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Abstract. We give a non trivial upper bound, Fh(g, N), for the size of a
Bh[g] subset of {1, ...., N} when g > 1. In particular, we prove

F2(g, N) ≤ 1.864(gN)1/2 + 1

Fh(g, N) ≤ 1

(1 + cosh(π/h))1/h
(hh!gN)1/h, h > 2.

On the other hand we exhibit B2[g] subsets of {1, ...., N} with

g + [g/2]√
g + 2[g/2]

N1/2 + o(N1/2) elements.

1. Upper bounds

Let h ≥ 2, g ≥ 1 be integers. A subset A of integers is called a Bh[g]-sequence if
for every positive integer m, the equation

m = x1 + · · ·+ xh, x1 ≤ · · · ≤ xh, xi ∈ A

has, at most, g distinct solutions.
Let Fh(g,N) denote the maximum size of a Bh[g] sequence contained in [1, N ].

If A is a Bh[g] subset of {1, ..., N}, then
(|A|+h−1

h

) ≤ ghN , which implies the trivial
upper bound

(1.1) Fh(g, N) ≤ (ghh!N)1/h

For g = 1, h = 2, it is possible to take advantage of counting the differences
xi − xj instead of the sums xi + xj , because the differences are all distinct. In this
way, P. Erdős and P. Turán [2] proved that F2(1, N) ≤ N1/2 + O(N1/4), which
is the best possible except for the estimate of error term.

For h = 2m, Jia [4] proved F2m(1; N) ≤ (m(m!)2)1/2mN1/2m + O(N1/4m). A
similar upper bound for F2m−1(1, N) has been proved independently by S.Chen [1]
and S.W.Graham [3]: F2m−1(1, N) ≤ ((m!)2)1/2m−1N1/2m−1 + O(N1/4m−2).

However, for g > 1, the situation is completely different because the same dif-
ference can appear many times, and, for g > 1 nothing better than (1.1) is known.
In this paper we improve this trivial upper bound.

Theorem 1.1.

F2(g, N) ≤ 1.864(gN)1/2 + 1

Fh(g, N) ≤ 1
(1 + cosh(π/h))1/h

(hh!gN)1/h, h > 2

1



2 JAVIER CILLERUELO, IMRE Z. RUZSA AND CARLOS TRUJILLO

Proof. Let A ⊂ [1, N ] a Bh[g] sequence. |A| = k. Put f(t) =
∑

a∈A eiat. We have
f(t)h =

∑hN
n=h rh(n)eint where rh(n) = #{n = a1 + · · ·+ ah; ai ∈ A}

f(t)h = h!g
hN∑

n=h

eint −
hN∑

n=h

(h!g − rh(n))eint = h!gp(t)− q(t)

Since rh(n) ≤ h!g, we have

hN∑

n=h

|h!g − rh(n)| =
hN∑

n=h

(h!g − rh(n)) =

= (h(N − 1) + 1)h!g −
∑

rh(n) = (h(N − 1) + 1)h!g − kh

thus
|q(t)| ≤ hh!gN − kh

for every value of t.
p(t) is just a geometrical series and we can express it as

p(t) = ehit 1− ei(h(N−1)+1)t

1− eit

if 0 < t < 2π. We shall use only the property that at values of the form t = jth,
th = 2π

h(N−1)+1 with integer j, 1 ≤ j ≤ h(N−1), we have p(t) = 0, thus f(t)h = q(t).
Consequently

|f (jth)| ≤ (hh!gN − kh)1/h for any integer j, 1 ≤ j ≤ h(N − 1).

Since the midpoint of the interval [1, N ] is (N +1)/2, it will be useful to express
f as

f(t) = exp
(

N + 1
2

it

)
f∗(t),

where

f∗(t) =
∑

a∈A

exp
((

a− N + 1
2

)
it

)
.

Now we consider a function F (x) =
∑h(N−1)

j=1 bj cos(jx) satisfying F (x) ≥ 1 for
|x| ≤ π/h. We define CF =

∑ |bj |.
We are looking for a lower and an upper bound for Re

(∑h(N−1)
j=1 bjf

∗(jth)
)
.

(1.2) Re




h(N−1)∑

j=1

bjf
∗(jth)


 ≤

h(N−1)∑

j=1

|bj ||f∗(jth)| =
h(N−1)∑

j=1

|bj ||f(jth)| ≤

≤



h((N−1)∑

j=1

|bj |

 (hh!gN − kh)1/h = CF (hh!gN − kh)1/h.

On the other hand

(1.3) Re




h(N−1)∑

j=1

bjf
∗(jth)


 = Re


∑

a∈A

h(N−1)∑

j=1

bje
i(a−N−1

2 )thj


 =
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=
∑

a∈A

h(N−1)∑

j=1

bj cos
((

a− N − 1
2

)
thj

)
=

∑

a∈A

F

((
a− N − 1

2

)
th

)
≥ k,

because |(a− N−1
2 )th| ≤ π/h for any integer a ∈ A.

From (1.2.) and (1.3.) we have

|A| = k ≤ 1
(1 + 1

Ch
F

)1/h
(hh!gN)1/h.

For h > 2, we take F (x) = 1
cos(π/h) cos(x), with CF = 1

cos(π/h) and this proves
the theorem for h > 2.

For h = 2, we can take F (x) = 2 cos(x) − cos(2x), CF = 3, which gives |A| ≤
6√
10

√
gN , a nontrivial upper bound.

However, an infinite series gives a better result. Take the function

F (x) =

{
1, |x| ≤ π/2
1 + π cos(x), π/2 < |x| ≤ π.

It is easy to see that

F (x) =
π

2
cos(x) + 2

∞∑
n=2

cos(πn/2)
n2 − 1

cos(nx).

This series satisfies the following: F (x) = 1 for |x| ≤ π/2 with

CF = π/2 + 2
∞∑

n=1

1
4n2 − 1

= π/2 + 2
∞∑

n=1

1
2

(
1

2n− 1
− 1

2n + 1

)
= π/2 + 1.

However we must truncate the series to the integers n ≤ 2(N − 1). Let

FT (x) =
π

2
cos(x) + 2

2(N−1)∑
n=2

cos(πn/2)
n2 − 1

cos(nx).

Observe that

|FT (x)− F (x)| ≤ 2
∞∑

2N−1

1
n2 − 1

=
1

2N − 2
.

Now we consider the polynomial F ∗(x) = 2N−2
2N−3FT (x). If |x| < π/2 we have

|F ∗(x)| = 2N − 2
2N − 3

|F (x) + FT (x)− F (x)| ≥ 2N − 2
2N − 3

(|F (x)| − |FT (x)− F (x)|) ≥

≥ 2N − 2
2N − 3

(
1− 1

2N − 2

)
= 1

and CF∗ ≤ 2N−2
2N−3 (π/2 + 1).

Thus

|A| = k ≤ 2
(
1 + 1

C2
F∗

)1/2
(gN)1/2.
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A simple calculation gives
2

(
1 + 1

C2
F∗

)1/2
− 2

(
1 + 1

C2
F

)1/2
≤ 1

N
.

Then

|A| = k ≤ 2
(
1 + 1

C2
F

)1/2
(gN)1/2 +

√
g

N
=

=
2π + 4√

π2 + 4π + 8

√
gN +

√
g

N
≤ 1.864

√
gN + 1

because, obviously, g ≤ N .
¤

2. Lower bounds

Now we are interested in finite B2[g] sequences as dense as possible. Kolountzakis
[6] exhibits a B2[2] subset of {1, ..., N} with

√
2N1/2 + o(N1/2) elements taking

A = (2A0) ∪ (2A0 + 1) with A0 a B2[1] sequence contained in {1, ...[N/2]}.
In general it is easy to construct a B2[g] subset of {1, ..., N} with (gN)1/2 +

o(N1/2) elements. In the sequel we improve these results

Theorem 2.1.

(2.1) F2(g, n) ≥ g + [g/2]√
g + 2[g/2]

N1/2 + o(N1/2).

For g = 2 theorem 2 gives

F2(2, N) ≥ 3
2
N1/2 + o(N1/2).

In general, for g even we get

F2(g,N) ≥ 3
2
√

2
(gN)1/2 + o(N1/2).

And for g odd,

F2(g,N) ≥ 3− (1/g)
2
√

2− (1/g)
(gN)1/2 + o(N1/2)

Remark. Jia’s constructions of Bh(g) sequences in [5] does not work (Jia, per-
sonal communication). In the last step of the proof of theorem 3.1. of [5] we
cannot deduce from the hypothesis that {bs1, . . . , bsh} = {bt1, . . . , bth}. Jia’s ar-
gument can be modified if we define ga(h, m) as the number of solutions of the
equation a ≡ x1 + · · ·+ xh (mod m), 0 ≤ xi ≤ m− 1. It would imply the result
|B| = √

gN + o(
√

N). But for g = 2 it is the Kolountzakis’s construction [6].
We need some definitions and lemmas in order to construct B2[g] sequences

satisfying Theorem 2.1.

Definition 2.1. We say that a0, a1, ..., ak satisfies the B∗[g] condition if the
equation ai + aj = r has at most g solutions. (Here, ai + aj = aj + ai counts as
two solutions if i 6= j).
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Definition 2.2. We say that a sequence of integers C is a B2 (mod m) sequence
if ci + cj ≡ ck + cl (mod m) implies {ci, cj} = {ck, cl}.
Lemma 2.2. If a0, a1, .., ak satisfies the B∗[g] condition, and C is a B2 (mod m)
sequence, then the sequence B = ∪k

i=0(C + mai) is a B2[g] sequence.

Proof. If b1 + b′1 = b2 + b′2 = ... = bg+1 + b′g+1, bj , b
′
j ∈ B we can write

bj = cj + aij m
b′j = c′j + a′ij

m, cj , c
′
j ∈ C, aij , a

′
ij
∈ {a0, .., ak} where we have ordered the

pairs bj , b
′
j such that cj ≤ c′j .

Then we have cj + c′j ≡ ck + c′k (mod m) for all j, k, which implies cj = ck,
c′j = c′k.

On the other hand, all the g + 1 sums aij + ai′j are equal. Thus there exists j, k

such that aij = aik
, ai′j = ai′k

Then, for these j, k, we have bj = bk and b′j = b′k. ¤

Lemma 2.3. The subset

Ag = Ag
1 ∪Ag

2 = {k; 0 ≤ k ≤ g − 1} ∪ {g − 1 + 2k; 1 ≤ k ≤ [g/2]}
satisfies the condition B∗[g].

Proof. Let
r(m) = #{a; a,m− a ∈ Ag}

rij(m) = #{a; a ∈ Ag
i ,m− a ∈ Ag

j}, 1 ≤ i, j ≤ 2

We have r(m) = r11(m) + 2r12(m) + r22(m), because r12 = r21

With this notation we will prove that r(m) ≤ g for any integer m. First we
study the functions rij .
• r11(m)
If a,m− a ∈ Ag

1, then 0 ≤ a ≤ g − 1 and 0 ≤ m− a ≤ g − 1, which implies

max{0,m− g + 1} ≤ a ≤ min{g − 1,m}.
Then

r11(m) = max{0,min{g − 1,m} −max{0,m− g + 1}+ 1},
and

r11(m) =





m + 1, 0 ≤ m ≤ g − 1
2g −m− 1, g ≤ m ≤ 2g − 1
0, 2g − 1 ≤ m

• r12(m)
If a ∈ Ag

2, m− a ∈ Ag
1, then a = g − 1 + 2k, 1 ≤ k ≤ [g/2] and

0 ≤ m− (g − 1 + 2k) ≤ g − 1, which implies

max{1,
m− 2g + 2

2
} ≤ k ≤ min{[g/2],

m− g + 1
2

.}
Since the k’s are integers, we can write

max{1, [
m− 2g + 3

2
]} ≤ k ≤ min{[g/2], [

m− g + 1
2

]}.
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Then

r12(m) =





0, m ≤ g

[m−g+1
2 ], g ≤ m ≤ 2g − 1

[ g
2 ]− [m−2g+1

2 ], 2g ≤ m ≤ 3g − 1
0, 3g − 1 ≤ m

• r22(m)
Obviously, if m is odd then r22(m) = 0.
If a,m− a ∈ Ag

2, then a = g − 1 + 2k, m− a = g − 1 + 2j, 1 ≤ j, k ≤ [g/2]
we have

1 ≤ j = m/2− (g − 1)− k ≤ [g/2],
which implies, if m is even, that

max{1, m/2− g − [g/2] + 1} ≤ k ≤ min{m/2− g, [g/2]}.
Then

r22(m) = max{0, min{m/2− g, [g/2]} −max{1,m/2− g − [g/2] + 1}+ 1}
Therefore, if m is even

r22(m) =





0, m < 2g

m/2− g, 2g ≤ m ≤ 3g − 1
g + 2[g/2]−m/2, 3g ≤ m ≤ 4g − 2
0, 4g − 2 < m

Now, we are ready to calculate r(m).
• m ≤ g − 1.

r(m) = r11(m) = m + 1 ≤ g
• g ≤ m ≤ 2g − 1.

r(m) = r11(m)+2r12(m) = 2g−m−1+2[m−g+1
2 ] ≤ 2g−m−1+m−g+1 = g.

•2g ≤ m ≤ 3g − 1.
If m is odd, r(m) = 2r12(m) = 2([g/2] − [m−2g+1

2 ]) ≤ g. If m is even,
r(m) = 2r21(m) + r22(m) = 2([g/2]− [m−2g+1

2 ]) + m/2− g = 2[g/2]− (m− 2g) +
m/2− g = 2[g/2] + g −m/2 ≤ 2[g/2] + g − (2g)/2 ≤ g.
• 3g ≤ m ≤ 4g − 2

If m is odd, r(m) = 0 If m is even, r(m) = r22(m) = g + 2[g/2] −m/2 ≤
g + 2[g/2]− (3g)/2 ≤ g/2 < g.

¤
Proof. (Theorem 2.1)

It is known [2], that for m = p2 + p + 1, p prime, there exists a B2 (mod m)
sequence Cm such that |Cm| = p + 1 and Cm ⊂ [1,m]

Let us take
B = ∪k

i=0(Cm + mai),
where Ag = {a0, a1, .., ak} is defined in lemma 2.2.

Observe that B ⊂ [1,m(1 + ak)], where ak = g − 1 + 2[g/2]. Observe, also, that
|B| = |Ag||Cm| = (g + [g/2])(p + 1). Then F2[g,m(g + 2[g/2])] ≥ (g + [g/2])(p + 1).

For any integer n we can choose a prime p such that

n− o(n) ≤ (p2 + p + 1)(g + 2[g/2]) ≤ n
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Then
F2[g, n] ≥ F2[g, m(g + 2[g/2])] ≥ (g + [g/2])(p + 1) ≥

≥ g + [g/2]√
g + 2[g/2]

n1/2 + o(n1/2)

¤
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Universidad del Cauca.
Calle 5, No. 4-70
Popayan, Colombia
e-mail: trujillo atenea.ucauca.edu.co


