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ABSTRACT.

Let k > 2 be an integer. For fited N, we consider a set AN of non-negative integers
such that for all integer n < N, n can be written as n = a + b*, a € AN, b a positive
integer.

We are interested in a lower bound for the number of elements of AN .

Improving a result of Balasubramanian [1], we prove the following theorem:

Theorem 1.

AN| > N'-®
AN e p

1. STATMENT OF RESULT AND PRELIMINARY LEMMAS.

Let k > 2 be an integer. For fixed N, we consider a set AV of non-negative integers
such that for all integer n < N, n can be written as n = a + b*, a € AV, b a positive
integer.

We are interested in a lower bound for the number of elements of AY.

Improving a result of Balasubramanian [1], we prove the following theorem:

Theorem 1.

AN] > N1

T2 Ora+l) © o)}

Lemma 1. [1].
If f(n) >0, then 3o, peey fla+b%) > 30 | f(n).

Proof.
It is obvious. The equality doesn’t hold in general because an integer n may have more
than one representation as n = a + b*.
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Lemma 2.

If f(z) = g9(5), g continuous and g differentiable except at a finite number of points,
then

N 1
> =N / g(x)dz + O(1)

and 4
> fla+dh) = N¥h(5) +0(1)
b<(N—a)®
where
(1—z)®
(1) h(a:):/ g(z +t*)dt
0

and the constants appearing in the error terms are independent of N.

(The proof follows by a straightforward application of Euler’s identity )

2. PROOF OF THE THEOREM.

Since the cardinal of AV has the order of N 1_%, we have

) > ) = N [ gty + O H),

a€EA

The function g which we will eventually choose will satisfy (as is proved later) the
following conditions:

(1) g9(x) =0

(ii) g is continuous everywhere and differentiable except at a finite number of points.
(iii) h(z) defined above has continuous derivative in [0, 1)

(iv) h reaches its maximum at some 0 < yo < 1.

(v R (z) > 0, for all z < yo.

Under these conditions let us write



M
N
# =5 4.)
m=1
where
m—1)N mN
Am ={a e AV, %yo <a< WZUO}
and

B={ac AN a> Nyy}.
Later we shall let M tend to infinity.
Then

M
Z h(ﬁ) = Z a;:m h(ﬁ) + Z h(ﬁ) <

acA m=1 a€B

< Z A |h( yo) +[Blh(yo) =

S

(3) Z ml{h yo) = h(yo)} + h(yo)| A

because |B| = |AN| — Z%Zl | Ay

Since h(5F) — h(yo) has a continuous derivative in [1, M}, due to (iii) and (iv), we can
apply Abel’s summation formula to get

M m .CC
() S [AnltnCro) )} = [ Bn() 3 4

m<x
To estimate ) |Ap| = #{a € A,a < %yo} is precisely our initial problem but
[z] N

now for 3 Yo-

m<x

Let us assume that we have proved

| N

lim inf
N—oo N1i7%

1>CO

This is true for ¢ = 1 trivially. It means that for all € > 0, there exists N(¢), such that
|AN| > (co — )N'=% if N > N(e).



Then, from (v) and for N > N(€)/yo we have

M
IL'yo Yo,/ TYo . (TN 1 _
-/ )3 nlde < (=) [ Hom (I )t e =
m<z Nyg
Yo [M]N 1
—(co — e)/ B () (22— o) " * d.
N()/N M
Substituing in (3) and making M — oo, we get
1 Yo 1
(5) ST () < (e — N / W (@)at~Fdz + hiyo)| AV,
acA N(e)/N
After, substituing (5) in (2) we have
fO dw + fN( ) h/ ) }ﬂdx
AN > N +o(N'-E
- i -
Then
Yo 1
i 1nf fo x)dx + (co —€) [ B (x)at " *da
N—oo Nl_ P h(yo)
for every € > 0.
Therefore
AN x)d Yo b/ (x)atkd
lim inf | |1 > = fO Tt f *
N—oo Nl=% h(yo)

and we apply the same process for ¢q, to obtain

fo x)dx + 1 fyo B (z)xt~®dx
h(yo) '

C2 =

Reapeating the process indefinity we get

Jy 9(x)dx

AN
lim inf S
W) — 3 W (@)t~ Fda

|
N—oo Nl_%

for every g satisfying (i),(ii),(iii),(iv) and (v).

Let



ha(x),hl,(x) and yo o can be calculated explicitly.

k41
u,gfi’“(l—(k—i— )a—i—km)—i—% T <«

(1,;2'“ (1—(k+1)a+kx)

One can verify directly that g, satisfies all the conditions (i)-(v), so that

1
[AY] Jo 9a(@)

lim inf T = Ca = Jon T =
N—oo N'17% h yoa fO h’ ) kdx

1
= Jo 9o (2)dr a<l
Jo™ " W(@){1 = 2~ F }da + ha(0)]

Explicitly
(1—a)?

2
H,

Cq =

with

Eal e

H, —/{1—:13 1—1;a—x)—(a—x) 1 — 2t llv)d:v—k

= -« 1 l1—(k+1)a ka
1— 1— —z)(1—a'"%)d
+/a ( x) ( k z)( TR )de + k+1 +k:—|—1

k41
k

Then,
1

AN :
> lim ¢, =
NI=% ~ a—1 r2-Hri+4)

lim inf
N—oo

and we leave the straightforward details as an exercise to the reader.
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3. OBSERVATIONS.

1) The following table shows our constants for the first values of k£ and compares them
with preceeding results:

L.Moser

Donagi and Herzog 1+ %

Abbott

Balasubramanian (2 — kiﬂ)%
Theorem 1 1/T'(2 — %)F(l + %)

2)Theorem 1 is sharp in the following sense:

Let r(n) = #{n = a+b*,a € A} (in our case 7(n) > 1 so that Ziv r(n) > N); if we
assume that for each N, there exists AV such that Ziv r(n) = N + o(N), then theorem 1
is best possible.

Let us assume

(6) lim inf

Then



Let us write

M
A:LJAm
m=1
m={a€A, ——N <a< —N}
Now
M M m—l 1
Y>IN-a)F=>" 3 (N—a)F >N* Y [A,|(1- )F
a€EA m=1a€A,, m=1

Using Abel’s summation formula we obtain

t—

(7) (%)%\AHN%/l ta-h Z|Am|dt<N+o(N)

for t > N( )M
Then

1
1
c/ —(1—3:) 'R dr < 1+ o(1)
o k
nd

after substituting (8) in (7) an
Therefore

making M — oo.

1
c < .
TIE2-4I(1+ 1)

Of course, we expect that >y 7(n) = N +o(N) is false and that the correct conjecture
is > ,<nr(n) = kN +o(N).

Open problem: for each k, find a constant cx > 1 such that }_, -y 7(n) > cxN+o(N)

3) In the proof of theorem 1 we didn’t use the arithmetic properties of the kth-powers
and the theorem can be generalized to sequences of the form

b, = pnY +o(nY), B >0,y > 1 getting



lim inf
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