right]}{2}}
$$

Let us now recall the fact that $-\alpha_{j} \leq \lambda_{j}^{s} \leq \alpha_{j}$ and observe that in order to estimate $\sum\left|\lambda_{j}^{s}-\lambda_{j}^{t}\right|$ the worst possible situation occurs when half of the λ_{j}^{s} are equal to $-\alpha_{j}$ and the other half to α_{j}. Therefore

$$
\sum_{s, t}\left|\lambda_{j}^{s}-\lambda_{j}^{t}\right| \leq \frac{1}{2} \alpha_{j}\left\{\left[\frac{m+h_{2}}{h_{2}+1}\right]^{2}-\delta\left(\left[\frac{m+h_{2}}{h_{2}+1}\right]-1\right)\right\}
$$

where

$$
\delta(a)=\left\{\begin{array}{l}
0 \text { if } a \text { is odd } \\
+1 \text { if } a \text { is even. }
\end{array}\right.
$$

We substitute this estimate in $\left(^{*}\right)$ and we use the fact $\prod p_{j}^{\alpha_{j}}=\frac{n}{\prod q_{k}^{2 \beta_{k}}}<$ n to finish the proof of the theorem.

[D] Proof of theorem 2.

We are proving the general case $d \neq 1,3$. The particular case $d=1$ was studied in [5] and the case $d=3$ only needs some straightforward technical variations whose details are left to the reader.
a) For each integer k let us consider
$n_{k}=\prod_{1 \leq m<k(d)}\left(d m^{2}+1\right) \quad$ and $\quad \Phi^{l}=\sum_{m=1}^{l} \arctan \frac{1}{m \sqrt{d}}-\sum_{m=l+1}^{k(d)} \arctan \frac{1}{m \sqrt{d}}$
where $k(d)=\left[k e^{4 \sqrt{d}}\right]$.
By lemma 5, each angle $\frac{\Phi^{l}}{2 \pi}$ determines a lattice point (a_{l}, b_{l}) on the ellipse $x^{2}+d y^{2}=n_{k}$, i.e. a point $\left(a_{l}, b_{l} \sqrt{d}\right)$ on the circle $x^{2}+y^{2}=n_{k}$.

In general we don't know if the ideals $\langle i \sqrt{d} m+1\rangle$ are primes or not and, obviously, we can not expect that the lattice points described above are all the lattice points on the ellipse.

However, let us observe that $\Phi^{l}-\Phi^{l-1}=\arctan \frac{1}{l \sqrt{d}} \leq 2 \arctan \frac{1}{k \sqrt{d}}$ and

$$
\sum_{k<l<k(d)} 2 \arctan \frac{1}{l \sqrt{d}}>2 \pi
$$

Then, the distance between two neighbour points on the circle is smaller than

$$
2 \sqrt{n_{k}} \arctan \frac{1}{k \sqrt{d}} .
$$

The quanty $\frac{\mathcal{S}_{d}\left(n_{k}\right)}{\pi n_{k} / \sqrt{d}}$ can be evaluated by the quotien $\frac{\mathcal{S}_{d}^{\prime}\left(n_{k}\right)}{\pi n_{k}}$ where $\mathcal{S}_{d}^{\prime}\left(n_{k}\right)$ is the area of the polygon whose vertices are the corresponding points on the circle $x^{2}+y^{2}=n_{k}$.

An easy geometric argument allows us to estimate the area $\mathcal{S}_{d}^{\prime \prime}\left(n_{k}\right)$ of the circle's region not included in the polygon whose vertices are $\sqrt{n_{k}} e^{i \Phi^{l}}$, $k<l<k(d)$. We have

$$
0<\pi n_{k}-\mathcal{S}_{d}^{\prime}\left(n_{k}\right)<\mathcal{S}_{d}^{\prime \prime}\left(n_{k}\right)<
$$

$$
\begin{gathered}
k(d)\left(\frac{n_{k}}{2}\left(2 \arctan \frac{1}{k \sqrt{d}}\right)-\frac{1}{2}\left(2 \sqrt{n_{k}} \sin \arctan \frac{1}{k \sqrt{d}}\right)\left(\sqrt{n_{k}} \cos \arctan \frac{1}{k \sqrt{d}}\right)\right)= \\
=k(d) n_{k}\left(\arctan \frac{1}{k \sqrt{d}}-\frac{1}{2} \sin \left(2 \arctan \frac{1}{k \sqrt{d}}\right)\right)= \\
=k(d) n_{k}\left(\arctan \frac{1}{k \sqrt{d}}-\frac{1}{2}\left(2 \arctan \frac{1}{k \sqrt{d}}+O\left(\frac{1}{k^{3} d^{\frac{3}{2}}}\right)\right)\right)=\frac{k(d) n_{k}}{k^{3} d^{\frac{3}{2}}}
\end{gathered}
$$

Now, let us observe that $k(d) \gg \frac{\log n_{k}}{\log \log n_{k}}$. Then, if we divide by n_{k} and made the sustitution $k=k(d) e^{-12 \sqrt{d}}$ we obtain:

$$
0<\left|1-\frac{S_{d}^{\prime}\left(n_{k}\right)}{\pi n_{k}}\right| \ll\left(\frac{\log \log n_{k}}{\log n_{k}}\right)^{2} e^{12 \sqrt{d}}
$$

b) In reference [5], in order to prove the theorem for $d=1$, a result about the angular equidistribution of the primes $a+b i \in Z(i)$ is used. Here we need the more general result (see, for example ref [9], pages 374-375):
Theorem A. Let h be the class-number of $Q(\sqrt{-d})$. If $N(\alpha, \beta, x)$ denotes the number of prime ideals $<a+b \sqrt{-d}>$ such that $\alpha<\arctan \frac{a}{b \sqrt{d}}<\beta$ and $\sqrt{a^{2}+d b^{2}} \leq x$, then

$$
N(\alpha, \beta, x)=\left(\frac{(\beta-\alpha) \mathcal{U}}{2 \pi h}+o(1)\right) \frac{x}{\log x} .
$$

where \mathcal{U} is the number of units of the ring of integers.

Corolary B. For each $\alpha \in[0,2 \pi)$ and for every $\epsilon>0$, there exists an ideal prime $<a+b \sqrt{-d}>, a+b \sqrt{-d}=\sqrt{a^{2}+d b^{2}} e^{i \Phi}$ such that $|\Phi-\alpha|<\epsilon$.

Taking $\alpha=0$ we can find, for each $\epsilon>0$ and for each integer k, a prime ideal $<a_{\epsilon, k}+d b_{\epsilon, k}>$ such that $\left|\Phi_{\epsilon, k}\right|<\frac{\epsilon}{k}$.

Let $n_{k}=\left(a_{\epsilon, k}^{2}+d b_{\epsilon, k}^{2}\right)^{k}$. Acording with lemma 5 , all the points $(a, b \sqrt{d})$ on the circle are given by the formula

$$
\sqrt{n_{k}} e^{i \gamma \Phi_{\epsilon, k}}
$$

where γ runs over the set $\{\gamma \in Z ;|\gamma| \leq k, \gamma \equiv k(\bmod 2)\}$.
To finish the proof of b) we observe that the $r_{d}(n)=\mathcal{U}(k+1)>k$ and $\left|\gamma \Phi_{\epsilon, k}\right|<\epsilon$ in all the cases.
c) We remember that $\mathcal{S}_{d}(n) /\left(\frac{\pi n}{\sqrt{d}}\right)=\mathcal{S}_{d}^{\prime}(n) / \pi n$. Let $\alpha \in[0,1]$, then there exists $\beta \in\left(0, \frac{\pi}{4}\right)$ such that the area of the dotted region is $\pi \alpha n_{k}$.

The idea is to look for circles such that the polygons with vertices in the corresponding points $(a, b \sqrt{d})$ are close enough to the region described above.

Let us consider $\frac{\beta}{2^{2}}, \frac{\beta}{2^{3}}, \ldots, \frac{\beta}{2^{k}}$ and $\epsilon=\frac{\beta}{2^{2 k}}$. Acording to lemma A, for each $j=2,3, \ldots, k$ we can find a prime
$a_{j}+\sqrt{-d} b_{j}=\sqrt{p_{j}} e^{2 \pi i \Phi_{j}}$ such that $\left|2 \pi \Phi_{j}-\frac{\beta}{2^{j}}\right|<\epsilon$.

We choose $n_{k}=\prod_{j=2}^{k} p_{j}^{2}$. The points $(a, b \sqrt{d})$ on the circle $x^{2}+y^{2}=n_{k}$ are given by the formula

$$
\sqrt{n_{k}} e^{2 \pi i\left\{\sum_{j=2}^{k} \gamma_{j} \Phi_{j}\right\}}
$$

where γ_{j} takes the values $-2,0$ or 2 .
All the integers $r, 0 \leq r<2^{k-1}$ can be written in the form

$$
r=a_{0}(r) 2^{0}+a_{1}(r) 2^{1}+\cdots+a_{k-2}(r) 2^{k-2} .
$$

where the $a_{j}(r)$ takes values 0 or 1 .
For every r we choose $\gamma_{j}^{r}=2 a_{k-j}(r)$ and we have

$$
\sum_{j=1}^{k} \gamma_{j}^{r} \Phi_{j}=2 \sum_{j=2}^{k} \frac{\beta a_{k-j}(r) 2^{k-j}}{2^{k}}+O\left(\frac{k \beta}{2^{2 k}}\right)=\frac{\beta r}{2^{k-1}}+O\left(\frac{k \beta}{2^{2 k}}\right)
$$

Then, for each $r, 0 \leq r<2^{k-1}$ there exists a point $\left(a_{r}, b_{r} \sqrt{d}\right)$ on the circle $x^{2}+y^{2}=n_{k}, a_{r}+b_{r} \sqrt{-d}=\sqrt{n_{k}} e^{2 \pi i \Phi_{r}}$, such that

$$
\left|2 \pi \Phi_{r}-\frac{\beta r}{2^{k-1}}\right|<\epsilon^{\prime} \quad \epsilon^{\prime}=\frac{k \beta}{2^{2 k}}
$$

Then, $\left|2 \pi \Phi_{r-1}-2 \pi \Phi_{r}\right|<\frac{\beta}{2^{k-1}}+2 \epsilon^{\prime}, \quad r=1, \ldots, 2^{k-1}-1$ and

$$
\left|2 \pi \Phi_{2^{k-1}-1}-\beta\right|<\frac{\beta}{2^{k-1}}+\epsilon^{\prime}
$$

Futhermore there are no lattice points on the arcs

$$
\sqrt{n_{k}} e^{i \theta+\pi t}, \quad \beta+\epsilon<\theta<\pi-\beta-\epsilon, \quad t=0,1 .
$$

Now, with the same geometric argument used in the proof of b) and making $k \rightarrow \infty$ we obtain c).

References.

[1] J.Cilleruelo and A.Córdoba. Trigonometrics polynomials and lattice points. Proceedings of the A.M.S. Vol 115. N 4 (1992)
[2] J.Cilleruelo and A.Córdoba. $B_{2}[\infty]$-sequences whose terms are squares. Acta Arithmetica. Vol LXI. 3 (1992)
[3] J.Cilleruelo y A.Córdoba. La Teoría de los Números. Ed. Mondadori. Madrid, 1992.
[4] J.Cilleruelo. Arcs containing no three lattice points. Acta Arithmetica. Vol LIX. 1 (1991).
[5] J.Cilleruelo. The distribution of the lattice points on circles. To appear in "Journal of Number Theory".
[6] J.Cilleruelo. $B_{2}[g]$-sequences whose terms are squares. Preprint.
[7] A.Córdoba. Traslation invariant perators. Proceedings of the seminary held at the Escorial. June. 1974.
[8] Y.Meyer. Algebraic Numbers and Harmonic Analysis. Noth-Holland.
[9] Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag.
[10] W.Rudin. Trigonometric series with gaps. Journal of Mathematics and Mechanis, Vol 9. N 2 (1960).
[11] A.Zygmund. A Cantor-Lebesgue theorem for double trigonometric series. Studia Math. 64. (1975)
[12] A.Zygmund. On Fourier coefficients and transform of functions of two variables. Studia Math. (1974), 189-202.

