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I.- Introduction.

Given a square free positive integer d one may consider the arithmetical
function rd(n) = #{n = x2 + dy2/x, y ∈ Z} which can also be described as
the number of lattice points on the ellipse x2 + dy2 = n and it has a natural
interpretation inside the ring of algebraic integers of the field Q(

√−d). The
main purpose of this paper is to analyse closely this function in connection
with the distribution of lattice points on “small arcs ” of those ellipses.

Let us denote by h2 the number of elements of order two in the class field
group of Q(

√−d), then we may state our main result:

Theorem 1. On the ellipse x2 + dy2 = n, an arc of length n

1
4− 1

8[
m+h2
2h2+2 ]+4

contains, at most, m lattice points.

In other words, for every ε > 0, there exists a finite constant Cε such that
given an arc of length n

1
4−ε on the ellipse x2 + dy2 = n it contains no more

than Cε lattice points. The particular case m = h2 + 2, which corresponds
to arcs of length n

1
6 is not difficult to prove by geometric arguments based

on curvature considerations. However, the general case is of a much more
intricate arithmetical nature.

Similary to the case of gaussian integers one has estimates of the form

rd(n) = O(nε) and lim sup
n→∞

rd(n)
(log n)ε

= ∞ for every ε > 0. Therefore, in view

of the theorem, one may asks what happens for arcs whose length is nα, 1
2 >

1



2

α ≥ 1
4 ; this remains an open question which we have not been able to answer

with the methods introduced to prove theorem 1. There is a relationship
between upper bounds estimates for lattice points on arcs, restriction lemmas
of Fourier series and integrals and Lp-properties of certain gaussian sums (see
[1], [2],[7],[10],[11] and [12]). The existence of this connection has stimulated
this research whose first published result [1] contains the case d = −1.

Another interesting question is to analyse how “well distributed” are the
lattice points on these ellipses when rd(n) is large enough. In the next
theorem we answer that question in the following sense: we consider the
quantity Dd(n) = Sd(n)/( πn√

d
), for rd(n) ≥ 4, where Sd(n) denotes the area of

the polygon whose vertexs are the lattice points on the ellipse x2 + dy2 = n.
Clearly these lattice points will be “better distributed” if Dd(n) is close
enough to the number 1. We have the following theorem

Theorem 2.

a) |Dd(n)− 1| << e12
√

d

(
log log n

log n

)2

for infinitely many integers n.

b) For every ε > 0 and for every integer k, there exists an ellipse x2+dy2 =
n such that all its lattice points are placed an the arcs | yx | < ε and the number
of them is greater than k.

c) The set {Dd(n), rd(n) ≥ 4} is dense in the interval





[ 2
π , 1] if d = 1

[ 3
√

3
2π , 1] if d = 3

[0, 1] for d 6= 1, 3.

In general one cannot expect a much better estimate than a) because it

is easy to show that |Dd(n) − 1| >>
1

dr2
d(n)

, and it is a well known that

rd(n) = O(nε) for every ε > 0.
Obviously estimates a) and b) yield respectively

lim sup
n→∞

Sd(n)
π√
d
n

= 1, lim inf
n→∞

rd(n)≥4

Sd(n)
π√
d
n

= 0
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II.- Proofs.

[A] Preliminary results and notation.

For the sake of simplicity we shall discuss the details when d 6≡ −1
(mod 4). The straightforward modifications of the arguments to cover the
case d ≡ −1 (mod 4) are left to the reader.

To each representation n = a2 + db2 we shall associate the lattice point
(a, b) on the ellipse x2 +dy2 = n, the point (a, b

√
d) on the circle z2 +w2 = n

and the algebraic integer a + b
√−d in Q(

√−d) whose norm is precisely
N(a + b

√−d) = a2 + db2 = n.
Given a rational prime p we shall consider the principal ideal < p > in the

ring A of algebraic integers of the quadratic field Q(
√−d). It is well known

that < p > may be a prime ideal or may have a descomposition < p >= ℘1℘2

as a product of two, not necessarily differents, prime ideals ℘j .
The Kronecker symbol (d/p) describes the situation: (d/p) = +1 if <

p >= ℘1℘2, ℘1 6= ℘2; (d/p) = −1 if < p > is prime and (d/p) = 0 if
< p >= ℘2. The fundamental theorem of arithmetic yields

n =
∏

(d/p)=−1

qβ̃k

k

∏

(d/pj)=1 or 0

p
αj

j

which produces the unique factorization

< n >=
∏

< qk >β̃k

∏
℘

αj

j,1℘
αj

j,2.

Obviously each representation of n = x2 + dy2 corresponds to a descom-
position of the principal ideal < n >=< x + y

√−d >< x − y
√−d > with

norm
N [< x + y

√
−d >] = N [< x− y

√
−d >] = n.

In such a situation the factors must to be of the form:

< x + y
√
−d >=

∏
< qk >

β̃k
2

∏
℘

γj

j,1℘
αj−γj

j,2

< x− y
√
−d >=

∏
< qk >

β̃k
2

∏
℘

αj−γj

j,1 ℘
γj

j,2, 0 ≤ γj ≤ αj

which yields the condition that β̃k = 2βk must be even. Therefore we shall
concentrate our attention in all the products

∏
< qk >βk

∏
℘

αj−γj

j,1 ℘
γj

j,2, 0 ≤ γj ≤ αj
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and we will characterize those among them which correspond to principal
ideals.

Let us denote by E1, ..., Eh the elements of the group of ideal classes in
Q(
√−d) where E1 = I is the unity i.e. the class of principal ideals. There-

fore, modulo the unities of the ring A, there will be as many representations
of the form n = x2 + dy2 as sets of integers γj , 0 ≤ γj ≤ αj such that

∏
< qk >βk

∏
℘

γj

j,1℘
αj−γj

j,2 ∈ E1

that is
∏

E
2αj−γj

ν(j) = E1, where we have used Eν(j) for the class of the ideal
℘j,1.

Let us denote by U the number of unities of the ring A, i.e.

U =





4 if d = 1
6 if d = 3
2 in the remainder cases.

and let us write the product

U
∏

E
−αj

ν(j)

∏{
E1 + E2

ν(j) + ... + (E2
ν(j))

αj

}
=

h∑
m=1

amEm

Then we have:

Lemma 3. The first coefficient a1 is precisely the number of representations
of the integer n by the quadratic form x2 + dy2.

Let us remark that the other coefficients have a similar interpretation
in terms of lattice points on the ellipses associated to the quadratic forms
corresponding to the other elements of the class group.

Corollary 4.
a) If h = 1 then rd(n) = 0 if one of the β’s is odd and rd(n) = U ∏

(1+αj)
if every βk is even.

b) If every element of the class group, except the unity, has order two then:

rd(n) =

{
0 if there is an odd exponent βk or if

∏
E

αj

ν(j) 6= E1

U ∏
(1 + αj) in other case.

c) There exists a finite constant C(d) such that if all the exponents β̃k are
even then we can find m ≤ C(d) in such a way that the number mn has, at

least,
[U ∏

(1 + αj)
h

]
different representations.
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The proofs of parts a) and b) are immediate. To see c) let us observe first
that

h∑

i=1

ai = U
∏

(1+αj) and, therefore, there exists ai so that ai ≥
[U ∏

(1 + αj)
h

]
.

If it happens that i = 1 then there is nothing to prove and we may take
m = 1. If i 6= 1 then we choose a prime p so that < p >= ℘1℘2, ℘1 ∈ E−1

i

and take m = p.

[B] The angular representation.

Let (xs, ys) be a lattice point on the ellipse x2 + dy2 = n with
< αs >=< xs + ys

√−d > as its associated principal ideal.

Using the notation introduced in the preceding section we may write:

< αs >=
∏

< qk >βk

∏
℘

γs
j

j,1℘
αj−γs

j

j,2 , 0 ≤ γs
j ≤ αj ,

in such a way that
∏

E
2γs

j−αj

ν(j) = E1, where ℘j,1, ℘j,2 will not be necessarily
principal, but one can find a positive integer nj/h such that E

nj

ν(j) = E1

and, therefore, the ideals ℘
nj

j,1, ℘
nj

j,2 became principal. That is, there exists
algebraic integers ωj,1, ωj,2 in the ring A so that ℘

nj

j,1 =< ωj,1 >,℘
nj

j,2 =<
ωj,2 >.

Let us consider the ring B of algebraic integers of the field
Q(
√−d, ω

1/nj

j,1 , ω
1/nj

j,2 ). Then we know that ℘j,1, ℘j,2 have extensions ℘̃j,1, ℘̃j,2

respectively, which are principal ideals in the ring B. More concretely,

℘̃j,1 = Bω
1/nj

j,1 =< ω
1/nj

j,1 > ℘̃j,2 = Bω
1/nj

j,2 =< ω
1/nj

j,2 >

which implies

< pj >= Bpj = ℘̃j,1℘̃j,2 =< (ωj,1ωj,2)1/nj >

and since Apj = ℘̃j,1℘̃j,2 ∩A we may write

ω
1/nj

j,1 =
√

pje
2πiΦj ω

1/nj

j,2 =
√

pje
−2πiΦj

for an appropiate angle Φj , −π < Φj ≤ π.
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In general, the ideal
∏

< qk >βk

∏
℘

γj

j,1℘
αj−γs

j

j,2 =< (
∏

qβk

k

∏
p

αj/2
j )e2πi

∑
(2γs

j−αj)Φj >

is a principal ideal when considered in the ring of integers of the field
Q(
√−d, ω

1/n1
1,1 , ω

1/n1
1,2 , ...). However, if it happens that

∏
E

2γs
j−αj

ν(j) = E1, then
it is also principal in the ring A of algebraic integers of Q(

√−d). Therefore
we have proved the following.

Lemma 5. The integers xs + ys
√−d corresponding to the different repre-

sentations of n = (xs)2 + d(ys)2 are given by the formula:
√

ne2πi
∑

λjΦj

where the angles Φj corresponds to rational primes pj such that (d/pj) = 1
or 0 and have been defined above, while the rational integers λj satisfy the
relations −αj ≤ λj ≤ αj, λj ≡ αj (mod 2),

∏
E

λj

ν(j) = E1.

[C] End of the proof of Theorem 1.

Let us consider an arc Γ of length nα/2, on the ellipse x2 +dy2 = n, which
contains m+1 lattice points and let < αj >=< aj+bj

√−d >, j = 1, ...,m+1
be the corresponding principal ideals. To each pair of them < αs >,< αt >
we may associate the angle

Ψs,t =
1
2





∑

j

λs
jΦj −

∑

j

λt
jΦj





We have:

|Ψs,t| = |
∑

j

λs
j − λt

j

2
Φj | <

√
dn

α−1
2

where
λs

j − λt
j

2
∈ Z for each j because λs

j ≡ λt
j ≡ αj (mod 2).

The elements of the class group given by the products
∏

j

E
λs

j
−λt

j
2

ν(j) have,

at most, order two because

∏

j

E
λs

j
−λt

j
2

ν(j)




2

=
∏

j

E
λs

j

ν(j)

∏

j

E
−λt

j

ν(j) = E2
1 = E1.
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Therefore, if h2 denotes the number of elements of the class group of

Q(
√−d) whose order is two, then, among the products

∏

j

E
λ1

j
−λt

j
2

ν(j) , 2 ≤ t ≤

≤ m + 1 there are, at least,
[
m + h2

h2 + 1

]
which are equal.

Let us denote by I the set of those t’s. For them we consider the products

∏

j

E
λs

j
−λt

j
2

ν(j) , 1 < s < t, s, t ∈ I

We have
∏

j

E
λs

j
−λt

j
2

ν(j) =
∏

j

E
λs

j
−λ1

j
2

ν(j)

∏

j

E
λ1

j
−λt

j
2

ν(j) = E1.

for each pair s, t ∈ I.

Therefore, the angle
∑

j

λs
j − λt

j

2
Φj will correspond to a representation

x2 + dy2 =
∏

j

p
|λs

j
−λt

j
|

2
j .

The least favourable case (i.e. y = 1) yields the estimate:
√

d
(

∏
p
|λs

j
−λt

j
|

2
j

)1/2
< |Ψs,t| <

√
dn

α−1
2

which implies the inequality

∏
p
−
|λs

j
−λt

j
|

4
j < n

α−1
2 .

Our next step is to multiply all together these inequalities obtanied for
such pairs (s, t). We get

(∗)
∏

j

p
− 1

4

∑
s,t
|λs

j−λt
j |

j ≤ n

α−1
2

([
m+h2
h2+1

]

2

)

.
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Let us now recall the fact that −αj ≤ λs
j ≤ αj and observe that in order

to estimate
∑ |λs

j − λt
j | the worst possible situation occurs when half of the

λs
j are equal to −αj and the other half to αj . Therefore

∑
s,t

|λs
j − λt

j | ≤
1
2
αj

{[
m + h2

h2 + 1

]2

− δ

([
m + h2

h2 + 1

]
− 1

)}

where

δ(a) =
{

0 if a is odd
+1 if a is even.

We substitute this estimate in (*) and we use the fact
∏

p
αj

j =
n∏
q2βk

k

<

n to finish the proof of the theorem.

[D] Proof of theorem 2.

We are proving the general case d 6= 1, 3. The particular case d = 1 was
studied in [5] and the case d = 3 only needs some straightforward technical
variations whose details are left to the reader.

a) For each integer k let us consider

nk =
∏

1≤m<k(d)

(dm2+1) and Φl =
l∑

m=1

arctan
1

m
√

d
−

k(d)∑

m=l+1

arctan
1

m
√

d

where k(d) = [ke4
√

d].

By lemma 5, each angle
Φl

2π
determines a lattice point (al, bl) on the ellipse

x2 + dy2 = nk, i.e. a point (al, bl

√
d) on the circle x2 + y2 = nk.

In general we don’t know if the ideals < i
√

dm + 1 > are primes or not
and, obviously, we can not expect that the lattice points described above are
all the lattice points on the ellipse.

However, let us observe that Φl−Φl−1 = arctan
1

l
√

d
≤ 2 arctan

1
k
√

d
and

∑

k<l<k(d)

2 arctan
1

l
√

d
> 2π.
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Then, the distance between two neighbour points on the circle is smaller
than

2
√

nk arctan
1

k
√

d
.

The quanty
Sd(nk)
πnk/

√
d

can be evaluated by the quotien
S ′d(nk)
πnk

where

S ′d(nk) is the area of the polygon whose vertices are the corresponding points
on the circle x2 + y2 = nk.

An easy geometric argument allows us to estimate the area S ′′d (nk) of
the circle’s region not included in the polygon whose vertices are

√
nkeiΦl

,
k < l < k(d). We have

0 < πnk − S ′d(nk) < S ′′d (nk) <

k(d)
(

nk

2
(
2 arctan

1
k
√

d

)− 1
2
(
2
√

nk sin arctan
1

k
√

d

)(√
nk cos arctan

1
k
√

d

))
=

= k(d)nk

(
arctan

1
k
√

d
− 1

2
sin

(
2 arctan

1
k
√

d

))
=

= k(d)nk

(
arctan

1
k
√

d
− 1

2
(
2 arctan

1
k
√

d
+ O(

1
k3d

3
2
)
))

=
k(d)nk

k3d
3
2

Now, let us observe that k(d) >>
log nk

log log nk
. Then, if we divide by nk

and made the sustitution k = k(d)e−12
√

d we obtain:

0 <

∣∣∣∣1−
S′d(nk)
πnk

∣∣∣∣ <<

(
log log nk

log nk

)2

e12
√

d

b) In reference [5], in order to prove the theorem for d = 1, a result about
the angular equidistribution of the primes a + bi ∈ Z(i) is used. Here we
need the more general result (see, for example ref [9], pages 374-375):

Theorem A. Let h be the class-number of Q(
√−d). If N(α, β, x) denotes

the number of prime ideals < a+ b
√−d > such that α < arctan a

b
√

d
< β and√

a2 + db2 ≤ x, then

N(α, β, x) =
(

(β − α)U
2πh

+ o(1)
)

x

log x
.

where U is the number of units of the ring of integers.
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Corolary B. For each α ∈ [0, 2π) and for every ε > 0, there exists an ideal
prime < a + b

√−d >, a + b
√−d =

√
a2 + db2eiΦ such that |Φ− α| < ε.

Taking α = 0 we can find, for each ε > 0 and for each integer k, a prime
ideal < aε,k + dbε,k > such that |Φε,k| < ε

k .

Let nk =
(
a2

ε,k + db2
ε,k

)k

. Acording with lemma 5, all the points (a, b
√

d)
on the circle are given by the formula

√
nkeiγΦε,k

where γ runs over the set {γ ∈ Z; |γ| ≤ k, γ ≡ k (mod 2)}.
To finish the proof of b) we observe that the rd(n) = U(k + 1) > k and

|γΦε,k| < ε in all the cases.

c) We remember that Sd(n)/( πn√
d
) = S ′d(n)/πn. Let α ∈ [0, 1], then there

exists β ∈ (0, π
4 ) such that the area of the dotted region is παnk.

The idea is to look for circles such that the polygons with vertices in the
corresponding points (a, b

√
d) are close enough to the region described above.

Let us consider
β

22
,

β

23
, ...,

β

2k
and ε =

β

22k
. Acording to lemma A, for

each j = 2, 3, ..., k we can find a prime

aj +
√−dbj = √

pje
2πiΦj such that |2πΦj − β

2j
| < ε.
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We choose nk =
k∏

j=2

p2
j . The points (a, b

√
d) on the circle x2 + y2 = nk

are given by the formula

√
nke

2πi{
∑k

j=2
γjΦj}

where γj takes the values −2, 0 or 2.
All the integers r, 0 ≤ r < 2k−1 can be written in the form

r = a0(r)20 + a1(r)21 + · · ·+ ak−2(r)2k−2.

where the aj(r) takes values 0 or 1.
For every r we choose γr

j = 2ak−j(r) and we have

k∑

j=1

γr
j Φj = 2

k∑

j=2

βak−j(r)2k−j

2k
+ O(

kβ

22k
) =

βr

2k−1
+ O(

kβ

22k
).

Then, for each r, 0 ≤ r < 2k−1 there exists a point (ar, br

√
d) on the circle

x2 + y2 = nk, ar + br

√−d =
√

nke2πiΦr , such that

∣∣2πΦr − βr

2k−1

∣∣ < ε′ ε′ =
kβ

22k

Then, |2πΦr−1 − 2πΦr| < β

2k−1
+ 2ε′, r = 1, ..., 2k−1 − 1 and

|2πΦ2k−1−1 − β| < β

2k−1
+ ε′.

Futhermore there are no lattice points on the arcs

√
nkeiθ+πt, β + ε < θ < π − β − ε, t = 0, 1.

Now, with the same geometric argument used in the proof of b) and
making k →∞ we obtain c).
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