UPPER AND LOWER BOUNDS FOR FINITE $B_{h}[g]$ SEQUENCES

JAVIER CILLERUELO, IMRE Z. RUZSA AND CARLOS TRUJILLO

$$
\begin{aligned}
& \text { Abstract. We give a non trivial upper bound, } F_{h}(g, N) \text {, for the size of a } \\
& B_{h}[g] \text { subset of }\{1, \ldots, N\} \text { when } g>1 \text {. In particular, we prove } \\
& \qquad F_{2}(g, N) \leq 1.864(g N)^{1 / 2}+1 \\
& \text { On the other hand we exhibit } B_{2}[g] \text { subsets of }\{1, \ldots, N\} \text { with } \\
& \frac{g+[g / 2]}{\sqrt{g+2[g / 2]}} N^{1 / 2}+o\left(N^{1 / 2}\right) \quad \text { elements. }
\end{aligned}
$$

1. Upper bounds

Let $h \geq 2, g \geq 1$ be integers. A subset A of integers is called a $B_{h}[g]$-sequence if for every positive integer m, the equation

$$
m=x_{1}+\cdots+x_{h}, \quad x_{1} \leq \cdots \leq x_{h}, \quad x_{i} \in A
$$

has, at most, g distinct solutions.
Let $F_{h}(g, N)$ denote the maximum size of a $B_{h}[g]$ sequence contained in $[1, N]$. If A is a $B_{h}[g]$ subset of $\{1, \ldots, N\}$, then $(\underset{h}{|A|+h-1}) \leq g h N$, which implies the trivial upper bound

$$
\begin{equation*}
F_{h}(g, N) \leq(g h h!N)^{1 / h} \tag{1.1}
\end{equation*}
$$

For $g=1, h=2$, it is possible to take advantage of counting the differences $x_{i}-x_{j}$ instead of the sums $x_{i}+x_{j}$, because the differences are all distinct. In this way, P. Erdős and P. Turán [2] proved that $F_{2}(1, N) \leq N^{1 / 2}+O\left(N^{1 / 4}\right)$, which is the best possible except for the estimate of error term.

For $h=2 m$, Jia [4] proved $F_{2 m}(1 ; N) \leq\left(m(m!)^{2}\right)^{1 / 2 m} N^{1 / 2 m}+O\left(N^{1 / 4 m}\right)$. A similar upper bound for $F_{2 m-1}(1, N)$ has been proved independently by S.Chen [1] and S.W.Graham [3]: $F_{2 m-1}(1, N) \leq\left((m!)^{2}\right)^{1 / 2 m-1} N^{1 / 2 m-1}+O\left(N^{1 / 4 m-2}\right)$.

However, for $g>1$, the situation is completely different because the same difference can appear many times, and, for $g>1$ nothing better than (1.1) is known. In this paper we improve this trivial upper bound.

Theorem 1.1.

$$
\begin{gathered}
F_{2}(g, N) \leq 1.864(g N)^{1 / 2}+1 \\
F_{h}(g, N) \leq \frac{1}{\left(1+\cos ^{h}(\pi / h)\right)^{1 / h}}(h h!g N)^{1 / h}, \quad h>2
\end{gathered}
$$

Proof. Let $A \subset[1, N]$ a $B_{h}[g]$ sequence. $|A|=k$. Put $f(t)=\sum_{a \in A} e^{i a t}$. We have $f(t)^{h}=\sum_{n=h}^{h N} r_{h}(n) e^{i n t}$ where $r_{h}(n)=\#\left\{n=a_{1}+\cdots+a_{h} ; a_{i} \in A\right\}$

$$
f(t)^{h}=h!g \sum_{n=h}^{h N} e^{i n t}-\sum_{n=h}^{h N}\left(h!g-r_{h}(n)\right) e^{i n t}=h!g p(t)-q(t)
$$

Since $r_{h}(n) \leq h!g$, we have

$$
\begin{gathered}
\sum_{n=h}^{h N}\left|h!g-r_{h}(n)\right|=\sum_{n=h}^{h N}\left(h!g-r_{h}(n)\right)= \\
=(h(N-1)+1) h!g-\sum r_{h}(n)=(h(N-1)+1) h!g-k^{h}
\end{gathered}
$$

thus

$$
|q(t)| \leq h h!g N-k^{h}
$$

for every value of t.
$p(t)$ is just a geometrical series and we can express it as

$$
p(t)=e^{h i t} \frac{1-e^{i(h(N-1)+1) t}}{1-e^{i t}}
$$

if $0<t<2 \pi$. We shall use only the property that at values of the form $t=j t_{h}$, $t_{h}=\frac{2 \pi}{h(N-1)+1}$ with integer $j, 1 \leq j \leq h(N-1)$, we have $p(t)=0$, thus $f(t)^{h}=q(t)$. Consequently

$$
\left|f\left(j t_{h}\right)\right| \leq\left(h h!g N-k^{h}\right)^{1 / h} \text { for any integer } j, \quad 1 \leq j \leq h(N-1)
$$

Since the midpoint of the interval $[1, N]$ is $(N+1) / 2$, it will be useful to express f as

$$
f(t)=\exp \left(\frac{N+1}{2} i t\right) f^{*}(t)
$$

where

$$
f^{*}(t)=\sum_{a \in A} \exp \left(\left(a-\frac{N+1}{2}\right) i t\right)
$$

Now we consider a function $F(x)=\sum_{j=1}^{h(N-1)} b_{j} \cos (j x)$ satisfying $F(x) \geq 1$ for $|x| \leq \pi / h$. We define $C_{F}=\sum\left|b_{j}\right|$.

We are looking for a lower and an upper bound for $\operatorname{Re}\left(\sum_{j=1}^{h(N-1)} b_{j} f^{*}\left(j t_{h}\right)\right)$.

$$
\begin{align*}
& \operatorname{Re}\left(\sum_{j=1}^{h(N-1)} b_{j} f^{*}\left(j t_{h}\right)\right) \leq \sum_{j=1}^{h(N-1)}\left|b_{j}\right|\left|f^{*}\left(j t_{h}\right)\right|=\sum_{j=1}^{h(N-1)}\left|b_{j} \| f\left(j t_{h}\right)\right| \leq \tag{1.2}\\
& \quad \leq\left(\sum_{j=1}^{h((N-1)}\left|b_{j}\right|\right)\left(h h!g N-k^{h}\right)^{1 / h}=C_{F}\left(h h!g N-k^{h}\right)^{1 / h} .
\end{align*}
$$

On the other hand

$$
\begin{equation*}
\operatorname{Re}\left(\sum_{j=1}^{h(N-1)} b_{j} f^{*}\left(j t_{h}\right)\right)=\operatorname{Re}\left(\sum_{a \in A} \sum_{j=1}^{h(N-1)} b_{j} e^{i\left(a-\frac{N-1}{2}\right) t_{h} j}\right)= \tag{1.3}
\end{equation*}
$$

$$
=\sum_{a \in A} \sum_{j=1}^{h(N-1)} b_{j} \cos \left(\left(a-\frac{N-1}{2}\right) t_{h} j\right)=\sum_{a \in A} F\left(\left(a-\frac{N-1}{2}\right) t_{h}\right) \geq k,
$$

because $\left|\left(a-\frac{N-1}{2}\right) t_{h}\right| \leq \pi / h$ for any integer $a \in A$.
From (1.2.) and (1.3.) we have

$$
|A|=k \leq \frac{1}{\left(1+\frac{1}{C_{F}^{h}}\right)^{1 / h}}(h h!g N)^{1 / h} .
$$

For $h>2$, we take $F(x)=\frac{1}{\cos (\pi / h)} \cos (x)$, with $C_{F}=\frac{1}{\cos (\pi / h)}$ and this proves the theorem for $h>2$.

For $h=2$, we can take $F(x)=2 \cos (x)-\cos (2 x), C_{F}=3$, which gives $|A| \leq$ $\frac{6}{\sqrt{10}} \sqrt{g N}$, a nontrivial upper bound.

However, an infinite series gives a better result. Take the function

$$
F(x)= \begin{cases}1, & |x| \leq \pi / 2 \\ 1+\pi \cos (x), & \pi / 2<|x| \leq \pi\end{cases}
$$

It is easy to see that

$$
F(x)=\frac{\pi}{2} \cos (x)+2 \sum_{n=2}^{\infty} \frac{\cos (\pi n / 2)}{n^{2}-1} \cos (n x)
$$

This series satisfies the following: $F(x)=1$ for $|x| \leq \pi / 2$ with

$$
C_{F}=\pi / 2+2 \sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}=\pi / 2+2 \sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)=\pi / 2+1 .
$$

However we must truncate the series to the integers $n \leq 2(N-1)$. Let

$$
F_{T}(x)=\frac{\pi}{2} \cos (x)+2 \sum_{n=2}^{2(N-1)} \frac{\cos (\pi n / 2)}{n^{2}-1} \cos (n x)
$$

Observe that

$$
\left|F_{T}(x)-F(x)\right| \leq 2 \sum_{2 N-1}^{\infty} \frac{1}{n^{2}-1}=\frac{1}{2 N-2}
$$

Now we consider the polynomial $F^{*}(x)=\frac{2 N-2}{2 N-3} F_{T}(x)$. If $|x|<\pi / 2$ we have

$$
\begin{aligned}
\left.\left|F^{*}(x)\right|=\frac{2 N-2}{2 N-3} \right\rvert\, F(x) & +F_{T}(x)-F(x) \left\lvert\, \geq \frac{2 N-2}{2 N-3}\left(|F(x)|-\left|F_{T}(x)-F(x)\right|\right) \geq\right. \\
& \geq \frac{2 N-2}{2 N-3}\left(1-\frac{1}{2 N-2}\right)=1
\end{aligned}
$$

and $C_{F^{*}} \leq \frac{2 N-2}{2 N-3}(\pi / 2+1)$.
Thus

$$
|A|=k \leq \frac{2}{\left(1+\frac{1}{C_{F^{*}}^{2}}\right)^{1 / 2}}(g N)^{1 / 2}
$$

A simple calculation gives

$$
\frac{2}{\left(1+\frac{1}{C_{F^{*}}^{2}}\right)^{1 / 2}}-\frac{2}{\left(1+\frac{1}{C_{F}^{2}}\right)^{1 / 2}} \leq \frac{1}{N}
$$

Then

$$
\begin{gathered}
|A|=k \leq \frac{2}{\left(1+\frac{1}{C_{F}^{2}}\right)^{1 / 2}}(g N)^{1 / 2}+\sqrt{\frac{g}{N}}= \\
=\frac{2 \pi+4}{\sqrt{\pi^{2}+4 \pi+8}} \sqrt{g N}+\sqrt{\frac{g}{N}} \leq 1.864 \sqrt{g N}+1
\end{gathered}
$$

because, obviously, $g \leq N$.

2. LOWER BOUNDS

Now we are interested in finite $B_{2}[g]$ sequences as dense as possible. Kolountzakis [6] exhibits a $B_{2}[2]$ subset of $\{1, \ldots, N\}$ with $\sqrt{2} N^{1 / 2}+o\left(N^{1 / 2}\right)$ elements taking $A=\left(2 A_{0}\right) \cup\left(2 A_{0}+1\right)$ with A_{0} a $B_{2}[1]$ sequence contained in $\{1, \ldots[N / 2]\}$.

In general it is easy to construct a $B_{2}[g]$ subset of $\{1, \ldots, N\}$ with $(g N)^{1 / 2}+$ $o\left(N^{1 / 2}\right)$ elements. In the sequel we improve these results

Theorem 2.1.

$$
\begin{equation*}
F_{2}(g, n) \geq \frac{g+[g / 2]}{\sqrt{g+2[g / 2]}} N^{1 / 2}+o\left(N^{1 / 2}\right) \tag{2.1}
\end{equation*}
$$

For $g=2$ theorem 2 gives

$$
F_{2}(2, N) \geq \frac{3}{2} N^{1 / 2}+o\left(N^{1 / 2}\right)
$$

In general, for g even we get

$$
F_{2}(g, N) \geq \frac{3}{2 \sqrt{2}}(g N)^{1 / 2}+o\left(N^{1 / 2}\right)
$$

And for g odd,

$$
F_{2}(g, N) \geq \frac{3-(1 / g)}{2 \sqrt{2-(1 / g)}}(g N)^{1 / 2}+o\left(N^{1 / 2}\right)
$$

Remark. Jia's constructions of $B_{h}(g)$ sequences in [5] does not work (Jia, personal communication). In the last step of the proof of theorem 3.1. of [5] we cannot deduce from the hypothesis that $\left\{b_{s 1}, \ldots, b_{s h}\right\}=\left\{b_{t 1}, \ldots, b_{t h}\right\}$. Jia's argument can be modified if we define $g_{a}(h, m)$ as the number of solutions of the equation $a \equiv x_{1}+\cdots+x_{h}(\bmod m), \quad 0 \leq x_{i} \leq m-1$. It would imply the result $|B|=\sqrt{g N}+o(\sqrt{N})$. But for $g=2$ it is the Kolountzakis's construction [6].

We need some definitions and lemmas in order to construct $B_{2}[g]$ sequences satisfying Theorem 2.1.

Definition 2.1. We say that $a_{0}, a_{1}, \ldots, a_{k}$ satisfies the $B^{*}[g]$ condition if the equation $a_{i}+a_{j}=r$ has at most g solutions. (Here, $a_{i}+a_{j}=a_{j}+a_{i}$ counts as two solutions if $i \neq j$).

Definition 2.2. We say that a sequence of integers C is a $B_{2}(\bmod m)$ sequence if $c_{i}+c_{j} \equiv c_{k}+c_{l}(\bmod m)$ implies $\left\{c_{i}, c_{j}\right\}=\left\{c_{k}, c_{l}\right\}$.
Lemma 2.2. If $a_{0}, a_{1}, . ., a_{k}$ satisfies the $B^{*}[g]$ condition, and C is a $B_{2}(\bmod m)$ sequence, then the sequence $B=\cup_{i=0}^{k}\left(C+m a_{i}\right)$ is a $B_{2}[g]$ sequence.

Proof. If $b_{1}+b_{1}^{\prime}=b_{2}+b_{2}^{\prime}=\ldots=b_{g+1}+b_{g+1}^{\prime}, \quad b_{j}, b_{j}^{\prime} \in B$ we can write $b_{j}=c_{j}+a_{i_{j}} m$
$b_{j}^{\prime}=c_{j}^{\prime}+a_{i_{j}}^{\prime} m, \quad c_{j}, c_{j}^{\prime} \in C, a_{i_{j}}, a_{i_{j}}^{\prime} \in\left\{a_{0}, . ., a_{k}\right\}$ where we have ordered the pairs b_{j}, b_{j}^{\prime} such that $c_{j} \leq c_{j}^{\prime}$.

Then we have $c_{j}+c_{j}^{\prime} \equiv c_{k}+c_{k}^{\prime}(\bmod m)$ for all j, k, which implies $c_{j}=c_{k}$, $c_{j}^{\prime}=c_{k}^{\prime}$.

On the other hand, all the $g+1$ sums $a_{i_{j}}+a_{i_{j}^{\prime}}$ are equal. Thus there exists j, k such that $a_{i_{j}}=a_{i_{k}}, a_{i_{j}^{\prime}}=a_{i_{k}^{\prime}}$

Then, for these j, k, we have $b_{j}=b_{k}$ and $b_{j}^{\prime}=b_{k}^{\prime}$.
Lemma 2.3. The subset

$$
A^{g}=A_{1}^{g} \cup A_{2}^{g}=\{k ; \quad 0 \leq k \leq g-1\} \cup\{g-1+2 k ; \quad 1 \leq k \leq[g / 2]\}
$$

satisfies the condition $B^{*}[g]$.
Proof. Let

$$
\begin{gathered}
r(m)=\#\left\{a ; \quad a, m-a \in A^{g}\right\} \\
r_{i j}(m)=\#\left\{a ; \quad a \in A_{i}^{g}, m-a \in A_{j}^{g}\right\}, \quad 1 \leq i, j \leq 2
\end{gathered}
$$

We have $r(m)=r_{11}(m)+2 r_{12}(m)+r_{22}(m)$, because $r_{12}=r_{21}$
With this notation we will prove that $r(m) \leq g$ for any integer m. First we study the functions $r_{i j}$.

- $r_{11}(m)$

If $a, m-a \in A_{1}^{g}$, then $0 \leq a \leq g-1$ and $0 \leq m-a \leq g-1$, which implies

$$
\max \{0, m-g+1\} \leq a \leq \min \{g-1, m\}
$$

Then

$$
r_{11}(m)=\max \{0, \min \{g-1, m\}-\max \{0, m-g+1\}+1\},
$$

and

$$
r_{11}(m)= \begin{cases}m+1, & 0 \leq m \leq g-1 \\ 2 g-m-1, & g \leq m \leq 2 g-1 \\ 0, & 2 g-1 \leq m\end{cases}
$$

- $r_{12}(m)$

If $a \in A_{2}^{g}, m-a \in A_{1}^{g}$, then $a=g-1+2 k, 1 \leq k \leq[g / 2]$ and

$$
\begin{gathered}
0 \leq m-(g-1+2 k) \leq g-1, \quad \text { which implies } \\
\max \left\{1, \frac{m-2 g+2}{2}\right\} \leq k \leq \min \left\{[g / 2], \frac{m-g+1}{2} .\right\}
\end{gathered}
$$

Since the k 's are integers, we can write

$$
\max \left\{1,\left[\frac{m-2 g+3}{2}\right]\right\} \leq k \leq \min \left\{[g / 2],\left[\frac{m-g+1}{2}\right]\right\}
$$

Then

$$
r_{12}(m)= \begin{cases}0, & m \leq g \\ {\left[\frac{m-g+1}{2}\right],} & g \leq m \leq 2 g-1 \\ {\left[\frac{g}{2}\right]-\left[\frac{m-2 g+1}{2}\right],} & 2 g \leq m \leq 3 g-1 \\ 0, & 3 g-1 \leq m\end{cases}
$$

- $r_{22}(m)$

Obviously, if m is odd then $r_{22}(m)=0$.
If $a, m-a \in A_{2}^{g}$, then $a=g-1+2 k, m-a=g-1+2 j, 1 \leq j, k \leq[g / 2]$
we have

$$
1 \leq j=m / 2-(g-1)-k \leq[g / 2]
$$

which implies, if m is even, that

$$
\max \{1, m / 2-g-[g / 2]+1\} \leq k \leq \min \{m / 2-g,[g / 2]\}
$$

Then

$$
r_{22}(m)=\max \{0, \min \{m / 2-g,[g / 2]\}-\max \{1, m / 2-g-[g / 2]+1\}+1\}
$$

Therefore, if m is even

$$
r_{22}(m)= \begin{cases}0, & m<2 g \\ m / 2-g, & 2 g \leq m \leq 3 g-1 \\ g+2[g / 2]-m / 2, & 3 g \leq m \leq 4 g-2 \\ 0, & 4 g-2<m\end{cases}
$$

Now, we are ready to calculate $r(m)$.

- $m \leq g-1$.
$r(m)=r_{11}(m)=m+1 \leq g$
- $g \leq m \leq 2 g-1$.
$r(m)=r_{11}(m)+2 r_{12}(m)=2 g-m-1+2\left[\frac{m-g+1}{2}\right] \leq 2 g-m-1+m-g+1=g$.
$\bullet 2 g \leq m \leq 3 g-1$.
If m is odd, $r(m)=2 r_{12}(m)=2\left([g / 2]-\left[\frac{m-2 g+1}{2}\right]\right) \leq g$. If m is even, $r(m)=2 r_{21}(m)+r_{22}(m)=2\left([g / 2]-\left[\frac{m-2 g+1}{2}\right]\right)+m / 2-g=2[g / 2]-(m-2 g)+$ $m / 2-g=2[g / 2]+g-m / 2 \leq 2[g / 2]+g-(2 g) / 2 \leq g$.
- $3 g \leq m \leq 4 g-2$

If m is odd, $r(m)=0$ If m is even, $r(m)=r_{22}(m)=g+2[g / 2]-m / 2 \leq$ $g+2[g / 2]-(3 g) / 2 \leq g / 2<g$.

Proof. (Theorem 2.1)
It is known [2], that for $m=p^{2}+p+1, p$ prime, there exists a $B_{2}(\bmod m)$ sequence C_{m} such that $\left|C_{m}\right|=p+1$ and $C_{m} \subset[1, m]$

Let us take

$$
B=\cup_{i=0}^{k}\left(C_{m}+m a_{i}\right),
$$

where $A^{g}=\left\{a_{0}, a_{1}, . ., a_{k}\right\}$ is defined in lemma 2.2.
Observe that $B \subset\left[1, m\left(1+a_{k}\right)\right]$, where $a_{k}=g-1+2[g / 2]$. Observe, also, that $|B|=\left|A^{g}\right|\left|C_{m}\right|=(g+[g / 2])(p+1)$. Then $F_{2}[g, m(g+2[g / 2])] \geq(g+[g / 2])(p+1)$.

For any integer n we can choose a prime p such that

$$
n-o(n) \leq\left(p^{2}+p+1\right)(g+2[g / 2]) \leq n
$$

Then

$$
\begin{gathered}
F_{2}[g, n] \geq F_{2}[g, m(g+2[g / 2])] \geq(g+[g / 2])(p+1) \geq \\
\geq \frac{g+[g / 2]}{\sqrt{g+2[g / 2]}} n^{1 / 2}+o\left(n^{1 / 2}\right)
\end{gathered}
$$

REFERENCES

[1]. S.Chen, "On Sidon sequences of even orders". Acta Arithm. 64 (1993), 325-330
[2]. P.Erdős and P.Turán, "On a problem of Sidon in additive number theory and some related problems". J.London Math. Soc. 16 (1941) 212-215; addendum by Erdős. J.London Math. Soc. 19 (1994), 208.
[3]. S.W.Graham, " B_{h} sequences". Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), 431-449
[4]. X.-D.Jia, "On finite Sidon sequences". J.Number Theory. 44 (1993), 84-92.
[5]. X.-D.Jia, " $B_{h}[g]$ sequences with large Upper Density". J.Number Theory 56 (1996),298-308.
[6]. M.N.Kolountzakis, "The density of $B_{h}[g]$ sequences and the minimun of dense cosine sums". Journal of Number Theory 56, 4-11 1996).
[7]. J.Singer, "A theorem in finite projective geometry and some applications to number theory", Trans.Am.math.Soc. 43 (1938) 377-85.

JAVIER CILLERUELO

Departamento de Matemáticas.
Universidad Autónoma de Madrid.
28049 Madrid. España.
e-mail: franciscojavier.cilleruelo uam.es

IMRE RUZSA
Mathematical Institute of The Hungarian Academy of Sciences, Budapest, Pf. 127, H-1364, Hungary
e-mail: ruzsa math-inst.hu

CARLOS TRUJILLO
Departamento de Matemáticas.
Universidad del Cauca.
Calle 5, No. 4-70
Popayan, Colombia
e-mail: trujillo atenea.ucauca.edu.co

