THE ADDITIVE COMPLETION OF Kth-POWERS.

Javier Cilleruelo
Departamento de Matemáticas
Universidad Autónoma de Madrid. 28049-Madrid, España

ABSTRACT.

Let $k \geq 2$ be an integer. For fixed N, we consider a set A^{N} of non-negative integers such that for all integer $n \leq N$, n can be written as $n=a+b^{k}$, $a \in A^{N}$, b a positive integer.

We are interested in a lower bound for the number of elements of A^{N}.
Improving a result of Balasubramanian [1], we prove the following theorem:

Theorem 1.

$$
\left|A^{N}\right| \geq N^{1-\frac{1}{k}}\left\{\frac{1}{\Gamma\left(2-\frac{1}{k}\right) \Gamma\left(1+\frac{1}{k}\right)}+o(1)\right\}
$$

1. STATMENT OF RESULT AND PRELIMINARY LEMMAS.

Let $k \geq 2$ be an integer. For fixed N, we consider a set A^{N} of non-negative integers such that for all integer $n \leq N, n$ can be written as $n=a+b^{k}, a \in A^{N}, b$ a positive integer.

We are interested in a lower bound for the number of elements of A^{N}.
Improving a result of Balasubramanian [1], we prove the following theorem:

Theorem 1.

$$
\left|A^{N}\right| \geq N^{1-\frac{1}{k}}\left\{\frac{1}{\Gamma\left(2-\frac{1}{k}\right) \Gamma\left(1+\frac{1}{k}\right)}+o(1)\right\}
$$

Lemma 1. [1].

$$
\text { If } f(n) \geq 0 \text {, then } \sum_{a+b^{k} \leq N} f\left(a+b^{k}\right) \geq \sum_{n=1}^{N} f(n) .
$$

Proof.
It is obvious. The equality doesn't hold in general because an integer n may have more than one representation as $n=a+b^{k}$.

Lemma 2.

If $f(x)=g\left(\frac{x}{N}\right), g$ continuous and g differentiable except at a finite number of points, then

$$
\sum_{n=1}^{N} f(n)=N \int_{0}^{1} g(x) d x+O(1)
$$

and

$$
\sum_{b \leq(N-a)^{\frac{1}{k}}} f\left(a+b^{k}\right)=N^{\frac{1}{k}} h\left(\frac{a}{N}\right)+O(1)
$$

where

$$
\begin{equation*}
h(x)=\int_{0}^{(1-x)^{\frac{1}{k}}} g\left(x+t^{k}\right) d t \tag{1}
\end{equation*}
$$

and the constants appearing in the error terms are independent of N.
(The proof follows by a straightforward application of Euler's identity)

2. PROOF OF THE THEOREM.

Since the cardinal of A^{N} has the order of $N^{1-\frac{1}{k}}$, we have

$$
\begin{equation*}
\sum_{a \in A} h\left(\frac{a}{N}\right) \geq N^{1-\frac{1}{k}} \int_{0}^{1} g(x) d x+O\left(N^{1-\frac{2}{k}}\right) \tag{2}
\end{equation*}
$$

The function g which we will eventually choose will satisfy (as is proved later) the following conditions:
(i) $\quad g(x) \geq 0$
(ii) $\quad g$ is continuous everywhere and differentiable except at a finite number of points.
(iii) $\quad h(x)$ defined above has continuous derivative in $[0,1)$
(iv) $\quad h$ reaches its maximum at some $0<y_{0}<1$.
(v) $\quad h^{\prime}(x)>0$, for all $x<y_{0}$.

Under these conditions let us write

$$
A^{N}=B \bigcup\left(\bigcup_{m=1}^{M} A_{m}\right)
$$

where

$$
A_{m}=\left\{a \in A^{N}, \frac{(m-1) N}{M} y_{0} \leq a<\frac{m N}{M} y_{0}\right\}
$$

and

$$
B=\left\{a \in A^{N}, a \geq N y_{0}\right\} .
$$

Later we shall let M tend to infinity.
Then

$$
\begin{align*}
& \sum_{a \in A} h\left(\frac{a}{N}\right)=\sum_{m=1}^{M} \sum_{a \in A_{m}} h\left(\frac{a}{N}\right)+\sum_{a \in B} h\left(\frac{a}{N}\right) \leq \\
& \leq \sum_{m=1}^{M}\left|A_{m}\right| h\left(\frac{m}{M} y_{0}\right)+|B| h\left(y_{0}\right)= \\
& =\sum_{m=1}^{M}\left|A_{m}\right|\left\{h\left(\frac{m}{M} y_{0}\right)-h\left(y_{0}\right)\right\}+h\left(y_{0}\right)\left|A^{N}\right| \tag{3}
\end{align*}
$$

because $|B|=\left|A^{N}\right|-\sum_{m=1}^{M}\left|A_{m}\right|$.
Since $h\left(\frac{x y_{0}}{M}\right)-h\left(y_{0}\right)$ has a continuous derivative in $[1, M]$, due to (iii) and (iv), we can apply Abel's summation formula to get

$$
\begin{equation*}
\sum_{m=1}^{M}\left|A_{m}\right|\left\{h\left(\frac{m}{M} y_{0}\right)-h\left(y_{0}\right)\right\}=-\int_{1}^{M} \frac{y_{0}}{M} h^{\prime}\left(\frac{x y_{0}}{M}\right) \sum_{m \leq x}\left|A_{m}\right| d x . \tag{4}
\end{equation*}
$$

To estimate $\sum_{m \leq x}\left|A_{m}\right|=\#\left\{a \in A, a<\frac{[x] N}{M} y_{0}\right\}$ is precisely our initial problem but now for $\frac{[x] N}{M} y_{0}$.

Let us assume that we have proved

$$
\liminf _{N \rightarrow \infty} \frac{\left|A^{N}\right|}{N^{1-\frac{1}{k}}} \geq c_{0} .
$$

This is true for $c_{0}=1$ trivially. It means that for all $\epsilon>0$, there exists $N(\epsilon)$, such that $\left|A^{N}\right| \geq\left(c_{0}-\epsilon\right) N^{1-\frac{1}{k}}$ if $N>N(\epsilon)$.

Then, from (v) and for $N>N(\epsilon) / y_{0}$ we have

$$
\begin{gathered}
-\int_{1}^{M} \frac{y_{0}}{M} h^{\prime}\left(\frac{x y_{0}}{M}\right) \sum_{m \leq x}\left|A_{m}\right| d x \leq-\left(c_{0}-\epsilon\right) \int_{\frac{N(\epsilon) M}{N y_{0}}}^{M} \frac{y_{0}}{M} h^{\prime}\left(\frac{x y_{0}}{M}\right)\left(\frac{[x] N}{M} y_{0}\right)^{1-\frac{1}{k}} d x= \\
-\left(c_{0}-\epsilon\right) \int_{N(\epsilon) / N}^{y_{0}} h^{\prime}(x)\left(\frac{\left[\frac{M x}{\left.y_{0}\right] N}\right.}{M} y_{0}\right)^{1-\frac{1}{k}} d x .
\end{gathered}
$$

Substituing in (3) and making $M \rightarrow \infty$, we get

$$
\begin{equation*}
\sum_{a \in A} h\left(\frac{a}{N}\right) \leq-\left(c_{0}-\epsilon\right) N^{1-\frac{1}{k}} \int_{N(\epsilon) / N}^{y_{0}} h^{\prime}(x) x^{1-\frac{1}{k}} d x+h\left(y_{0}\right)\left|A^{N}\right| \tag{5}
\end{equation*}
$$

After, substituing (5) in (2) we have

$$
\left|A^{N}\right| \geq N^{1-\frac{1}{k}} \frac{\int_{0}^{1} g(x) d x+\left(c_{0}-\epsilon\right) \int_{\frac{N_{N}(c)}{N}}^{y_{0}} h^{\prime}(x) x^{1-\frac{1}{k}} d x}{h\left(y_{0}\right)}+O\left(N^{1-\frac{2}{k}}\right) .
$$

Then

$$
\liminf _{N \rightarrow \infty} \frac{\left|A^{N}\right|}{N^{1-\frac{1}{k}}} \geq \frac{\int_{0}^{1} g(x) d x+\left(c_{0}-\epsilon\right) \int_{0}^{y_{0}} h^{\prime}(x) x^{1-\frac{1}{k}} d x}{h\left(y_{0}\right)}
$$

for every $\epsilon>0$.
Therefore

$$
\liminf _{N \rightarrow \infty} \frac{\left|A^{N}\right|}{N^{1-\frac{1}{k}}} \geq c_{1}=\frac{\int_{0}^{1} g(x) d x+c_{0} \int_{0}^{y_{0}} h^{\prime}(x) x^{1-\frac{1}{k}} d x}{h\left(y_{0}\right)}
$$

and we apply the same process for c_{1}, to obtain

$$
c_{2}=\frac{\int_{0}^{1} g(x) d x+c_{1} \int_{0}^{y_{0}} h^{\prime}(x) x^{1-\frac{1}{k}} d x}{h\left(y_{0}\right)}
$$

Reapeating the process indefinity we get

$$
\liminf _{N \rightarrow \infty} \frac{\left|A^{N}\right|}{N^{1-\frac{1}{k}}} \geq \frac{\int_{0}^{1} g(x) d x}{h\left(y_{0}\right)-\int_{0}^{y_{0}} h^{\prime}(x) x^{1-\frac{1}{k}} d x}
$$

for every g satisfying (i),(ii),(iii),(iv) and (v).

Let

$$
g_{\alpha}(x)=\left\{\begin{array}{ll}
0 & x<\alpha \\
x-\alpha & x \geq \alpha
\end{array} \quad \alpha<1\right.
$$

$h_{\alpha}(x), h_{\alpha}^{\prime}(x)$ and $y_{0, \alpha}$ can be calculated explicitly.

$$
\begin{gathered}
h_{\alpha}(x)= \begin{cases}\frac{(1-x)^{\frac{1}{k}}}{k+1}(1-(k+1) \alpha+k x)+\frac{k(\alpha-x)^{\frac{k+1}{k}}}{k+1} & x<\alpha \\
\frac{(1-x)^{\frac{1}{k}}}{k+1}(1-(k+1) \alpha+k x) & x \geq \alpha\end{cases} \\
h_{\alpha}^{\prime}(x)= \begin{cases}(1-x)^{\frac{1}{k}-1}\left(1-\frac{1-\alpha}{k}-x\right)-(\alpha-x)^{\frac{1}{k}} & x<\alpha \\
(1-x)^{\frac{1}{k}-1}\left(1-\frac{1-\alpha}{k}-x\right) & x \geq \alpha\end{cases} \\
y_{0, \alpha}=1-\frac{1-\alpha}{k}
\end{gathered}
$$

One can verify directly that g_{α} satisfies all the conditions (i)-(v), so that

$$
\begin{gathered}
\liminf _{N \rightarrow \infty} \frac{\left|A^{N}\right|}{N^{1-\frac{1}{k}}} \geq c_{\alpha}=\frac{\int_{0}^{1} g_{\alpha}(x) d x}{h_{\alpha}\left(y_{0, \alpha}\right)-\int_{0}^{y_{0, \alpha}} h_{\alpha}^{\prime}(x) x^{1-\frac{1}{k}} d x}= \\
=\frac{\int_{0}^{1} g_{\alpha}(x) d x}{\int_{0}^{y_{0, \alpha}} h_{\alpha}^{\prime}(x)\left\{1-x^{1-\frac{1}{k}}\right\} d x+h_{\alpha}(0)}, \quad \alpha<1
\end{gathered}
$$

Explicitly

$$
c_{\alpha}=\frac{\frac{(1-\alpha)^{2}}{2}}{H_{\alpha}}
$$

with

$$
\begin{gathered}
H_{\alpha}=\int_{0}^{\alpha}\left\{(1-x)^{\frac{1}{k}-1}\left(1-\frac{1-\alpha}{k}-x\right)-(\alpha-x)^{\frac{1}{k}}\right\}\left(1-x^{1-\frac{1}{k}}\right) d x+ \\
+\int_{\alpha}^{1-\frac{1-\alpha}{k}}(1-x)^{\frac{1}{k}-1}\left(1-\frac{1-\alpha}{k}-x\right)\left(1-x^{1-\frac{1}{k}}\right) d x+\frac{1-(k+1) \alpha}{k+1}+\frac{k \alpha^{\frac{k+1}{k}}}{k+1}
\end{gathered}
$$

Then,

$$
\liminf _{N \rightarrow \infty} \frac{\left|A^{N}\right|}{N^{1-\frac{1}{k}}} \geq \lim _{\alpha \rightarrow 1} c_{\alpha}=\frac{1}{\Gamma\left(2-\frac{1}{k}\right) \Gamma\left(1+\frac{1}{k}\right)}
$$

and we leave the straightforward details as an exercise to the reader.

3. OBSERVATIONS.

1) The following table shows our constants for the first values of k and compares them with preceeding results:
L.Moser

Donagi and Herzog $\quad 1+\frac{k-1}{2 k^{2}}$

Abbott

Balasubramanian $\quad\left(2-\frac{2}{k+1}\right)^{\frac{1}{k}}$

Theorem 1

$$
1 / \Gamma\left(2-\frac{1}{k}\right) \Gamma\left(1+\frac{1}{k}\right)
$$

2)Theorem 1 is sharp in the following sense:

Let $r(n)=\#\left\{n=a+b^{k}, a \in A\right\}$ (in our case $r(n) \geq 1$ so that $\sum_{1}^{N} r(n) \geq N$); if we assume that for each N, there exists A^{N} such that $\sum_{1}^{N} r(n)=N+o(N)$, then theorem 1 is best possible.

Let us assume

$$
\begin{gather*}
\liminf _{N \rightarrow \infty} \frac{\left|A^{N}\right|}{N^{1-\frac{1}{k}}}=c \tag{6}\\
\sum_{a \in A} \sum_{a+b^{k} \leq N} 1=\sum_{n=1}^{N} r(n)=N+o(N)
\end{gather*}
$$

Then

$$
\sum_{a \in A}(N-a)^{\frac{1}{k}}=N+o(N)
$$

Let us write

$$
\begin{gathered}
A=\bigcup_{m=1}^{M} A_{m} \\
A_{m}=\left\{a \in A, \frac{m-1}{M} N<a \leq \frac{m}{M} N\right\} .
\end{gathered}
$$

Now

$$
\sum_{a \in A}(N-a)^{\frac{1}{k}}=\sum_{m=1}^{M} \sum_{a \in A_{m}}(N-a)^{\frac{1}{k}} \geq N^{\frac{1}{k}} \sum_{m=1}^{M}\left|A_{m}\right|\left(1-\frac{m-1}{M}\right)^{\frac{1}{k}} .
$$

Using Abel's summation formula we obtain

$$
\begin{equation*}
\left(\frac{N}{M}\right)^{\frac{1}{k}}|A|+N^{\frac{1}{k}} \int_{1}^{M} \frac{1}{k}\left(1-\frac{t-1}{M}\right)^{\frac{1}{k}} \sum_{m \leq t}\left|A_{m}\right| d t \leq N+o(N) \tag{7}
\end{equation*}
$$

By (6), we have

$$
\begin{equation*}
\sum_{m \leq t}\left|A_{m}\right| \geq(c-\epsilon)\left(\frac{t N}{M}\right)^{1-\frac{1}{k}} \tag{8}
\end{equation*}
$$

for $t \geq \frac{N(\epsilon) M}{N}$.
Then

$$
c \int_{0}^{1} \frac{1}{k}(1-x)^{\frac{1}{k}} x^{1-\frac{1}{k}} d x \leq 1+o(1)
$$

after substituting (8) in (7) and making $M \rightarrow \infty$.
Therefore

$$
c \leq \frac{1}{\Gamma\left(2-\frac{1}{k}\right) \Gamma\left(1+\frac{1}{k}\right)} .
$$

Of course, we expect that $\sum_{n \leq N} r(n)=N+o(N)$ is false and that the correct conjecture is $\sum_{n \leq N} r(n) \geq k N+o(N)$.

Open problem: for each k, find a constant $c_{k}>1$ such that $\sum_{n \leq N} r(n) \geq c_{k} N+o(N)$
3) In the proof of theorem 1 we didn't use the arithmetic properties of the kth-powers and the theorem can be generalized to sequences of the form
$b_{n}=\beta n^{\gamma}+o\left(n^{\gamma}\right), \beta>0, \gamma>1$ getting

$$
\liminf _{N \rightarrow \infty} \frac{|A|}{N^{1-\frac{1}{\gamma}}} \geq \frac{\beta^{\frac{1}{\gamma}}}{\Gamma\left(2-\frac{1}{\gamma}\right) \Gamma\left(1+\frac{1}{\gamma}\right)}
$$

REFERENCES.

[1] R.BALASUBRAMANIAN, On the additive completion of squares, Journal of Number Theory 29, 10-12 (1988)
[2] P.ERDÖS, Some unsolved problems, Publ. Math. Inst. Hungar Acad. Sci. 6 (1961)
[3] L.MOSER, On the additive completion of sets of integers, "Proc. of Symposia in Pure Mathematics", Vol. VIII, Amer. Math. Soc. 1965.
[4] R.DONAGI and M.HERZOG, On the additive completion of polynomial sets of integers, Journal of Number Theory 3, 150-154 (1971)
[5] H.L.ABBOTT, On an additive completion of sets of integers, Journal of Number Theory 17 (1983), n2, 135-143

