
THE ADDITIVE COMPLETION OF Kth-POWERS.

Javier Cilleruelo

Departamento de Matemáticas
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ABSTRACT.

Let k ≥ 2 be an integer. For fixed N , we consider a set AN of non-negative integers
such that for all integer n ≤ N , n can be written as n = a + bk, a ∈ AN , b a positive
integer.

We are interested in a lower bound for the number of elements of AN .
Improving a result of Balasubramanian [1], we prove the following theorem:

Theorem 1.

|AN | ≥ N1− 1
k

{ 1
Γ(2− 1

k )Γ(1 + 1
k )

+ o(1)
}
.

1. STATMENT OF RESULT AND PRELIMINARY LEMMAS.

Let k ≥ 2 be an integer. For fixed N , we consider a set AN of non-negative integers
such that for all integer n ≤ N , n can be written as n = a + bk, a ∈ AN , b a positive
integer.

We are interested in a lower bound for the number of elements of AN .
Improving a result of Balasubramanian [1], we prove the following theorem:

Theorem 1.

|AN | ≥ N1− 1
k

{ 1
Γ(2− 1

k )Γ(1 + 1
k )

+ o(1)
}
.

Lemma 1. [1].
If f(n) ≥ 0, then

∑
a+bk≤N f(a + bk) ≥ ∑N

n=1 f(n).

Proof.
It is obvious. The equality doesn’t hold in general because an integer n may have more

than one representation as n = a + bk.
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Lemma 2.
If f(x) = g( x

N ), g continuous and g differentiable except at a finite number of points,
then

N∑
n=1

f(n) = N

∫ 1

0

g(x)dx + O(1)

and ∑

b≤(N−a)
1
k

f(a + bk) = N
1
k h(

a

N
) + O(1)

where

(1) h(x) =
∫ (1−x)

1
k

0

g(x + tk)dt

and the constants appearing in the error terms are independent of N .

(The proof follows by a straightforward application of Euler’s identity )

2. PROOF OF THE THEOREM.

Since the cardinal of AN has the order of N1− 1
k , we have

(2)
∑

a∈A

h(
a

N
) ≥ N1− 1

k

∫ 1

0

g(x)dx + O(N1− 2
k ).

The function g which we will eventually choose will satisfy (as is proved later) the
following conditions:

(i) g(x) ≥ 0
(ii) g is continuous everywhere and differentiable except at a finite number of points.
(iii) h(x) defined above has continuous derivative in [0, 1)
(iv) h reaches its maximum at some 0 < y0 < 1.
(v) h′(x) > 0, for all x < y0.

Under these conditions let us write
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AN = B
⋃( M⋃

m=1

Am

)

where

Am = {a ∈ AN ,
(m− 1)N

M
y0 ≤ a <

mN

M
y0}

and

B = {a ∈ AN , a ≥ Ny0}.
Later we shall let M tend to infinity.

Then

∑

a∈A

h(
a

N
) =

M∑
m=1

∑

a∈Am

h(
a

N
) +

∑

a∈B

h(
a

N
) ≤

≤
M∑

m=1

|Am|h(
m

M
y0) + |B|h(y0) =

(3) =
M∑

m=1

|Am|{h(
m

M
y0)− h(y0)}+ h(y0)|AN |

because |B| = |AN | −∑M
m=1 |Am|.

Since h(xy0
M )− h(y0) has a continuous derivative in [1,M ], due to (iii) and (iv), we can

apply Abel’s summation formula to get

(4)
M∑

m=1

|Am|{h(
m

M
y0)− h(y0)} = −

∫ M

1

y0

M
h′(

xy0

M
)

∑

m≤x

|Am|dx.

To estimate
∑

m≤x |Am| = #{a ∈ A, a < [x]N
M y0} is precisely our initial problem but

now for [x]N
M y0.

Let us assume that we have proved

lim inf
N→∞

|AN |
N1− 1

k

≥ c0.

This is true for c0 = 1 trivially. It means that for all ε > 0, there exists N(ε), such that
|AN | ≥ (c0 − ε)N1− 1

k if N > N(ε).
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Then, from (v) and for N > N(ε)/y0 we have

−
∫ M

1

y0

M
h′(

xy0

M
)

∑

m≤x

|Am|dx ≤ −(c0 − ε)
∫ M

N(ε)M
Ny0

y0

M
h′(

xy0

M
)(

[x]N
M

y0)1−
1
k dx =

−(c0 − ε)
∫ y0

N(ε)/N

h′(x)(
[Mx

y0
]N

M
y0)1−

1
k dx.

Substituing in (3) and making M →∞, we get

(5)
∑

a∈A

h(
a

N
) ≤ −(c0 − ε)N1− 1

k

∫ y0

N(ε)/N

h′(x)x1− 1
k dx + h(y0)|AN |.

After, substituing (5) in (2) we have

|AN | ≥ N1− 1
k

∫ 1

0
g(x)dx + (c0 − ε)

∫ y0
N(ε)

N

h′(x)x1− 1
k dx

h(y0)
+ O(N1− 2

k ).

Then

lim inf
N→∞

|AN |
N1− 1

k

≥
∫ 1

0
g(x)dx + (c0 − ε)

∫ y0

0
h′(x)x1− 1

k dx

h(y0)

for every ε > 0.
Therefore

lim inf
N→∞

|AN |
N1− 1

k

≥ c1 =

∫ 1

0
g(x)dx + c0

∫ y0

0
h′(x)x1− 1

k dx

h(y0)

and we apply the same process for c1, to obtain

c2 =

∫ 1

0
g(x)dx + c1

∫ y0

0
h′(x)x1− 1

k dx

h(y0)
.

Reapeating the process indefinity we get

lim inf
N→∞

|AN |
N1− 1

k

≥
∫ 1

0
g(x)dx

h(y0)−
∫ y0

0
h′(x)x1− 1

k dx

for every g satisfying (i),(ii),(iii),(iv) and (v).

Let

gα(x) =
{

0 x < α

x− α x ≥ α
α < 1
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hα(x), h′α(x) and y0,α can be calculated explicitly.

hα(x) =





(1−x)
1
k

k+1 (1− (k + 1)α + kx) + k(α−x)
k+1

k

k+1 x < α

(1−x)
1
k

k+1 (1− (k + 1)α + kx) x ≥ α

h′α(x) =

{
(1− x)

1
k−1(1− 1−α

k − x)− (α− x)
1
k x < α

(1− x)
1
k−1(1− 1−α

k − x) x ≥ α

y0,α = 1− 1− α

k

One can verify directly that gα satisfies all the conditions (i)-(v), so that

lim inf
N→∞

|AN |
N1− 1

k

≥ cα =

∫ 1

0
gα(x)dx

hα(y0,α)− ∫ y0,α

0
h′α(x)x1− 1

k dx
=

=

∫ 1

0
gα(x)dx∫ y0,α

0
h′α(x){1− x1− 1

k }dx + hα(0)
, α < 1

Explicitly

cα =
(1−α)2

2

Hα

with

Hα =
∫ α

0

{(1− x)
1
k−1(1− 1− α

k
− x)− (α− x)

1
k }(1− x1− 1

k )dx+

+
∫ 1− 1−α

k

α

(1− x)
1
k−1(1− 1− α

k
− x)(1− x1− 1

k )dx +
1− (k + 1)α

k + 1
+

kα
k+1

k

k + 1

Then,

lim inf
N→∞

|AN |
N1− 1

k

≥ lim
α→1

cα =
1

Γ(2− 1
k )Γ(1 + 1

k )

and we leave the straightforward details as an exercise to the reader.
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3. OBSERVATIONS.

1) The following table shows our constants for the first values of k and compares them
with preceeding results:

L.Moser

Donagi and Herzog 1 + k−1
2k2

Abbott

Balasubramanian (2− 2
k+1 )

1
k

Theorem 1 1/Γ(2− 1
k )Γ(1 + 1

k )

2)Theorem 1 is sharp in the following sense:
Let r(n) = #{n = a + bk, a ∈ A} (in our case r(n) ≥ 1 so that

∑N
1 r(n) ≥ N); if we

assume that for each N , there exists AN such that
∑N

1 r(n) = N + o(N), then theorem 1
is best possible.

Let us assume

(6) lim inf
N→∞

|AN |
N1− 1

k

= c

∑

a∈A

∑

a+bk≤N

1 =
N∑

n=1

r(n) = N + o(N)

Then ∑

a∈A

(N − a)
1
k = N + o(N)
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Let us write

A =
M⋃

m=1

Am

Am = {a ∈ A,
m− 1

M
N < a ≤ m

M
N}.

Now
∑

a∈A

(N − a)
1
k =

M∑
m=1

∑

a∈Am

(N − a)
1
k ≥ N

1
k

M∑
m=1

|Am|(1− m− 1
M

)
1
k .

Using Abel’s summation formula we obtain

(7) (
N

M
)

1
k |A|+ N

1
k

∫ M

1

1
k

(1− t− 1
M

)
1
k

∑

m≤t

|Am|dt ≤ N + o(N)

By (6), we have

(8)
∑

m≤t

|Am| ≥ (c− ε)(
tN

M
)1−

1
k

for t ≥ N(ε)M
N .

Then

c

∫ 1

0

1
k

(1− x)
1
k x1− 1

k dx ≤ 1 + o(1)

after substituting (8) in (7) and making M →∞.
Therefore

c ≤ 1
Γ(2− 1

k )Γ(1 + 1
k )

.

Of course, we expect that
∑

n≤N r(n) = N + o(N) is false and that the correct conjecture
is

∑
n≤N r(n) ≥ kN + o(N).

Open problem: for each k, find a constant ck > 1 such that
∑

n≤N r(n) ≥ ckN +o(N)

3) In the proof of theorem 1 we didn’t use the arithmetic properties of the kth-powers
and the theorem can be generalized to sequences of the form

bn = βnγ + o(nγ), β > 0, γ > 1 getting
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lim inf
N→∞

|A|
N1− 1

γ

≥ β
1
γ

Γ(2− 1
γ )Γ(1 + 1

γ )
.
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