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1. INTRODUCTION AND STATEMENT OF RESULTS

Let us denote by r(n) the number of the representations of the integer n
as a sum of two squares, 1.e., r(n) is the number of lattice points on the
circle x>+ y*=n.

It is a well known fact that if

n=2"T1 py Il 4&

p=1(4) gk = 3t4)

is the prime factorization of the integer s, then r(rn)=0 unless all the
exponents f3, are even. In that case we have r(n)=4T1] (1 +«;).

In [1], a new method was developed to study the location of lattice
points on circles centered at the origin.

In the following we introduce the notation needed to understand the
method:

We shall associate lattice points with Gaussian integers; a’+5b°=n
determines a Gaussian integer a + bi = /n ¢*™ for a suitable phase &.

A prime p,=1 (mod 4) can be represented as a sum of two squares,
p;=a’+b> 0<a<h, in only one way. Then, for each p,, then angle &,

such that a+ bi=/p, e is well defined.
We proved in [1] the following lemma:

LemMA L. I n=2"TI, -1 P? [1g=3a4q* then, the Gaussian integers
corresponding 1o the r(n) =4 T](1 + «;) lattice points on the circle x'+y’=n
are given by the formula

2nifg + 3,5, P+ 14
\/,'“) [0+ 33, @ + 14
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where @, is the angle corresponding to p, 7y, runs over the set
{(veZ; |yl <u,;, y=a,(mod 2)}, 1 takes the values 0, 1,2, 3, and

& 0 ifviseven
0= P
L ifvisodd.

One may think that the lattice points are well distributed around the
circle when r(n) is large enough, but also we could choose the @, in such
a way that all the lattice points are on small arcs. In the following we shall
try to answer these questions.

First, we have to measure the distribution of the lattice points in some
way. Let us consider the quanty S(n)/nn for r(n) # 0, where S(n) is the area
of the polygon whose vertices are the lattice points on the circle x> + y*=n.
These will be “better distributed” if S(n)/mn is close enough to the
number 1.

In this direction we have the following theorem.

THEOREM 1.

S(n)_ 1} <<(log log n

2
Jor infinite many integers.
nn log n

We cannot hope for a much better result because it is easy to prove that
|S(n)inn—1|» 1/r’(n) and r(n) = O(n°) for every &> 0.
Obviously, Theorem 1 implies that

. (n)

lim sup =1.
n— x nn
rin)#0

On the other hand, we have

.Sy 2
lim inf ( ==
n— h m
rin)y#0

because it is clear that S(2%)/m2% = 2/k for every integer k.
The following result also implies that liminf, ., , ., <0 S(n)/An=2/n
but, in a certain sense, it is more unexpected.

THEOREM 2. For each £>0 and for each integer k, there exists a circle
24y =n such that all the lattice points are on the arcs \jne™" "
18] < t=0,1,2,3, and the number of them is greater than k.

We have also the more generai result.
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THEOREM 3. The set {S(n)/mn, r(n)#0} is dense in the interval [2/m, 1].

Proof of Theorem 1. For each integer k let us consider n,=
12 (m?+1) and

m=1

! 50k 1
¢'= Y arctan—— Y arctan—,  k<I/<50k
m=1 m=14+1 m

by Lemma 1, each angle ¢'/2n determines a lattice point (a,, b,) on the
circle x* + y? = ny.

We do not care if the numbers m” + | are primes or not, but, obviously
we cannot expect that the lattice points described above are all the lattice
points on the circle.

We observe that ¢'—¢’ ' = 2arctan(l//) < 2arctan(l/k) and
>k << sox 2 arctan(1/l) > 2xn.

Then, the distance between two neighbour lattice points on the circle is
smaller than w/”k 2 arctan(1/k).

With an easy argument we can estimate the area S,(n,) of the circle’s

region not included in the polygon whose vertices are \/;:ei‘”[, k <1< 50k.

0 <nn,—S(n,) < Solng)

1 1 — . 1 — 1
< 50k (% (2 arctan E) -3 (2 /M sin arctan E)(Jnk cos arctan E))
= 50k t Tl 2 arctan !
= 50kn, | arctan ;- — > sin { 2arctan

11 11 { 1 n
= 50kn, <arctan P (2 arctan x 3 <2 arctan % +0 (2(—3)>> =0 (ﬁ)

It is easy to prove that k » log n,/log log n, and we conclude the proof
of Theorem 1 by dividing by nn,.

Proof of Theorem 2. We have to use a deep theorem about the
distribution of the primes p =a+ bie Z(i), ab#0 in the lattice.

THeOREM (I. V. Tchoulanovski). Ler D be a convex region contained
inside the circle x>+ 2 < R? with area cR?, ¢>0. Then

5 1~

peD

2cR?
nlog R’

LEmMMA 2. For each o€ [0, 2n) and for every ¢ >0, there exists a prime
p=a’+b? athi= \/; e”, such that |® —a| <e.
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Proof. Let us choose D= {re"**” 0<r<R, —e<0<e¢} and R large
enough.

Taking 2 =0 in Lemma 2 we can find, for cach ¢ > 0 and for each integer
k, a prime p,, =a’, + b2, such that

aHibo=p., e |®, ] <k

Let n, =p*,. According to Lemma 1, all the lattice points on the circle
x?+y?=n, are given by the formula

. N 200
\/nk el.,‘Pr.M m-)r.’

where 7 runs over the set {yeZ; |y <k, 7=k (mod2)} and s takes the
values O, 1, 2, 3.

To finish the proof of Theorem 2 we observe that r(n) =4(k + 1) > k and
Iy®. .| <e in all the cases.

Proof of Theorem 3. Let a€(2/r, 1). Then, there exists S e (0, n/4) such
that the area of the dotted region is man,. The idea is to look for circles
such the polygons with vertices in the corresponding lattice points are close
to the region described in Fig. 1.

Let us consider /27, /2%, ..., B/2%, and &= p/2%.

According to Lemma 2, for each j=2,3,..,k we can find a prime
py=a’+ b2, a,+ib,= /p, > such that (2nd,— /27| <e.
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We choose n, =[]¥_, p2. The lattice points on the circle x?+ y>=n, are
given by the formula
\/n_kezm);/" 2P+ r,“4}’

where 7, takes the values —2,0, or 2, and =0, 1, 2, 3.
All the integers r, 0 <r<2* ' can be written in the form

r=ay(r)2°+a,(r)2'+ - +a, 277

where the a,(r) takes values 0 or 1.
For every r we choose 7} =2a, ,(r) and we have

k k k
, fa, (r)2% 7 kp pr k
Z‘/,-‘PFZZ : lzk +0 3% | T 9k i+ 0 2% |

ji=1

i=2

Then, for each r, 0<r<2* ! there exists a lattice point {a,, b,) on the
: 2 2 : [ 2nid
circle x° + y“=n,, a,+ib, = /n, ™%, such that

Br , , kB
27’!@,—7—] <&, & =22k'
Then
2nd, 1—2n¢,]<2Tﬂ7+2£’, r=1,..,2% "—1
and
[2n@ s ,|—[)’|<2£1+£’.

Furthermore there are no lattice points on the arcs

ettt Bre<f<n2—f—e  1=0,1,2,3.

Now, with the same geometric argument used in the proof of Theorem 1
and making k — o we obtain the theorem.
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