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ABSTRACT. We give a non trivial upper bound, Fp(g, N), for the size of a
Bpg] subset of {1,...., N} when g > 1. In particular, we prove
Fa(g,N) < 1.864(gN)"/2 + 1

1
(1 + cosh(m/h))1/h
On the other hand we exhibit By[g] subsets of {1,...., N} with

Fi(g,N) < (hhigN)Y" > 2.

g+ 1g/2] NL/2 4 o(N1/2
Vg +2[g/2] ol )

elements.

1. UPPER BOUNDS

Let h > 2,9 > 1 be integers. A subset A of integers is called a By,[g]-sequence if
for every positive integer m, the equation

m=2x+ -+ xp, z1 <o L, ;€A

has, at most, g distinct solutions.

Let Fy(g,N) denote the maximum size of a By[g] sequence contained in [1, N].
If A is a By[g] subset of {1, ..., N}, then (‘A‘thl) < ghN, which implies the trivial
upper bound

(1.1) Fi(g,N) < (ghh!N)Y/"

For ¢ = 1, h = 2, it is possible to take advantage of counting the differences
x; — x; instead of the sums z; 4 x;, because the differences are all distinct. In this
way, P. Erd6s and P. Turén [2] proved that — Fy(1,N) < N'/2 4 O(N'/%), which
is the best possible except for the estimate of error term.

For h = 2m, Jia [4] proved Fy,,(1;N) < (m(m!)?)1/2mN1/2m 1 O(NV4™). A
similar upper bound for Fy,,_1(1, N) has been proved independently by S.Chen [1]
and S.W.Graham [3]: Fy,,_1(1, N) < ((m!)?)}/2m=1IN1/2m=1 1 Q(N1/4m=2),

However, for g > 1, the situation is completely different because the same dif-
ference can appear many times, and, for ¢ > 1 nothing better than (1.1) is known.
In this paper we improve this trivial upper bound.

Theorem 1.1.
Fy(g,N) < 1.864(gN)*/? +1

Fu(g,N) < (hhlgN)"/" b >2

1
(1 + cosh(m/h))1/h
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Proof. Let A C [1,N] a By[g] sequence. |A| = k. Put f(t) = > . 4 €. We have
FOr =M L (n)ei™ where r(n) = #{n = ay + -+ an; a; € A}

hN ) hN )
"= hlg) e = (hlg—ru(n))e™ = hlgp(t) — q(t)
n=h =h

Since rp,(n) < hlg, we have

hN hN
> hlg —ra(n)| = (hlg —ra(n)) =
n=h n=h
= (h(N = 1)+ 1hlg—> ra(n) N —1)+ 1)hlg — k"

thus
lq(t)| < hhlgN — k"

for every value of t.

p(t) is just a geometrical series and we can express it as
1 — gi(A(N=1)+ 1)t

p(t) = M ————

if 0 < t < 27. We shall use only the property that at values of the form t = jtp,
ty, = ﬁ with integer 7, 1 < j < h(N—1), we have p(t) = 0, thus f(t)" = q(t).
Consequently

|f (Gtn)| < (hhlgN — EM)Y" for any integer j, 1< j < h(N —1).

Since the midpoint of the interval [1, N]is (N +1)/2, it will be useful to express

f as
N+1

1) = exp ( z't) 1),

0= Y e ((a- 5 )i).

acA

where

N -1) b; cos(jx) satisfying F'(z) > 1 for

Now we consider a function F'(z) = ZJ 1

|z| < 7/h. We define Cp =) |b;]|.
We are looking for a lower and an upper bound for Re (ZMN Dy, i f* (jth)>

h(N—1) h(N—1) h(N—1)
(12)  Re| > bifGta) | < Y Il Gl = > IbllfGtn)] <
Jj=1 j=1 j=1
h((N—-1)
< 3 bl (hhlgN — E")V" = Cp(hhlgN — E")M/"
j=1
On the other hand
h(N—1) h(N—1)

(1.3) Re Z b f*(jtn) | = Re Z Z be“l* Btng | =

j=1 acA  j=1



:;hél bjCOS<<a—N>thj> ;F(G—l)th) Sk

because |(a — &1)t,| < m/h for any integer a € A.
From (1.2.) and (1.3.) we have

Al =k < (hhlgN)Y/".

1
(1+ p)!/"
For h > 2, we take F(x) = W}r/h) cos(z), with Cp = W;/h) and this proves
the theorem for h > 2.
For h = 2, we can take F'(z) = 2cos(x) — cos(2z), Cr = 3, which gives |A4] <
\/%\/giN , a nontrivial upper bound.
However, an infinite series gives a better result. Take the function

Fla) = {1, 2| < 7/2

1+meos(z), /2 < |z| <.

It is easy to see that

This series satisfies the following: F(x) =1 for |z| < /2 with

1
CF—7r/2+2242 —77/2+22 (nl 2n+1>:7r/2+1.

However we must truncate the series to the integers n < 2(N — 1). Let

77 2y cos(mn/2)
Fr(z) = 5 cos(z) + 2 Z I 1 cos(nx).
n=2

Observe that

— 1 1
F - F <2 = .
Frio) = F@I<2 ) 7 = a5 —

Now we consider the polynomial F*(z) = 28=2 Fp(z). If |z| < 7/2 we have

2N -2 2N -2

|7 (2)] = S5 | (@) + Fr(z) = F(2)| 2 55— (IF ()| = [Fr(z) - F(2)]) 2
2N — 2 1
Z N3 (1_ 2N—2> =1
and Cp- < 20=2(1/2+ 1).
Thus

Al =k <
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A simple calculation gives
2 2

1
E o E < N’
(ra) (1+)

_ 2 1/2 g _
|A—k§)1/2(9N) +VN_

(142

2 4 /

because, obviously, g < N.

Then

2. LOWER BOUNDS

Now we are interested in finite Bz [g] sequences as dense as possible. Kolountzakis
[6] exhibits a By[2] subset of {1,..., N} with v/2N1/2 4 o(N'/2) elements taking
A= (24p)U (240 + 1) with Ag a Ba[1] sequence contained in {1,...[N/2]}.

In general it is easy to construct a Bs[g] subset of {1,..., N} with (gN)¥/? +
o(N'/2) elements. In the sequel we improve these results

Theorem 2.1.

(2.1) Fa(g,n) > —419/2

Vg +2[9/2]

N2 4 o(N1/?),

For g = 2 theorem 2 gives
Fy(2,N) > %N”Q + o(N'/?).

In general, for g even we get
3

FQ(ng) > ﬁ

(gN)'/2 + o(N1/2).

And for g odd,

3—-(1/9)
2y2-(1/9)

Remark. Jia’s constructions of By (g) sequences in [5] does not work (Jia, per-
sonal communication). In the last step of the proof of theorem 3.1. of [5] we
cannot deduce from the hypothesis that {bs1,...,bsn} = {b1,...,bn}. Jia’s ar-
gument can be modified if we define g,(h,m) as the number of solutions of the
equation @« = z1 + --- + x5, (mod m), 0<ax; <m— 1. It would imply the result
|B| = VgN + o(v/N). But for g = 2 it is the Kolountzakis’s construction [6].

We need some definitions and lemmas in order to construct Bs[g] sequences
satisfying Theorem 2.1.

Fy(g,N) > (gN)'/? + o(N/2)

Definition 2.1. We say that ag, a1, ...,a satisfies the B*[g] condition if the
equation a; + a; = r has at most g solutions. (Here, a; + a; = a; + a; counts as
two solutions if ¢ # 7).



Definition 2.2. We say that a sequence of integers C'is a Bs (mod m) sequence
if ¢; + ¢; = ¢ + ¢ (mod m) implies {¢;,¢;} = {ck, a1}

Lemma 2.2. If ag,aq,..,a) satisfies the B*[g] condition, and C is a By (mod m)
sequence, then the sequence B = UF_(C + ma;) is a Bag] sequence.

Proof. It by +b) =by + b = ... =bgy1 + b27+17 bj,b;- € B we can write

bj = Cj + a,;jm

b} = c} + a;jm, cj,cg- e C, aij,a;j € {ag, .., ar} where we have ordered the
pairs bj, b; such that ¢; < c/.

Then we have c¢; + ¢ = ¢ + ¢}, (mod m) for all j,k, which implies ¢; = cy,
¢ = ¢

On the other hand, all the g + 1 sums a;, + ajr, are equal. Thus there exists j, k
such that a;;, = a;,, ai; = ag,

Then, for these j, k, we have b; = by and b = bj. O

Lemma 2.3. The subset
AT=AlUAf={k; 0<k<g-1}U{g—1+2k 1<k<][g/2]}
satisfies the condition B*[g].

Proof. Let
r(m) =#{a; a,m—ac A%}
rij(m) = #{a; a€ Al,m—ae€ A}, 1<4,7<2
We have r(m) = r11(m) + 2ri2(m) + raa(m), because r15 = ro;
With this notation we will prove that r(m) < g for any integer m. First we

study the functions r;;.

e r11(m)
Ifa,m—a€ A, then 0 <a<g—1and 0 <m —a < g— 1, which implies

max{0,m — g+ 1} < a < min{g — 1, m}.

Then
r11(m) = max{0, min{g — 1,m} — max{0,m — g + 1} + 1},
and
m+ 1, 0<m<g-1
rin(m)=<2g—-m-1, g<m<2g—1
0, 2g—-1<m
e r15(m)

Ifac A, m—aec A thena=g—1+2k, 1<k <[g/2] and
0<m-(g—1+2k)<g-1, which implies

—29+2 — 1
ma{1, T2} <k < minflg/2),
Since the k’s are integers, we can write
m—2g+3 . m—g+1
mase{1, [ 5] < < mindfg/2), (P2
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Then
0, m<g
ralmy= 4 D g<m<29-1
(9] — [m=2eH] 29 <m <3g—1
0, 3g—1<m
e r92(m)

Obviously, if m is odd then rqa(m) = 0.
Ifam—a€ A, thena=g—142k,m—a=9g—1+25,1<j,k<[g/2]
we have
1<j=m/2-(9-1)—-k<]g/2],
which implies, if m is even, that
max{1,m/2 —g—[g/2] + 1} < k <min{m/2 —g,[g/2]}.
Then

ra2(m) = max{0, min{m/2 — g, [g/2|} — max{1,m/2 — g —[g/2] + 1} + 1}
Therefore, if m is even

0, m < 2g

roo(m) =

. g+2[g/2] —m/2, 3g<m<dg—2
0, 4g—-2<m

Now, we are ready to calculate r(m).
em<g—1.
r(m)=ri1(m)=m+1<g
e g<m<2g—1.
r(m) = ri1(m)+2r12(m) = 2g—m—1+2[2=4] < 2g—m—1+m—g+1 = g.
02g <m < 3g—1.
If m is odd, r(m) = 2ri2(m) = 2([g/2] — [%]) < g. If m is even,
r(m) = 2ra1(m) +raa(m) = 2([g/2] — ["=572]) +m/2 — g = 2[g/2] — (m — 29) +
m/2—g=2[g/2]+g-m/2<2[g/2]+g9—(29)/2<g.
e3g<m<4dg—2
If m is odd, r(m) = 0 If m is even, r(m) = raa(m) = g+ 2[g/2] — m/2 <
9+2[g/2] - (39)/2<g/2<g.
O
Proof. (Theorem 2.1)
It is known [2], that for m = p? + p + 1, p prime, there exists a By (mod m)
sequence C,, such that |Cp,| =p+1 and C,, C [1,m]
Let us take
B = U (Cy, + may),
where A9 = {ag, a1, ..,ax} is defined in lemma 2.2.
Observe that B C [1,m(1 + ax)], where ar, = g — 1 + 2[g/2]. Observe, also, that
|B| = [A9]|Cm| = (9 +[9/2])(p+1). Then Fyg,m(g +2[g/2])] = (9 +[g/2])(p+1).
For any integer n we can choose a prime p such that

n—o(n) < (P*+p+1)(g+2[g/2]) <n



Then
Fylg,n] > Falg,m(g +2[g/2])] = (9 + [9/2)(p+ 1) >
> 9+t l9/2] n/2 1 o(n'/?)

~ Vg +2[g/2]
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