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Abstract. We classify the sets of four lattice points that all lie on a short arc of

a circle which has its center at the origin; specifically on arcs of length tR1/3 on a

circle of radius R, for any given t > 0. In particular we prove that any arc of length
(

40 + 40
3

√
10
)1/3

R1/3 on a circle of radius R, with R >
√

65, contains at most three

lattice points, whereas we give an explicit infinite family of 4-tuples of lattice points,

(ν1,n, ν2,n, ν3,n, ν4,n), each of which lies on an arc of length
(

40 + 40
3

√
10
)1/3

R
1/3
n +o(1)

on a circle of radius Rn.

1. Introduction

How many lattice points (x, y) ∈ Z
2 can be on a “small” arc of the circle x2 + y2 = R2?1

A. Córdoba and the first author [3] proved that for every ε > 0 the number of lattice points

on an arc of length R
1
2
−ε is bounded uniformly in R. More precisely they proved (see also [4]

and [6]):

Theorem 1.1. For any integer k ≥ 1, an arc of length
√

2R
1
2
− 1

4[k/2]+2 on a circle of radius R

centered at the origin contains no more than k lattice points.

This result cannot be improved for k = 1 since the circles x2 + y2 = 2n2 + 2n + 1 contain

two lattice points, (n, n + 1) and (n + 1, n), on an arc of length
√

2 + o(1).

Theorem 1.1 for k = 2 was first proved by Schinzel, and then used by Zygmund [10] to

prove a result about spherical summability of Fourier series in two dimensions. In [2] the first

author gave a best possible version of Schinzel’s result (which we will prove more easily in

section 2).

Theorem 1.2. An arc of length (16R)
1
3 on a circle of radius R centered at the origin contains

no more than two lattice points.

This result cannot be improved since the circles x2 + y2 = R2
n := 16n6 + 4n4 + 4n2 + 1

contain three lattice points, (4n3 − 1, 2n2 + 2n), (4n3, 2n2 + 1) and (4n3 + 1, 2n2 − 2n), on an

arc of length (16Rn)
1
3 + on(1).

Let [ν] = (ν1, . . . , νk) denote a k-tuple of lattice points lying on the same circle of radius

R = R[ν] centered at the origin, and Arc[ν] = Arc(ν1, . . . , νk) the length of the shortest arc

containing ν1, . . . , νk.
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1If there are points with integer coordinates on the circle x2 + y2 = R2 then R2 must be an integer.

Henceforth we shall assume this, whether we state it or not.
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The next result shows that we cannot improve the constant (16)1/3 if we omit the examples

above.

Theorem 1.3. The set {Arc[ν]R
−1/3
[ν] , [ν] = (ν1, ν2, ν3)} is dense in

[

(16)1/3,+∞
)

.

Since we have sharp versions of Theorem 1.1 for k = 1 and 2, we focus in this paper on giving

a sharp version of Theorem 1.1 for k = 3. We begin by showing that the exponent given in

Theorem 1.1 is best possible for k = 3, by exhibiting infinitely many circles x2 + y2 = R2 with

four lattice points in an arc of length � R1/3: The Fibonacci numbers are defined by F0 =

0, F1 = 1 and Fn+2 = Fn+1 +Fn for all n ≥ 0. The circles x2 +y2 = R2
n := 5

2F2n−1F2n+1F2n+3

contain the four lattice points 1
2(F3n+3, F3n) + (−1)nzj for j = 1, 2, 3, 4, where

z1 = 2(−Fn−1, Fn+2), z2 = (−Fn−2, Fn+1), z3 = (Fn−1,−Fn+2), z4 = (Fn,−Fn+3).

The chord length between z1 and z4 is
√

10F2n+3, implying that the arc containing all four

lattice points has length

2Rn arcsin

(√
10F2n+3

2Rn

)

= 20
1
3

(

1 +
√

5

2

)

R1/3
n +

2
√

5

3Rn
+ O

(

1

R
7/3
n

)

.

In fact the arc length can be shown to be > 20
1
3

(

1+
√

5
2

)

R
1/3
n .

We see here a family F = {[ν]n = (ν1,n, ν2,n, ν3,n, ν4,n), n ∈ N} of 4-tuples of lattice points,

lying on circles centered at the origin, with

Arc([ν]n) ∼ CFR1/3
n as n → ∞.

The main result of this paper is that 4-tuples of lattice points which lie on a short arc of a

circle centered at the origin, belong to such a family, and that F(t) = {F , CF ≤ t} is a finite

set for any given t (which is rather different from the k = 2 case, as given in Theorem 1.3).

Theorem 1.4. For any t > 0 any arc on the circle x2 + y2 = R2, of length less than tR1/3

with R > 2−18t15, contains at most three lattice points except for the families F ∈ F(t).

Therefore, in contrast to Theorem 1.3, we deduce the following.

Corollary 1. The set {Arc[ν]R
−1/3
[ν] , [ν] = (ν1, ν2, ν3, ν4)} has only finitely many accumulation

points in any interval [0, t), where t ∈ R
+.

We order the families F1,F2, . . . so that CF1 ≤ CF2 ≤ . . . . For fixed t we can explicitly

determine F(t) (as described in section 8); indeed, in the table there we describe all seven fam-

ilies belonging to F(5). We found that CF1 =
(

40 + 40
3

√
10
)1/3

, and then CF2 = 20
1
3

(

1+
√

5
2

)

where F2 is the family given above. We deduce the following

Corollary 2. An arc of the circle x2+y2 = R2, with R >
√

65, of length <
(

40 + 40
3

√
10
)1/3

R1/3

contains at most three lattice points. On the contrary, there are infinitely many circles

x2 + y2 = R2
n containing four lattice points in arcs on length

(

40 + 40
3

√
10
)1/3

R
1/3
n + o(1).

Note that 161/3 = 2.5198 · · · <
(

40 + 40
3

√
10
)1/3

= 4.347 · · · < 20
1
3

(

1+
√

5
2

)

= 4.3920 . . .

The coordinates of the 4-tuples in each family F grow exponentially. This implies that for

each fixed t > 0 there exists a constant Bt (which will be described in section 9) such that

there are ∼ Bt log x 4-tuples of lattice points which lie on an arc of length tR1/3 of a circle of

radius R centered at the origin, where R ≤ x.
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2. Three lattice points

We give here the proof of several results that were discussed in the introduction. Our new

proof of Theorem 1.2 is somewhat simpler than that in [2].

Proof of Theorem 1.2. Suppose that ν1, ν2, ν3 are three lattice points, in order, on a circle of

radius R so that

|ν1 − ν2||ν2 − ν3||ν1 − ν3| < Arc(ν1, ν2)Arc(ν2, ν3)Arc(ν1, ν3) ≤
1

4
Arc(ν1, ν3)

3.

A theorem attributed to Heron of Alexandria states that if ∆ is the area of the triangle with

sides a, b, c, and R is the radius of the circle going through the vertices of the triangle, then

abc = 4∆R. Applying this to the triangle with vertices ν1, ν2, ν3 we have that |ν1 − ν2||ν2 −
ν3||ν1 − ν3| = 4∆R.

It should be noted that any triangle with integer vertices has area ≥ 1/2 so, a priori,

∆ ≥ 1/2. However, we can do better than this: Since ν1, ν2, ν3 lie on the same circle, an

easy parity argument implies that the co-ordinates of two of these lattice points, say νi 6= νj,

have the same parity, and so 1
2(νi + νj) is also an integer lattice point. Therefore the triangle

ν1, ν2, ν3 is the disjoint union of two triangles with integer coordinates, which implies that

∆ ≥ 1. The result follows. �

The second author posed a weak version of Theorem 1.2 as problem A5 on the 2000 Putnam

examination; about 45 contestants had the wherewithal to provide a solution somewhat like

that above.

Henceforth we identify the lattice point (x, y) ∈ Z
2 with the Gaussian integer x + iy.

Proof of Theorem 1.3. Let C ≥ (16)1/3 and α satisfying (1 + α)
(

4
α+α2

)1/3
= C. Take p and

q to be distinct large primes for which n2 ∼ αn1 where n1 = 2p and n2 = q. Now, take m1

to be an odd integer and m2 to be an even integer, much larger than n1 and n2, such that

m1n2 −m2n1 = ±1. Finally take n3 = 1
2(n1 +n2 +m1 +m2) and m3 = 1

2(n1 +n2−m1 −m2).

We write µj + imj , j = 1, 2, 3 and consider

ν1 = µ1µ2µ3 ν2 = iµ1µ2µ3, ν3 = µ1µ2µ3.

Notice that |µ1| ∼ m1, |µ2| ∼ m1α and |µ3| ∼ m1(1 + α)/
√

2, so that

R1/3 = |νj |1/3 ∼ ((α + α2)/
√

2)1/3m1.

Now |ν3 − ν1|R−1/3 = |µ3||µ1µ2 − µ1µ2|R−1/3 = 2|µ3|R−1/3 ∼ (1 + α)
(

4
α+α2

)1/3
= C, and

similarly both |ν3 − ν2|R−1/3 ∼
(

4
α+α2

)1/3
and |ν2 − ν1|R−1/3 ∼ α

(

4
α+α2

)1/3
. �

3. The construction of the families of 4-tuples of lattice points

If g = gcd(ν1, · · · , νk) then Arc[ν]
R = Arc[ν/g]

R/|g| so that Arc[ν] = |g|Arc[ν/g], so we can reduce

our study to primitive 4-tuples of lattice points where [ν] is primitive if gcd(ν1, ν2, ν3, ν4) = 1.

We therefore consider primitive 4-tuples of lattice points [ν] = (ν1, ν2, ν3, ν4) which all lie

on the same circle centered at the origin, say x2 + y2 = R2 and we assume that

(3.1) σn := ν1 + ν2 + ν3 + ν4 6= 0.
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(Note that if σ = 0 then the νi cannot all lie on the same half circle, and hence Arc[ν] ≥ πR;

we shall have more to say about this case at the start of section 5.) Next define

ω[ν] =

(

ν1ν2ν3ν4

|ν1ν2ν3ν4|

)
1
4

=
(ν1ν2ν3ν4)

1/4

R
so that − π/4 < Arg(σ[ν]ω[ν]) ≤ π/4.

Let Ψ[ν] := Arg(σ[ν]ω[ν]), so that −1 < tan(Ψ[ν]) ≤ 1 and cos(Ψ[ν]) > 0.

Let Q = Q[ν] be the smallest positive integer for which
√

Qω2 ∈ Z[i] (we will prove that

Q exists in section 4). If Q[ν] is a square then [ν] is degenerate, a simple case that we will

examine in section 5. Typically Q[ν] is not a square, that is [ν] is non-degenerate, in which

case we select the smallest possible positive integers p and q for which2

p2 − q2Q = ε = ±1,

and we write α := p + q
√

Q and β := p − q
√

Q.

For a given [ν], we define the complex numbers3

ω1 =
(ν1ν2ν3ν4)

1/4

R
, ω2 =

(ν1ν2ν3ν4)
1/4

R
and ω3 =

(ν1ν2ν3ν4)
1/4

R
.

For each integer n we define

(3.2) ωi,n = αn ωi + ωi

2
+ βn ωi − ωi

2
, i = 1, 2, 3.

and then a sequence of 4-tuples of lattice points {[ν]n = (ν1,n, ν2,n, ν3,n, ν4,n), n ∈ Z} by

(3.3)

ν1,n = Rω ω1,n ω2,n ω3,n

ν2,n = Rω ω1,n ω2,n ω3,n

ν3,n = Rω ω1,n ω2,n ω3,n

ν4,n = Rω ω1,n ω2,n ω3,n

We immediately deduce that the lattice points νj,n, j = 1, 2, 3, 4, all lie on the same circle,

and that ω4
[ν]n

= ω4. Multiplying out the terms in this definition we obtain

(3.4)
νj,n = α3n σ+ω2σ

8 + (εα)n
(

νj−ω2νj

2 − σ−ω2σ
8

)

+β3n σ−ω2σ
8 + (εβ)n

(

νj+ω2νj

2 − σ+ω2σ
8

)

so that

(3.5)
νj,nω = α3n

4 Re(σω) + i(εα)n
(

Im(νjω) − Im(σω)
4

)

+iβ3n

4 Im(σω) + (εβ)n
(

Re(νjω) − Re(σω)
4

)

for j = 1, 2, 3, 4. We deduce that νj,n = ωRn + O(R
1/3
n ) as α > 1 > |β|, and that

σn :=

4
∑

j=1

νj,n = α3n σ + ω2σ

2
+ β3n σ − ω2σ

2
= ω

(

α3nRe(σω) + iβ3nIm(σω)
)

.

2But see remark 1
3There is some ambiguity here, in that these quantities are well-defined only up to a fourth root of

unity. Our protocol is to make a choice for the value of each ν
1/4
j /R (out of the four possibilities) so

as to validate the choice of fourth root of unity in the definition of ω = ω[ν], and then to use this same

value for ν
1/4
j /R consistently throughout these definitions.
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Now | tan(Arg(σnω))| = |β3nIm(σω)
α3nRe(σω)

| = |β6n tanΨ[ν]| < 1 as |β| < 1 if n ≥ 0, and also

cos(Arg(σnω)) > 0 as α > 0 and Re(σω) > 0, which implies that ω[ν]n = ω (since we al-

ready know that ω4
[ν]n

= ω4). In other words, ω is an invariant of the family, and so Q = QF
is also.

With a formula like (3.4) it is evident that one can express the νj,n in terms of a recurrence:

For n ≥ 0 we have

(3.6) νj,n+1 = pq
(

qQσn + p
√

Qω2σn

)

+ ε
(

pνj,n − q
√

Qω2νj,n

)

.

We deduce that each νj,n ∈ Z[i] by induction on n ≥ 0, since
√

Qω2 ∈ Z[i]. This completes

the proof that each [ν]n with n ≥ 0 gives rise to a 4-tuple of lattice points on a circle centered

at the origin.

We can re-express (3.6) in the more friendly looking form

(3.7) νj,n = aG3n + bG3n+1 + εn (ajGn + bjGn+1) for all n ≥ 0

with b = σ/4, a = q
√

Qω2b − pb, and bj = νj − σ/4, aj = q
√

Qω2bj − pbj for each j, where

the recurrence sequence {Gn : n ≥ 0} is defined by

(3.8) G0 = 0, G1 = 1, and Gn = 2pGn−1 − εGn−2 for all n ≥ 2.

Remark 1. This formula can be used to show that one can obtain Gaussian integers νj,n even

when p, q ∈ Z + 1
2 (instead of in Z); we take these semi-integer values for p = p[ν], q = q[ν]

whenever possible. For example if [ν] = (1−2i, 2−i, 2+i,−1+2i) then Q = 5 and we can take

p = q = 1/2 (as we now verify): The sequence Gn in (3.8) is the Fibonacci sequence Fn, and we

have a1 = −1+3i, b1 = −2i, a2 = 2i, b2 = 1−i, a3 = 1−i, b3 = 1+i, a4 = −4i, b4 = −2+2i,

so that (3.7) gives

νj,n =
1 + i

2
F3n + F3n+1 + ajFn + bjFn+1.

Hence νj,n is always a Gaussian integer since F3n is always an even rational integer (and we

obtain the example given in the introduction).

What about n < 0? The above proof is easily modified to work for all negative n except

the requirement that |β6n tanΨ[ν]| < 1. Thus we select n0 to be the smallest integer for which

|β6n tanΨ[ν]| < 1 and replace [ν] by [ν]n0 . We call this an initial 4-tuple, and then define the

family

F([ν]) = {(ν1,n, ν2,n, ν3,n, ν4,n), n ≥ 0}.
We extend this definition to any [ν] by defining F([ν]) = F([ν]n0) for [ν] ∈ F([ν]n0). If [ν] is

an initial 4-tuple then [ν]−1 is an initial 4-tuple of a different family, the dual family, which

we denote by F̂ := F([ν]−1).

By (3.5) we see that Rn ∼ α3n

4 Re(σω) and |νj,n − νk,n| ∼ αn|Im((νj − νk)ω|, as α > 1 > |β|,
from which we deduce that

CF([ν]) = max
1≤j<k≤4

|2Im((νj − νk)ω|
|2Re(σω)|1/3

,

so that

(3.9) Arc([ν]n) ∼ CFR1/3
n as n → ∞.

Similarly

CF̂ = max
1≤j<k≤4

|2Re((νj − νk)ω|
|2Im(σω)|1/3

,
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and note that CF̂ ([ν]) = CF (i[ν]).

4. Properties of Q

Lemma 4.1. There exists a positive integer Q, not divisible by 4, for which
√

Qω2 ∈ Z[i]. In

fact if odd prime p divides Q then p ≡ 1 (mod 4). Moreover Q/(2, Q) divides R2.

Proof. Let γi be the exact power of prime ideal p of norm p which divides νi, i = 1, 2, 3, 4,

say with γ1 ≥ γ2 ≥ γ3 ≥ γ4. Since [ν] is primitive we know that p 6= 2, γ4 = 0 and pγ1 is

the exact power of p dividing R2, so that γ1 − γi is the exact power of prime ideal p which

divides νi. Therefore if γ = γ1 − γ2 − γ3 − γ4 then the exact powers of p and p dividing ω4

are given by (p/p)γ which equals (p2/p)γ if γ > 0, and equals (p2/p)−γ if γ < 0. We see that

if Q1 is the product of these p|γ| then Q1ω
4 ∈ uZ[i]2 for some unit u, since all ideals of Z[i]

are principal. Taking square roots we see that we can take Q = Q1 if u = ±1, and Q = 2Q1

if u = ±i, so that Q is not divisible by 4, and all of its prime factors are norms of elements of

Z[i] and are thus not ≡ 3 (mod 4).

Finally note that |γ| = |γ1 − γ2 − γ3| ≤ γ1 so that Q1 divides R2. �

Lemma 4.2. Let p be a prime ideal in Z[i]. If [ν] = (ν1, ν2, ν3, ν4) is primitive and p
α divides√

Qω2, then p
α divides exactly three of {ν1, ν2, ν3, ν4}.

Proof. In the notation of the proof of the previous lemma one finds that the exact power of

p which divides
√

Qω2 is pmax{0,−γ}, and max{0,−γ} = max{0, γ3 − (γ1 − γ2)} ≤ γ3, so the

result follows. �

For given odd integer n we define

r(n) := min
r1r2r3r4=n

(ri,rj)=1, i6=j

max
1≤i≤4

ri

and then let r(2kn) = r(n).

Lemma 4.3. If [ν] is a primitive 4-tuple we have Arc[ν] > (16r(Q[ν]))
1/3R1/3.

Proof. Let gi = gcd(νj : j 6= i) for i = 1, 2, 3, 4. By the previous lemma we know that√
Qω2 divides g1g2g3g4, so that Q divides |g1|2|g2|2|g3|2|g4|2. Therefore there exists some j

for which |gj |2 ≥ r(Q). Suppose that j = 4 here and let g = g4. Let νi = gτi for i = 1, 2, 3

then Arc[ν] ≥ Arc[ν1, ν2, ν3] = Arc(g[τ ]) = |g|Arc([τ ]) ≥ |g|(16R[τ ])
1/3 = |g|2/3(16R)1/3 by

Theorem 1.2, as R[τ ] = R/|g|. The result follows.

�

We deduce the following result from Lemma 4.3 and (3.9).

Corollary 3. If F is a non-degenerate family then CF ≥ (16r(QF ))1/3.

5. Degenerate 4-tuples

If Q is a square then α = β = 1 so that νj,n = νj for all n and j, which explains why we

call this the “degenerate” case.

In section 2 we noted that if σ = 0 then the νi cannot all lie on the same half circle, implying

that Arc[ν] ≥ πR; now we will show that if [ν] is also primitive then it is degenerate: Since

ν1 + ν2 = (−ν3) + (−ν4) where |ν1| = |ν2| = | − ν3| = | − ν4|, we either have ν1 + ν2 = 0 (in

which case ν3 +ν4 = 0), or that the non-zero sum of two vectors, ν1 and ν2, of the same length
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equals the sum of two other vectors, −ν3 and −ν4, of the same length, and it is then easy to

show that those two sets of two vectors must be identical. Thus, by re-ordering the indices if

necessary, we have ν1 + ν2 = ν3 + ν4 = 0. But (ν1, ν3) = 1 since [ν] is primitive and hence

ν3 = uν1 where u = 1,−1, i or −i. Therefore ν1ν2ν3ν4 = (ν1ν3)
2 = u2R4 so that ω2

[ν] = ±u

and therefore Q[ν] = 1.

Lemma 5.1. If Q[ν] is a square then Arc[ν] > 2R1/2/Q1/8.

Proof. In the argument of Lemma 4.1 we see that if Q is a square then each γ must be even and

u = ±1. Therefore there exists ` ∈ Z[i] for which Qω4 = ±`4, so that |`| = Q1/4. We deduce

that (`ν1)(`ν2)(`ν3)(`ν4) = `
4
R4ω4 = ±|`|8R4/Q = ±QR4. If ± = + then let [ν ′] = `[ν]; if

± = − let [ν ′] = (1 + i)`[ν]. Either way we have (ω′)4 = 1, so that Q′ = 1.

Now R′2 ≥ 5 else there are exactly four lattice points on our circle so that σ[ν] = 0. We may

assume that Arc[ν ′] < π
2R′, else Arc[ν] ≥ 2(R′)1/2 as R′ ≥

√
5. Therefore, using the obvious

symmetries (that is, multiplying [ν ′] through by a unit or replacing it with [ν ′]), we can assume

that −π/2 < ϕ1 < ϕ2 < ϕ3 < ϕ4 < π/2 where ν ′
j = R′eiϕj = xj + iyj, j = 1, 2, 3, 4, and we

already know that ϕ1 + ϕ2 + ϕ3 + ϕ4 = 0. Thus ϕ1 < 0 < ϕ4 and suppose that |ϕ1| ≥ ϕ4.

This implies that ϕ3 > 0 so that y3 > 0 and x3 > x4, and thus Arc[ν ′] > 2y4 = 2
√

R′2 − x2
4 ≥

2
√

R′2 − (x3 − 1)2 ≥ 2
√

R′2 − (R′ − 1)2 = 2
√

2R′ − 1 > 25/4(R′)1/2 as R′ ≥
√

5. Therefore

from the remarks at the beginning of section 3 we have

Arc[ν] =
Arc[ν ′]
|l′| >

25/4(R′)1/2

|l′| =
25/4R1/2

|l′|1/2
≥ 2R1/2

Q1/8
.

�

Corollary 4. If Arc[ν] < tR1/3 and [ν] is primitive and degenerate then R ≤ t15/218.

Proof. If Q[ν] is an square then Arc[ν] > max{2R1/2/Q1/8, (16r(Q)R)1/3} by Lemmas 4.3 and

5.1. Therefore Arc[ν] > 26/5R2/5 as r(Q) ≥ Q1/4, so R < t15/218 and the result follows. �

6. The constant CF associated to a family F

We begin this section by noting, without proof, two technical trigonometric lemmas that

will be useful below.

Lemma 6.1. If −π/2 ≤ x1 < · · · < xn ≤ π/2 then

(6.1) max
1≤i<j≤n

| sin(xi) − sin(xj)| = | sin(x1) − sin(xn)|.

Lemma 6.2. If |x| ≤ π/4 then

i) | sinx| < 1.0106|x| · | cos x|1/3.

ii) | sinx| < |x| · | cos x+cos y
2 |1/3 whenever |y| ≤ |x| − 0.137|x|3

iii) | sinx|| cos x|1/3 ≥ max(2|x|/π, |x| − |x|3/3).
The following is the main result in the section.

Theorem 6.1. If Arc[ν] < π
2 R[ν] where [ν] is primitive and non-degenerate then

i) Arc[ν] > 0.9895CFR
1/3
[ν] .

ii) Arc[ν] > CFR
1/3
[ν] for R[ν] > 0.08C

15/4
F .

iii) Arc[ν] ≤ CFR
1/3
[ν]

(

1 + π3

96
C2

F

R
2/3
[ν]

)

.
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Proof. Write νjω = Reiϕj , j = 1, 2, 3, 4, with ϕ1 < ϕ2 < ϕ3 < ϕ4 ≤ ϕ1 + π/2 so that

Arc[ν] = (ϕ4 − ϕ1)R, and note that ϕ1 + ϕ2 + ϕ3 + ϕ4 = 0 by the definition of ω. Therefore

CF([ν]) =
2R2/3|Im((ν1 − ν4)ω|

(2Re(σω))1/3
=

2R2/3| sin(ϕ1) − sin(ϕ4)|
|2(cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + cos(ϕ4))|1/3

.

Now sin(ϕ1)− sin(ϕ4) = 2 sin(ϕ1−ϕ4

2 ) cos(ϕ1+ϕ4

2 ) and cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + cos(ϕ4) =

2(cos(ϕ1−ϕ4

2 ) + cos(ϕ2−ϕ3

2 )) cos(ϕ1+ϕ4

2 ) since ϕ2+ϕ3

2 = −ϕ1+ϕ4

2 , and therefore

(6.2) CF =
2R2/3| sin(ϕ1−ϕ4

2 )| | cos(ϕ1+ϕ4

2 )|2/3

|12(cos(ϕ1−ϕ4

2 ) + cos(ϕ2−ϕ3

2 ))|1/3
≤ 2R2/3| sin(ϕ1−ϕ4

2 )|
| cos(ϕ1−ϕ4

2 )|1/3

since 0 ≤ cos(ϕ4−ϕ1

2 ) ≤ cos(ϕ3−ϕ2

2 ), as 0 ≤ ϕ3 − ϕ2 ≤ ϕ4 − ϕ1 ≤ π/2. By Lemma 6.2 we

deduce that CF < 1.0106(ϕ4 − ϕ1)R
2/3 = 1.0106R−1/3Arc[ν] and part (i) follows.

If (ϕ4 − ϕ1) − (ϕ3 − ϕ2) ≥ 0.137(ϕ4 − ϕ1)
3, then CF < (ϕ4 − ϕ1)R

2/3 = R−1/3Arc[ν] by

Lemma 6.2 (ii), and the result follows. Otherwise (ϕ4 − ϕ3) + (ϕ2 − ϕ1) < 0.137(ϕ4 − ϕ1)
3;

and suppose, for example, that ϕ2−ϕ1 < 0.137
2 (ϕ4−ϕ1)

3. Applying the argument in the proof

of Theorem 1.2 to the triangle formed by ν1, ν2, ν4 we obtain

2R ≤ 4∆R = |ν1 − ν2||ν1 − ν4||ν2 − ν4| ≤ Arc(ν1, ν2)Arc(ν1, ν4)Arc(ν2, ν4) =

(ϕ2 − ϕ1)(ϕ4 − ϕ1)(ϕ4 − ϕ2)R
3 < 0.0685(ϕ4 − ϕ1)

5R3 = 0.0685R−2Arc5[ν],

so that Arc[ν] > 1.963667195R3/5 > CFR1/3 for R > 0.08C
15/4
[ν] and part (ii) follows.

Let us suppose that ϕ4 −ϕ1 = 4λ so that π/2 ≥ 4λ ≥ 0. Therefore 0 = ϕ1 +ϕ2 +ϕ3 +ϕ4 =

4ϕ1 + mλ for some m, 4 ≤ m ≤ 12, so that ϕ1 + ϕ4 = 2ϕ1 + 4λ = (4 − m/2)λ and therefore

|(ϕ1+ϕ4)/2| ≤ λ. We therefore deduce that | cos(ϕ1+ϕ4

2 )| ≥ | cos λ| ≥ cos2 λ = (1+cos 2λ)/2 ≥
|12(cos(ϕ1−ϕ4

2 ) + cos(ϕ2−ϕ3

2 ))|. Therefore (6.2) implies that

CF ≥ 2R2/3

∣

∣

∣

∣

sin

(

ϕ1 − ϕ4

2

)∣

∣

∣

∣

∣

∣

∣

∣

cos

(

ϕ1 − ϕ4

2

)∣

∣

∣

∣

1/3

.(6.3)

Applying Lemma 6.2(iii) yields CF ≥ R2/3 2
π |ϕ1 − ϕ4| = R−1/3 2

πArc[ν] so that

(6.4) Arc[ν] < (π/2)CFR1/3,

and also that

CF ≥ 2R2/3

(

ϕ1 − ϕ4

2
− (ϕ1 − ϕ4)

3

24

)

=
Arc[ν]

R1/3
− Arc3[ν]

12R7/3
≥ Arc[ν]

R1/3
− π3

96

C3
F

R4/3

which implies part (iii). �

7. Classification

Theorem 7.1. If Arc[ν] < tR1/3 where [ν] is primitive and non-degenerate, then either

Arc[ν] ≥ π
2 R[ν] with R ≤ (2t/π)3/2, or [ν] ∈ F , for some F ∈ F(1.01062t) with R ≤ 0.084t15/4,

or [ν] ∈ F for some F ∈ F(t).

Proof. If Arc[ν] ≥ π
2 R then π

2 R < tR1/3 and the first option follows. If CF < t then the second

option follows. Finally suppose that Arc[ν] < π
2 R[ν] and CF ≥ t. Then tR1/3 > Arc[ν] >

0.9895C[ν]R
1/3 by Theorem 6.1 i), so that CF ≤ 1.01062t, that is F[ν] ∈ F(1.01062t). But

then R ≤ 0.084t15/4 else R > 0.084t15/4 > (0.08)(1.01062t)15/4 ≥ 0.08C
15/4
F implying that

Arc[ν] > CFR1/3 ≥ tR1/3 by Theorem 6.1 ii). �
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Proof of Theorem 1.4. max{2−18t15, 0.084t15/4, (2t/π)3/2} = 2−18t15 for t ≥ 2.432362919 . . . ,

and is < 2.4 for smaller t. The result then follows from Theorem 7.1 and Corollary 4, and by

verifying that the 4-tuples of lattice points on the circles of radius ≤
√

5 satisfy our bound. �

Lemma 7.1. Given [ν] ∈ F there exists [ν]n such that R2
[ν]n

≤ C3
Fp3

[ν].

Proof. Fix δ > 0, and select m such that Arc([ν]m) ≤ (1 + δ)CFR1/3, which is possible by

(3.9). For convenience we replace [ν] by [ν]m. By (3.2) we have, using the arithmetic-geometric

mean inequality,

R2
[ν]n

/

R2
[ν] =

3
∏

i=1

(

α2n

∣

∣

∣

∣

ωi + ωi

2

∣

∣

∣

∣

2

+ β2n

∣

∣

∣

∣

ωi − ωi

2

∣

∣

∣

∣

2
)

≤
(

α2n
∑3

i=1

∣

∣

ωi+ωi
2

∣

∣

2
+ β2n

∑3
i=1

∣

∣

ωi−ωi
2

∣

∣

2

3

)3

≤
(

α2n + β2n(1 + δ)2
C2
F

8R4/3

)3

To obtain this last inequality we first note that each
∣

∣

ωi+ωi
2

∣

∣ ≤ 1 and that, if we write each

νj = Reiϕj where ϕ1 ≤ ϕ2 ≤ ϕ3 ≤ ϕ4 < ϕ1 + π/2 then 2 |ω1 − ω1| = 4| sin
(ϕ1−ϕ2−ϕ3+ϕ4

4

)

| ≤
|ϕ1 − ϕ2 − ϕ3 + ϕ4| = |(ϕ4 − ϕ1) − (ϕ3 − ϕ1) − (ϕ2 − ϕ1)| ≤ |ϕ4 − ϕ1| and, similarly,

2 |ω2 − ω2| ≤ |ϕ4 − ϕ1| and |ω3 − ω3| ≤ |ϕ4 − ϕ1|, so that

1

3

3
∑

i=1

∣

∣

∣

∣

ωi − ωi

2

∣

∣

∣

∣

2

≤ (ϕ4 − ϕ1)
2

8
=

Arc[ν]2

8R2
≤ (1 + δ)2

C2
F

8R4/3
.

Now let n be the integer closest to
log((1+δ)2C2

F
/(8R4/3))

4 log α ; in fact suppose that this equals n− γ

with |γ| ≤ 1/2. Then

R2
[ν]n

≤ R2

(

(1 + δ)
CF

81/2R2/3
(α2γ + |β|2γ)

)3

≤ (1 + δ)3C3
F (α + |β|)3

83/2
.

Now α + |β| = 2p if ε = 1, and α + |β| = 2q
√

Q if ε = −1. In the latter case we have

q
√

Q = p + 1/(p + q
√

Q) ≤ 21/2p (which is attained when Q = 2). We obtain our result by an

appropriate choice of δ, since R2
[ν]n

is an integer. �

8. Our algorithm

Fix t > 0 and suppose that we wish to determine all primitive 4-tuples [ν] of lattice points

for which Arc[ν] ≤ tR
1/3
[ν] .

Step 0. Small 4-tuples. We examine all [ν] such that R[ν] ≤ (2t/π)3/2.

Step 1. Finding admissible Q. We determine all positive integers Q 6≡ 0 (mod 4),

whose prime factors are 2 or are ≡ 1 (mod 4), which can be written as the product of four

co-prime integers all of which are ≤ t3/16 (by Lemmas 4.1 and 4.3).

Step 2. Degenerate 4-tuples. By Lemma 5.1 we examine, for each such square Q, all

[ν] with Q[ν] = Q and R[ν] ≤ (t/2)6Q3/4.

Step 3. Finding the families. For each such non-square Q, consider all the families

containing a 4-tuples [ν] with R2
[ν] ≡ 0 (mod Q1), where Q1 = Q/(2, Q), such that R2

[ν] ≤
(1.01062t)3p3

[ν] (by Lemma 7.1 and theorem 6.1 (i)).
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Step 4. Computing the constants. Compute the constants CF[ν]
for the families

obtained in step 3.

Step 5. Families with t ≤ CF < 1.01062t. We examine all [ν] ∈ F such that R[ν] ≤
0.08t15/4.(Theorem 6.1 (ii))

Step 6. Families with CF < t. We examine all [ν] ∈ F such that R[ν] ≤
(

C3
F

t−CF

π3

96

)3/2
.

(Theorem 6.1 (iii))

For example, suppose that we wish to determine all primitive 4-tuples [ν] of lattice points for

which Arc[ν] ≤ 5R
1/3
[ν] : To begin with we determine all such [ν] for which R2

[ν] ≤ (10/π)3 < 33;

these all happen to be degenerate examples (see the table below). In step 1 we see that

53/16 < 8 and so the possible values of the four (pairwise co-prime) factors of Q are 1, 2 and

5, so that Q = 1, 2, 5 or 10. In step 2 we look for degenerate examples on circles of radius

≤ (5/2)6Q3/4, Q = 1, 2, 5, 10 according, finding

R2 [ν] Arc[ν]R−1/3

5 1 + 2i, 2 + i, 2 − i, 1 − 2i 3.7863. . .

65 7 + 4i, 8 + i, 8 − i, 7 − 4i 4.1746. . .

5 2 + i, 2 − i, 1 − 2i,−1 − 2i 4.2716. . .

25 5i, 3 + 4i, 4 + 3i, 5 4.5930. . .

13 2 + 3i, 3 + 2i, 3 − 2i, 2 − 3i 4.6217. . .

125 10 + 5i, 11 + 2i, 11 − 2i, 10 − 5i 4.6364. . .

325 17 + 6i, 18 + i, 18 − i, 17 − 6i 4.6655. . .

85 2 + 9i, 6 + 7i, 7 + 6i, 9 + 2i 4.9836. . .

533 22 + 7i, 23 + 2i, 23 − 2i, 22 − 7i 4.9953. . .

as well as examples equivalent to these via multiplication by 1,−1, i or −i, or via complex

conjugation.

In step 3, noting that p[ν] = 1 if Q[ν] = 1 or 2, p[ν] ∈ {2, 1/2} if Q = 5 and p[ν] = 3 if

Q = 10, we consider those [ν] for which R2
[ν] is divisible by 1, 5 or 5 respectively, while being

≤ (5.06)3, (10.11)3 or (15.16)3 , respectively. Then in step 4 we found seven families (which we

describe on the table overleaf), with constants

CF1 = 2
(

5
3(3 +

√
10)
)

1
3 < CF2 = (20)

1
3

(

1+
√

5
2

)

< CF3 = 4
(

1
7(5 + 4

√
2)
)

1
3

< CF4 =
(

10
3 (14 + 5

√
10)
)

1
3 < CF5 = 3

√
2
(

2
7(5 + 3

√
2)
)

1
3 < CF6 = 10

1
3

(

1+
√

5
2

)
5
3

< CF7 = 2(1 +
√

2) < 5 < CF8 = 3·2
2
3

5
1
6

(

1+
√

5
2

)
4
3
.

Step 5 is vacuous and, for step 6, a simple calculation reveals that Arc[ν] ≤ 5R
1/3
[ν] for all

[ν]n ∈ Fm : 1 ≤ m ≤ 7, except the initial 4-tuples [ν]0 in F1,F2,F5 and F7.

Proof of Corollary 2. By Theorem 6.1(i) we see that Arc[ν] ≥ CF1R
1/3
[ν] if [ν] ∈ Fm : 2 ≤

m ≤ 7 since CF1 < 0.9895CF2 . By Theorem 2 we see that Arc[ν] ≥ CF1R
1/3
[ν]

for [ν] ∈ F1 if

R[ν] > 19.7897 . . . , which is the case for all [ν] ∈ F1 except the initial 4-tuple, but in that

case Arc[ν] ≈ 5.3720 . . . R
1/3
[ν] . We are therefore left only with a subset of the degenerate cases

given above, namely the top three cases, which each have R ≤
√

65. �
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F̂ [ν]0 [ν]1 [ν]2 [ν]3 [ν]4

F1 (1,-2) (190,155) (46561,33448) (10882804,7844567) (2546700757,1835553826)

4.347370624.. F4 (2,1) (197,146) (46520,33505) (10883057,7844216) (2546699198,1835555989)√
Qω2 = 1 + 3i (1,2) (202,139) (46489,33548) (10883248,7843951) (2546698021,1835557622)

α = 3 +
√

10 (-1,2) (206,133) (46463,33584) (10883408,7843729) (2546697035,1835558990)

F2 (1,-2) (3,4) (18,-1) (70,25) (308,59)

4.392019964.. F2 (2,-1) (4,3) (18,1) (71,22) (307,64)√
Qω2 = 2 + i (2,1) (5,0) (17,6) (73,14) (304,77)

α = (1 +
√

5)/2 (-1,2) (4,-3) (15,10) (74,7) (301,88)

F3 (8,-1) (91,48) (1342,531) (18739,7822) (264028,109219)

4.601544787.. F5 (8,1) (93,44) (1338,541) (18749,7798) (264004,109277)√
Qω2 = 1 + i (7,4) (96,37) (1331,558) (18766,7757) (263963,109376)

α = 1 +
√

2 (4,7) (99,28) (1322,579) (18787,7706) (263912,109499)

F4 (37,16) (7516,5483) (1766281,1272658) (413271130,297871475) (96707495041,69702803308)

4.631841066.. F1 (35,20) (7532,5461) (1766183,1272794) (413271734,297870637) (96707491319,69702808472)√
Qω2 = 1 + 3i (29,28) (7568,5411) (1765961,1273102) (413273102,297868739) (96707482889,69702820168)

α = 3 +
√

10 (28,29) (7573,5404) (1765930,1273145) (413273293,297868474) (96707481712,69702821801)

F5 (1,-2) (6,7) (113,36) (1528,659) (21653,8906)

4.65445600.. F3 (2,-1) (7,6) (112,39) (1531,652) (21646,8923)√
Qω2 = 1 + i (2,1) (9,2) (108,49) (1541,628) (21622,8981)

α = 1 +
√

2 (-2,1) (9,-2) (104,57) (1549,608) (21602,9029)

F6 (16,13) (774,1307) (60800,98145) (4613294,7465447) (350706224,567450437)

4.804476431.. F8 (13,16) (789,1298) (60737,98184) (4613561,7465282) (350705093,567451136)√
Qω2 = −1 + 2i (8,19) (810,1285) (60648,98239) (4613938,7465049) (350703496,567452123)

α = 2 +
√

5 (5,20) (821,1278) (60601,98268) (4614137,7464926) (350702653,567452644)

F7 (-2,1) (9,8) (48,149) (869,2018) (11762,28589)

4.828427124.. F7 (-1,2) (8,9) (51,148) (862,2021) (11779,28582)√
Qω2 = −1 + i (2,1) (1,12) (68,141) (821,2038) (11878,28541)

α = 1 +
√

2 (2,-1) (-1,12) (72,139) (811,2042) (11902,28531)

Here F8 = F(1 + 2i,−2 − i, 2 + i, 1 − 2i).

9. Asymptotics

Fix t. We wish to determine the number of 4-tuples of lattice points which lie on an arc of

length tR1/3 of a circle of radius R centered at the origin, where R ≤ x. First we deal only with

primitive 4-tuples. Since there only a bounded number of degenerate [ν] with Arc[ν] < tR1/3

by Corollary 4, this reduces to determining the number of primitive 4-tuples in each family

F with CF < t. For a given family F we have Rn ∼ α3n|Re(σω)|/4 by (3.5) so the number

with Rn ≤ x is log x/3 log α + O(1). Now each such 4-tuple is one of an equivalence class of 8

examples (as we have discussed). Therefore there are a total of ∼ βt log x primitive 4-tuples

of lattice points which lie on an arc of length tR1/3 on a circle of radius R ≤ x centered at the

origin, where

βt =
8

3

∑

F : CF<t

1

log α(F)
=

8

3

∑

α

|Fα(t)|
log α

,

with Fα(t) = {F , α(F) = α, CF < t}. Rather like in the prime number theorem, if we count

each primitive 4-tuple [ν] with weight log α = log α[ν] then we have

∑

primitive [ν]

Arc[ν]<tR1/3

R[ν]<x

log α[ν] ∼
8

3
#{F : CF < t} log x.

Write

N4(t, x) = #{[ν], Arc[ν] < tR
1/3
[ν] , R[ν] ≤ x}
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and, for g ∈ Z[i],

N4(t, x, g) = #{[ν] = (ν1, ν2, ν3, ν4), gcd(ν1, ν2, ν3, ν4) = g, Arc[ν] < tR1/3, R[ν] ≤ x}.
We proved above that N4(t, x, 1) ∼ βt log x for fixed t as x → ∞. To estimate N(t, x) we use

the formula Arc[ν] = |g|Arc[ν/g] to obtain

N4(t, x) =
∑

g

N4(t, x, g) =
∑

g

N4(t|g|−2/3, x|g|−1, 1) ∼
∑

g

βt|g|−2/3 log(x|g|−1) ∼ Bt log x,

as x → ∞, where

Bt =
8

3

∑

α

1

log α

∑

g

|Fα(t|g|−2/3)|,

and the sums are over all g = a + bi, 0 ≤ b < a for which |g| ≤ (t/CF1)
3/2.

By Theorem 1.4 and the fact that F(t) is finite, we know that Bt is a piecewise constant

function. We conjecture that Bt � t3 log6 t and, more generally, that

N4(t, x) � min{x2, t3} (log(min{x2, t3}))6 log x

for all t >
(

40 + 40
3

√
10
)1/3

. One can prove the slightly stronger estimate N4(t, x) ∼ c4x
2 log7 x

for x ≤ (t/(2π))3/2 for some constant c4 > 0 by a simple counting argument (the analogous

argument for N3 is given at the beginning of the next section).

9.1. Asymptotic 3-tuples. Writing N3(t, x) = #{3-tuples [ν], |ν| ≤ x, Arc[ν] < t|ν|1/3},
we conjecture that

(9.1) N3(t, x) � x2/3 min{x2, t3}2/3 (log(min{x2, t3}))3

for all t > 161/3. We can prove a slightly stronger result when x ≤ (t/(2π))3/2, since in this

range all the 3-tuples with |ν| ≤ x are counted in N3(t, x), so that

N3(t, x) =
∑

n≤x2

(

r(n)

3

)

=
1

6

∑

n≤x2

r3(n) + O(r2(n)) ∼ c3x
2 log3 x,

for some constant c3 > 0, via the usual counting argument using contour integration. The

conjecture in (9.1) is equivalent to N3(t, x) � x2/3t2 log3 t for x ≥ (t/(2π))3/2; we now prove a

weak version of this estimate.

Theorem 9.1.

x2/3t2 log t � N3(t, x) � x2/3t2 log3 t, x � t3/2 � 1.

Proof. Defining

N3(t, x, g) = #{[ν] = (ν1, ν2, ν3), gcd(ν1, ν2, ν3) = g, |ν| ≤ x, Arc[ν] < t|ν|1/3}
we have

N3(t, x) =
∑

|g|≤t3/2

N3(t, x, g) =
∑

|g|≤t3/2

N3(t|g|−2/3, x|g|−1, 1),

so to prove the theorem it suffices to obtain upper and lower bounds for primitive 3-tuples

(that is, the case g = 1), which we will do in lemmas 9.4 and 9.5 below.

First we introduce some lemmas and notation. For any l ∈ Z[i] let ϕl be the argument of

l, and then Z0[i] = {l ∈ Z[i], 0 ≤ ϕl ≤ π/2} with Z
v
0[i] the set of visible lattice points in Z0[i]

(that is the numbers a + bi ∈ Z[i] with (a, b) = 1 and a ≥ b ≥ 0).
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Lemma 9.1. For any 3-tuple [ν] there exists unique g ∈ Z0[i], p1,p2,p3 ∈ Z
v
0[i], (pi,pj) = 1,

and t1, t2, t3 ∈ {0, 1, 2, 3} such that

ν1 = it1gp1p2p3

ν2 = it2gp1p2p3

ν3 = it3gp1p2p3.

Proof. The values g = (ν1, ν2, ν3), p1 = (ν1/g, ν2/g, ν3/g), p2 = (ν1/g, ν2/g, ν3/g, ), p3 =

(ν1/g, ν2/g, ν3/g, ) are the only one satisfying the conditions. �

Lemma 9.2. If Arc[ν] < s|ν|1/3 and t1 = t2 = t3, then |ϕpi − ϕpj | < (s/2)|ν|−2/3 for i 6= j.

Proof. Notice that ϕp2 − ϕp3 = 1
2 (ϕν1 − ϕν2) ≤ s

2 |ν|−2/3, and the same argument works for

the other differences. �

Lemma 9.3. There are at most 4w2ε + 1 visible lattice points in the angular sector |z| ≤
w, |ϕz − α| ≤ ε.

Proof. Let P1, . . . , Pn denote the visible lattice points in the sector ordered according to in-

creasing argument. Each of the triangles (O,Pi, Pi+1), i = 1, . . . , n− 1 are inside the angular

sector, each has area ≥ 1/2, and they are disjoint so that

(n − 1) · 1

2
≤ Area of the angular sector = 2εw2

�

Lemma 9.4. If y > s3/2 then N3(s, y, 1) � y2/3s2 log2 s.

Proof. We will count 3-tuples [ν] with |ν| ≤ y, Arc[ν] < s|ν|1/3 and g = gcd(ν1, ν2, ν3) = 1,

and restrict our attention, in the notation of lemma 9.1, to the case where t1 = t2 = t3
(the other cases following by analogous arguments), and |p1| ≤ |p2| ≤ |p3| (the other cases

following by re-arrangement of the νi). If 2ji ≤ |pi| < 2ji+1 for i = 1, 2, 3, then j1 ≤ j2 ≤ j3,

and the condition |ν| ≤ y implies that j := j1 + j2 + j3 ≤ log2 y. Now

2j3 ≤ |p3| ≤ |ν2 − ν3| ≤ Arc[ν] ≤ s|ν|1/3 = s|p1p2p3|1/3 ≤ (2s)2j/3

so that j3 ≤ log2(2s) + j/3; and, similarly, j1, j2 ≤ log2(2s) + j/3. Together these imply that

(9.2) −2 log2(2s) ≤ ji − j/3 ≤ log2(2s) for i = 1, 2, 3.

The condition Arc[ν] < s|ν|1/3 implies that |ϕpi − ϕp1 | < s2−1−2j/3 for i = 2, 3 by lemma

9.2), and therefore pi is a visible lattice point in the angular sector |z| ≤ 2ji+1, |ϕpi − ϕp1 | <

s2−2j/3. There are � 22ji · s2−2j/3 such lattice points by lemma 9.3, since 1 ≤ 22j22−j2j3 ≤
22j22−j(2s)2j/3 ≤ (2s)22j22−2j/3 ≤ (2s)22j32−2j/3. There are � 22j1 lattice points π with

|pi| < 2j1+1, and hence the total number of such triples p1,p2,p3 is � s222j/3.

Now, for a given j, there are � (log s)2 triples of integers j1, j2, j3 by (9.2), and so our

count of lattice points is

�
∑

j≤log2 y

s222j/3(log s)2 � y2/3s2(log s)2,

as required. �

We now prove bounds in the other direction:

Lemma 9.5. We have N3(s, y, 1) � y2/3s2 for s sufficiently large.
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Proof. We construct examples in lemma 9.1 with g = 1 and each ti = 0, so we want p1,p2,p3 ∈
Z

v
0[i] with each |pi| ≤ y1/3, as well as (pi,pj) = 1 and |ϕpi − ϕpj | < (s/2)y−2/3 for i 6= j.

Consider the lattice points p = a + bi ∈ Z
v
0[i] with a + b odd, |p| ≤ y1/3, and divide the

circle of radius y1/3 into angular sectors of width (s/2)y−2/3, which we will denote S1, . . . , Sk

with k � [4πy2/3/s]. Note that (p,p) = 1 as p is visible and a + b is odd. There are

∼ (1/2π)y2/3 such lattice points, and so an average of ∼ s/8π2 per sector: we can thus prove

that if s ≥ 25π2 then there are � ks3 � y2/3s2 triples p1,p2,p3 ∈ Z
v
0[i] with each |pi| ≤ y1/3,

and |ϕpi − ϕpj | < (s/2)y−2/3 for i 6= j; however we do not necessarily have (pi,pj) = 1 for

each i 6= j. Forcing this to happen, complicates our argument.

We modify the above construction by only considering those p = a + bi ∈ Z
v
0[i] with a + b

odd, |p| ≤ y1/3, which have no divisor g ∈ Z[i] for which 1 < |g| ≤ B, for some large fixed B

to be chosen later. Sieve methods yield that there are � y2/3/ log B such lattice points. Thus

if (pi,pj) = g 6= 1 then |g| > B. Now this implies that pi/g,pj/g are distinct visible lattice

points lying in an angular sector with |z| ≤ y1/3/|g| of angular width (s/2)y−2/3: There are

≤ 1 + 2(s/2)y−2/3(y1/3/|g|)2 = 1 + s/|g|2 such points by lemma 9.3, and thus no such pair if

|g|2 > s, and at most k(1 + s/|g|2)(s/|g|2)/2 ≤ ks2/|g|4 such pairs otherwise. Therefore the

total number of pairs of such lattice points pi,pj with |(pi,pj)| > B is

≤
∑

g: B<|g|≤
√

|s|

ks2

|g|4 ≤ 8ks2

B2
≤ 101y2/3s

B2
.

To complete our proof we translate this into a graph theory problem: Let Gi denote a graph

whose vertices are the p = a + bi ∈ Z
v
0[i] with a + b odd, |p| ≤ y1/3, which have no divisor

g ∈ Z[i] for which 1 < |g| ≤ B, and where p ∈ Si. Two vertices in Gi have an edge between

them if the corresponding p have no common factor. Then N3(s, y, 1) is at least the total

number of triangles in all of the graphs Gi. Let ni be the number of vertices in Gi, and let

ei be the number of edges in the complement of Gi; that is the number of pairs of p in this

sector that have a common factor. Then

n := n1 + · · · + nk � y2/3/ log B, k � y2/3/s, e := e1 + · · · + ek � y2/3s/B2.

Our result follows from the following by taking B and then s sufficiently large.

Lemma 9.6. Fix ε > 0. There exist constants c, C > 0 such that for any integers n, e, k

satisfying n ≥ Ck and e ≤ cn2/k, if Gi is a graph created by deleting ei edges from the

complete graph on ni ≥ 3 vertices, for i = 1, 2, . . . k, then there are ≥ (1/4− ε)n3/k2 triangles

in the set of graphs G1, . . . , Gk, where n := n1 + · · · + nk and e := e1 + · · · + ek.

Proof. A graph Gi with n2
i /4 + mi edges contains � mini distinct triangles. Hence the total

number of triangles in G1, . . . , Gk is

(9.3) �
k
∑

i=1

ni max

{

0,
n2

i − 2ni

4
− ei

}

.

We shall suppose that for given n, e, k we have the choice of non-negative real numbers ei and

n1 ≥ n2 ≥ · · · ≥ nk ≥ 3 that minimizes the right side of (9.3). This evidently minimized by

taking ei = ei,0 := ni(ni−2)
4 for i = 1, 2, . . . , ` − 1, with 0 ≤ e` ≤ e`,0, and ei = 0 for i > `.

Now, for fixed e − e` =
∑

1≤i<`
ni(ni−2)

4 , we wish to maximize
∑

1≤i<` ni (so as to minimize
∑

i>` ni), and thus we take them all to be equal. If n` > nk with e` < e`,0 then we get a

contradiction of minimality by taking n′
1 = n1 − δ, n′

k = nk + δ for some very small δ > 0.
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Thus we have n1 = · · · = n`−1 = r, say, and n` = · · · = nk = s, say, with r ≥ s ≥ 3. Moreover

we have 0 < e− (`− 1) r(r−2)
4 ≤ s(s−2)

4 and r(`− 1) + s(k − ` + 1) = n, and that the right side

of (9.3) equals (k + 1 − `) s2(s−2)
4 − e`s.

This is now a classical optimization problem. If we take ` − 1 = λk for 0 ≤ λ ≤ 1 and

r = ρn/k, s = σn/k then ρλ + σ(1 − λ) = 1, so that ρ ≥ 1 ≥ σ ≥ 0. Solving we find

that σ = (1 − ρλ)/(1 − λ). Now e = r(r+O(1))
4 (` + O(1)) = λρ2n2/4k{1 + O(1/r + 1/`)} so

that λ ≤ 4c/ρ2{1 + O(1/r + 1/`)}, and so σ > 1 − O(c). The quantity to be minimized is

≥ (1 − λ)ks3/4{1 + O(1/s)} = (1 − O(c))σ3n3/4k2 ≥ (1 − O(c))n3/4k2. implying the desired

result. �

Remark 2. By slightly modifying this proof one can show that if n ≥ (2 + ε)k and e <

(1/4− ε)n(n− 2k)/k then there are �ε n3/k2 triangles. Evidently there can be no triangles if

n ≤ 2k (if every Gi has degree at most two), nor if e > n2/4k (by making each Gi a complete

bipartite graph with about n/2k vertices in each class).

10. Close divisors

In a forthcoming paper [5], we will deal with the analogous problem for close divisors

d1, . . . , dk of a rational integer N . The quantity ω = (d1 · · · dk)
1/k/N1/2 shows where the

lattice points (di, N/di) are located on the hyperbola xy = N . Since each N/di is also a

divisor of N , we study only the k-tuples of large divisors, that is those with ω ≥ 1. We can

give a lower bound for L(d1, . . . , dk) = maxi6=j |di − dj |, analogous to theorem 1.1.

(10.1) L(d1, . . . , dk) ≥ N1/4−1/(8[(k−1)/2]+4) .

The analysis of the cases k = 2, 3 is similarly straightforward and one can obtain the sharp

estimates:

L(d1, d2) ≥ 2, L(d1, d2, d3) ≥ 22/3N1/6;

and that {L(d1, d2, d3)N
−1/6} is dense in [22/3,∞).

The case k = 4 again requires more delicate arguments, as we found in this article for

the analogous problem for lattice points on circles. For the problem of close divisors, (10.1)

yields L(d1, . . . , d4) ≥ N1/6, and the exponent “1/6” cannot be increased as we see from the

following example: The integers Nn = 2pnpn+1pn+2qnqn+1qn+2, have divisors

d1,n = 2qnpn+1qn+2, d2,n = 2qnqn+1pn+2, d3,n = pnpn+1pn+2, d4,n = 2pnqn+1qn+2,

where (pn, qn) denote the solutions of the Pell equation x2 − 2y2 = ±1. In fact

lim
n→∞

L(d1,n, d2,n, d3,n, d4,n)N−1/6
n = 27/12 + 213/12 = 3.6172...

This is not the only family with this kind of property. As in this paper, we can classify all the

“close” 4-tuples [d] = (d1, d2, d3, d4) of divisors of integers N into families F such that

lim L(d1,n, d2,n, d3,n, d4,n)N−1/6
n = CF ,

One can determine a formula similar to (3.7) to describe each family. We are then able to

deduce the following theorem (analogous to Corollary 2 herein):

Theorem 10.1. For any large 4-tuple of divisors d1, d2, d3, d4 of N we have

L(d1, d2, d3, d4) > 2

(

3

2

)1/12
(

8 + 3
√

6

5

)1/3

N1/6,
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whenever N > N0. On the contrary there exist infinitely many integers large 4-tuple of divisors

d1,n, d2,n, d3,n, d4,n of Nn with

lim
n→∞

L(d1,n, d2,n, d3,n, d4,n)

N
1/6
n

= 2

(

3

2

)1/12
(

8 + 3
√

6

5

)1/3

= 3.006555939..

Although the ideas and techniques used in [5] are similar to those used in this paper, there

are sufficient differences that it seems necessary to write a different paper.

We do not know if the exponent in (10.1) is sharp for k ≥ 5, just as we do not know if the

exponent in Theorem 1.1 is sharp for k ≥ 5.

11. Other related questions

Herein we have studied very precise questions on close lattice points on a circle; and in [5]

we develop a similar study of close lattice points on a hyperbola. Presumably it should be

possible to generalize these results to close lattice points on all other curves of degree two

in the plane, and perhaps to curves of higher degree. In this case one knows that there are

very few points, after Mumford’s theorem and Faltings’ theorem, and those that there are

should presumably be very sparse, but such questions appear, for now, to lie deep. There

is an important school of research that attempts to obtain bounds which are within a small

factor of best possible, which makes these bounds very applicable. Like in proofs of Theorem

1.1, the key articles by Bombieri and Pila [1], Heath-Brown [9], and then Elkies [7], all use

combinatorial arguments and linear algebra; these have the severe limitation that they are

unlikely to give bounds for typical curves that are much better then what is obtained for the

lattice-point rich, rational curve, y = xd. Quite recently, Ellenberg and Venkatesh [8] have

incorporated true arithmetic-geometric techniques into these arguments, so as to distinguish

between rational and non-rational curves, and thus they get bounds of a strength that had

previously seemed inaccessible.

One can also ask about analogous questions in higher dimension, for instance how close can

one pack k lattice points on a sphere in R
3? One has to be a little careful as Heath-Brown

showed us: Select integer r which has many representations as the sum of two squares; for

example, if r is the product of ` distinct primes that are ≡ 1 (mod 4) then r has 2` such rep-

resentations. Now let N be an arbitrarily large integer and consider the set of representations

of n = N2 + r as the sum of three squares. Evidently we have ≥ 2` such representations in

an interval whose size, which depends only on `, is independent of n. Note though that these

lattice points all lie on the hyperplane x = N , so we can better formulate our question by

asking: How close can one pack k lattice points on a sphere in R
3, no four of which belong to

the same hyperplane?

12. Open problems

We finish this article with two open problems.

Problem 1: Do there exist infinitely many circles x2 + y2 = R2
n with five lattice points on

an arc of length � R
2/5
n ?

We doubt it: From Theorem 1.1 we know that an arc of length R2/5 contains, at most, four

lattice points, and our guess is that the exponent 2/5 can be increased, perhaps to as much

as 1/2.
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Problem 2: Is there a uniform bound for the number of lattice points on an arc of length

� R1/2?

Theorem 1.1 gives the upper bound � log R, for the number of lattice points on an arc of

length R1/2, and we would like to see this significantly improved. Indeed this provokes the

following (see also [4]):

Conjecture 1. For every ε > 0 there exists a constant Bε, such that there are no more than

Bε lattice points on an arc of length R1−ε of a circle of radius R that is centered at the origin.

Fix m. Let a be a large integer. Let {σ` : j = 1, 2, . . . ,
(2m

m

)

} be the set of functions

σ` : {1, . . . 2m} → {−1, 1} for which
∑2m

j=1 σ`(j) = 0. Now define v` :=
∏2m

j=1(a + j + iσ`(j)).

Obviously v` =
∏2m

j=1(a + j)(1 + O(m2/a2)), so that |vi − vj | �m |vi|1−1/m; in other words

we have constructed
(2m

m

)

lattice points in an arc of length O(r1−1/m) on a circle of radius r.

Thus if Conjecture 1 is true then Bε would have to be at least eC/ε for some constant C > 0.
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