The least common multiple of a quadratic sequence
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ABSTRACT

For any irreducible quadratic polynomial f(x) in Z[z] we obtain the estimate
log lLem. (f(1),...,f(n)) = nlogn + Bn + o(n) where B is a constant depending
on f.

1. Introduction

The problem of estimating the least common multiple of the first n positive integers was first investigated
by Chebyshev [Che52] when he introduced the function ¥(n) = 3_ ..., logp = logl.cm.(1,...,n) in his
study on the distribution of prime numbers. The prime number theorem asserts that ¥(n) ~ n, so the
asymptotic estimate logl.c.m.(1,...,n) ~ n is equivalent to the prime number theorem. The analogous
asymptotic estimate for any linear polynomial f(z) = ax+b is also known [Bat02] and it is a consequence
of the prime number theorem for arithmetic progressions:

@ 1
loglem.(f(1),...,f(n)) ncﬁ(q) 1g:k<q e (1)
(k,q)=1

where ¢ = a/(a,b).

We address here the problem of estimating logl.c.m.(f(1),..., f(n)) when f is an irreducible quadratic
polynomial in Z[z]. When f is a reducible quadratic polynomial the asymptotic estimate is similar to that
we obtain for linear polynomials. This case is studied in section §4 with considerably less effort than the
irreducible case. We state our main theorem.

THEOREM 1. For any irreducible quadratic polynomial f(x) = ax? + bx + ¢ in Z[z] we have
logLe.m. (f(1),...,f(n)) =nlogn+ Bn+ o(n)
where B = By is defined by the formula

(d/p)logp 1 r
Bf:'y—l—QlogZ—Z + Z log(1+ - (2)
—~ p—1 ¢a) 52, ( q)
(rg)=1
14+ (d s(f,p*
+ loga + Z logp(i( /) —Zi(fkp ))
p—1 p
p|2aD k>1

In this formula v is the Euler constant, D = b*> — 4ac = dI?, where d is a fundamental discriminant, (d/p)
is the Kronecker symbol, ¢ = a/(a,b) and s(f,p*) is the number of solutions of f(x) =0 (mod p*) which
can be easily calculated using Lemma 2.

For the simplest case, f(z) = 2 + 1, the constant By in Theorem 1 can be written as

log 2 (=1/p)logp
Br=~—-—1-— _
=== = > b1 (3)
p#2
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where (—1/p) is the Kronecker symbol (or Legendre symbol since p is odd) defined by (—1/p) = (fl)pz;1
when p is odd.

In section §3 we give an alternative expression for the constant By which is more convenient for
numerical computations. As an example we will see that the constant By in (3) can be written as

log 2 C > ,X4 > log 2
Br=~v—-1-— —
=7 2 +Z X_1) ;22’“—1

= —0.066275634213060706383563177025...

It would be interesting to extend our estimates to irreducible polynomials of higher degree, but we
have found a serious obstruction in our argument. Some heuristic arguments and computations allow us
to conjecture that the asymptotic estimate

loglem. (f(1),...,f(n)) ~ (deg(f) — 1)nlogn (4)

holds for any irreducible polynomial f in Z[z] of degree deg(f) > 3. In subsection 2.4 we explain the
obstruction to prove this conjecture. There we also proof that

loglcm. (f(1),...,f(n)) ~nlogn (5)

holds for any irreducible quadratic polynomial f(z). Although this estimate is weaker than Theorem 1,
the proof is easier.

To obtain the linear term in Theorem 1 we need a more involved argument. An important ingredient in
this part of the proof is a deep result about the distribution of the solutions of the quadratic congruences
f(x) = 0 (mod p) when p runs over all the primes. It was proved by Duke, Friedlander and Iwaniec
[DFI95] (for D < 0), and by Toth (for D > 0). Actually we need a more general statement of this result,
due to Toth.

THEOREM 2 [Tot00]. For any irreducible quadratic polynomial f in Z[x], the sequence
{v/p, 0Sv<p<z peS, flr)=0 (modp)}

is well distributed in [0,1) as z tends to infinity for any arithmetic progression S containing infinitely
many primes p for which the congruence f(x) =0 (mod p) has solutions.

Acknowledgment. We thank to Arpad Toth for clarifying the statement of Theorem 1.2 in [Tot00], to
Guoyou Qian for detecting a mistake in a former version of Lemma 2, to Adolfo Quirds for conversations
on some algebraic aspects of the problem, to Enrique Gonzdlez Jiménez for the calculations of some
constants and to Fernando Chamizo for some suggestions and a carefully reading of the paper. Finally
we thank to the anonymous referee for some valuable suggestions which have improved the quality of the
presentation of this paper.

2. Proof of Theorem 1

2.1 Preliminaries
For f(x) = az? + bz + ¢ we define D = b? — 4ac and

Lo(f) = Lem.(f(1),..., f(n)).

Since L, (f) = Ln(—f) we can assume that a > 0. Also we can assume that b and ¢ are nonnegative
integers. If this is not the case, we consider a polynomial fx(z) = f(k + z) for a k such that fi(x) has
nonnegative coefficients. Then we observe that log L, (f) = log L,(fx) + Ok(logn) and that this error
term is negligible for the statement of Theorem 1.

We define the numbers 5,(n) by the formula

_ Hpﬁp(n) (6)
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where the product runs over all the primes p. The primes involved in this product are those for which the
congruence f(z) =0 (mod p) has some solution. Except for some special primes (those such that p | 2aD)
the congruence f(z) =0 (mod p) has 0 or 2 solutions. We will discus this in detail in Lemma 2.

We denote by Py the set of non special primes for which the congruence f(x) =0 (mod p) has exactly
two solutions. More concretely

Pr=A{p: pt2aD, (D/p) =1}

where (D/p) is the Kronecker symbol. This symbol is just the Legendre symbol when p is an odd prime.

The quadratic reciprocity law shows that the set Py is the set of the primes lying in exactly ¢(4D)/2 of
the ¢(4D) arithmetic progressions modulo 4D, coprimes with 4D. As a consequence of the prime number
theorem for arithmetic progressions we have

T
<z: pe Py}~
#{p<a: pePy} Slogz
or equivalently,
S el
log

ov<pLe
f(¥)=0 (mod p)

Let C' = 2a 4+ b. We classify the primes involved in (6) in
— Special primes: those such that p | 2aD.

Small primes : p < n?/3.

bad pri : p? i) f p <
— p € Py ¢ Medium primes: n?3<p<Cn : “ prlr'nes b 2| f(l) oF some Z S

good primes: p* { f(i) for any i < n
Large primes: Cn < p < f(n).

We will use different strategies to deal with each class.

2.2 Large primes
We consider P,(f) and the numbers a,(n) defined by

Puh = L0 = [, ¥

=1 P

Next lemma allow us to analyze the large primes involved in (6).
LEMMA 1. Ifp > 2an + b then ay,(n) = Gp(n).

Proof. If B,(n) = 0 then a,(n) = 0. If ap(n) > By(n) > 1 then there exist ¢ < j < n such that p | f(4)
and p | f(j). It implies that p | f(j) — f(i) = ( —4)(a(j +i)+Db). Thus p | (j —4) or p | a(j + i) + b, which
is not possible because p > 2an + b. O

Since C = 2a + b we can write
log Ly (f) =log Pa(f) + Y (Bp(n) — ap(n))logp. (8)
p<Cn

Indeed we can take C to be any constant greater than 2a+b. As we will see, the final estimate of log L, (f)
will not depend on C.

The estimate of log P, (f) is easy:

c

log Pu(f) = log [T £(k) = log [T ak?(1+ ki + a0 @)
k=1 k=1

- b c
_ 2
— nloga + log(n!)? + ;;1 log(l Tt @)

= 2nlogn + n(loga — 2) + O(logn)
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and we obtain
log L,,(f) = 2nlogn + n(loga — 2) + Z (Bp(n) — ap(n))logp + O(logn). (10)

p<Cn

2.3 The number of solutions of f(z) =0 (mod p*) and the special primes

The number of solutions of the congruence f(x) =0 (mod p¥) will play an important role in the proof of
Theorem 1. We write s(f,p"*) to denote this quantity.

The lemma below resumes all the casuistic for s(f, p¥). We observe that except for a finite number of
primes, those dividing 2aD, we have that s(f;p*) = 2 or 0 depending on (D/p) =1 or —1.
LEMMA 2. Let f(x) = ax?® + bx + ¢ be an irreducible polynomial and D = b* — 4ac.
(i) If pt2a, D =p'D, and (D,,p) =1 then
plk/2l k<l
s(f,p*) =10, k> 1, 1 odd or (D,/p) = —1
292 k>1, I even (Dp/p) = 1.

ifp|b
(ii) Ifp|a, p+#2 then s(f,p") = {‘f j.fﬁ N

1 if a is even
(iii) If b is odd then, for all k > 2, s(f,2%) = s(f,2) = ¢ 0 if a is odd and ¢ is odd
2 if a is odd and c is even.
(iv) Ifb is even and a is even then s(f,2%) =0 for any k > 1.
(v) Ifbis even and a is odd, let D = 4'D', D' #0 (mod 4).
(a) Ifk <20 —1, s(f;2F) =22
) IFE—2 (12 = {21, D' =1 (mod 4)
0, D' #1 (mod4).
21 D'=1 (mod 8)

() fk=20+1, s(f;2F)= {o D' #1 (mod 8).

Proof. The proof is a consequence of elementary manipulations and Hensel’s lemma. When the modulo is
an odd prime p and p { a, the congruence ax?+bx+c =0 (mod p) is equivalent to the congruence y? = D
(mod p). Hensel’s lemma (see for example Theorem 123 in [HWO08]) provides a method to obtain all the
solutions of the congruence y> = D (mod p**!) from the solutions of 4> = D (mod p*). In this way we
obtain all the distinct cases contained in part (i) of the lemma. Part (ii) is trivial and parts (iii),(iv) and
(v) correspond to the case p = 2 which can be analyzed easily. O

COROLLARY 1. If p{2aD then s(f,p*¥) =1+ (D/p).

Proof. In this case, | = 0 and D, = D in Lemma 2. Thus s(f,p*) =0 =1+ (D/p) if (D/p) = —1 and
s(f.p*)=2=1+(D/p)if (D/p) =1. O

LEMMA 3.
s(f,p") logn
k>1

where s(f;p*) denotes the number of solutions of f(x) =0 (mod p*), 0 < = < pk.

Proof. We observe that the maximum exponent cy,; such that p*»i | f(i) can be written as oy, ; =

2okz1, prigy 1 Thus
apn)=> api=3_ Y 1=> Y 1L (12)

i<n i<n k>1 k=21 i<n
PEIf () PEIf ()
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The trivial estimate

s(f;") Lﬂ < D> 1<s(fY ([;] +1)
. i<n, pF|f(4)
gives
.k
> 1= o). (13)
i<n
p*1£(3)

Putting (13) in (12) and observing that k < log f(n)/logp and that s(f,p*) < 1, we get

ap(n) = nz S(J;kpk) + O(logn)

= log p

Since p?»(™ < f(n) we have always the trivial estimate

Bp(n) <log f(n)/logp < logn/logp. (14)
When we substitute (14) and (11) in (10) for the special primes we obtain

s(f,p")logp
log L,,(f) =2nlogn+n | loga —2 — Z Z(pg (15)
p|2aD k=1

+ Y (Bp(n) —ay(n))logp+ O(logn).

p<Cn, pf2aD

Lemma 3 has an easier formulation for non special primes.

LEMMA 4. For any p{2aD we have

1+ (D/p) <logn)
= . 1
apn) = n= = 4 O (16)
Proof. 1t is a consequence of Lemma 3 and Corollary 1. O

2.4 The asymptotic estimate

This subsection is a break in the proof of Theorem 1 to prove, in an easy way, that the weaker estimate
logl.em.(f(1),..., f(n)) ~nlogn (17)
holds for any irreducible quadratic polynomial f.

We substitute (14) and (16) in (15) to obtain

log Lu(f) =2nlogn+ > (By(n) — ay(n))logp+ O(n) (18)
p<Cn, pt2aD

=2nlogn —n Z loﬂ—n Z M+O Zlogn + O(n).

—1 -1
p<Cn, pt2aD p p<Cn, pf2aD p<Cn

Now we get (17) using that > fff ~ logz and that the sum > (D/Zf’% is a convergent sum.
This is the moment to explain the main obstruction to obtain the analogous estimate for polynomials
of degree deg(f) > 3. For example we consider the polynomial f(z) = 23 + 2. Using the same approach

used in the quadratic case we get

log L,(f) = 3nlogn + Z (Bp(n) — ap(n))logp + O(n). (19)

p<3n?
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We observe that the primes involved in the sum have the quadratic bound 3n? instead the linear bound
we have in the case of quadratic polynomials. The reason is that if p | k> +2 and p | 72 +2 with j < k < n
we only can say that p < 3n2.

It is easy to check that 3,(n) < logn/logp and a,(n) = nps_pl +0O(logn/log p) where s, is the number
of solutions of 3 +2 =0 (mod p). Then we obtain

splo
log L (f) = 3nlogn —n > 222 L 0m) + 37 (B,(n) — ap(n)) logp. (20)
p—1
p<n n<p<3n?
The Frobenius density theorem [LS96] implies that s, = 1 in average, so > ., s‘;)lf%p ~ log z. Then, in
the case f(z) = 2 + 2 we have
log Ln(f) = 2nlogn(1+o0(1)) + Y (By(n) — ap(n))logp. (21)

n<p<3n?

We observe that 3,(n) = a,(n) unless there exist j < k < n such that p | k* + 2, p | j® + 2. In that
case we have the trivial bound |5,(n) — a,(n)| < 1. Thus, to obtain the asymptotic log L,,(f) ~ 2nlogn
for f(z) = 2® + 2 we should prove that

{p: n<p<3n? p|k*+2, p|j®+2forsomel<j<k<n}| =o(n)
In general, when f(x) is an irreducible polynomial, the asymptotic estimate logl.c.m(f(1),..., f(n)) ~
(deg(f) — 1)nlogn would follow from the estimate
{p: n<p<ntsD1 b | [(E), p| f) for some 1< j < k < n}| = o(n). (22)

This is obviously true when deg(f) = 2 but we do not know how to prove it when deg(f) > 3.
We come back to the proof of Theorem 1.

2.5 Medium primes
These primes can be also classified in bad and good primes. Bad primes are those p such that p? | f(i)
for some i < n. Good primes are those are not bad primes.

As we have seen in the previous section, for any prime p € Py the congruence f(x) =0 (mod p) has
exactly two solutions, say 0 < vp1,Vp2 < p.

If p is a good prime, we have that a,(n) is just the number of integers ¢ < n such that p | f(¢). All
these integers have this form

vor +kp, 0<k< ["‘””1] (23)

Vpakp, 0<k< T ””7] (24)

Also it is clear that if p is a good prime then §,(n) < 1. These observations motivate the following
definition:

DEFINITION 1. For any p € Py we define

% n—"rpi n—"vp2
a(n) = + + 2 25
(") { p ] [ p } ()
N 1, if Bp(n) 2 1
= 26
Fr (n) {0, otherwise. (26)
LEMMA 5. For any p € Py we have
) apn) —ap(n) = 552y + O(logn/log p)
ii) ap(n) = a3 (n) and B,(n) = B (n) if p* 1 f(i) for any i < n.
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Proof. i) Lemma 4 implies that a,(n) = ;T"l + O(logn/logp) when p € Py. On the other hand we have

that o (n) = 27” + O(1). Thus, ay(n) — ay(n) = % + O(logn/logp).

ii) The first assertion has been explained at the beginning of the subsection. For the second, if p 1 f(i)
for any i < n then 8,(n) = B;(n) = 0. And if p | f(i) for some i < n we have that §;(n) = B,(n) =1

since p* 1 f(i). O

By substituting (16) and (14) in (15) for small primes we obtain

k)1
logL,(f) =2nlogn+n | loga —2 — Z Zw (27)
p|2aD k>1 p
14 (D/p))logp
s UHDVOer 5 (5, m) — ay () logp + O,
p<n?/3 P n?/3<p<Cn
pt2aD pEPy
Now we split the last sum in (27) in
Yo (Bpn)—apm)logp= > (Bp(n) = By(n) — ap(n) + aj(n))logp (28)
n?/3<p<Cn n?/3<p<Cn
pEPy pEPy
+ Y Bpmlogp— Y aj(n)logp+O(n*/?)
p<Cn n2/3§p<0n
PEPy pEP;

= 51(n) + Sa(n) — Ss(n) + O(n?/3).

To estimate S1(n) we observe that Lemma 5 ii) implies that 3,(n) — 3, (n) —ap(n)+aj(n) = 0 for any good
prime p. On the other hand, Lemma 5 i) and (14) implies that |3,(n) 8, (n)—ap(n)+ay(n)| < logn/log p.

Thus,
1S1(n)| < logn |{p: n*? < p< Cn, pbad}|. (29)

LEMMA 6. The number of bad primes p{ D, Q < p < 2Q is < n?/Q?.

Proof. Let P, the set of all primes p such that f(i) = ai? + bi + ¢ = rp? for some i < n. For p € P, we
have (2ai + b)? — 4arp?* = D and then, |2‘”be —2y/ral < p% < é We observe that all the fractions
%, 1<i<n Q< p<2Q are pairwise different. Otherwise (2ai + b)p’ = (2ai’ + b)p and then
p | 2ai + b. But it would imply that p | (2ai + b)? — 4arp? = D, which is not possible. On the other hand,
‘%j"b — %/,J"b > p;, > é Thus, the number of primes p € P, lying in [Q,2Q] is < 1. We finish the
proof by observing that r < f(n)/Q* < n?/Q>. O

Now, if we split the interval [n2/ 3 Cn] in dyadic intervals and apply lemma above to each interval we
obtain [S;(n)| < n?/®logn.

To estimate S3(n) = > n) we start by writing

*
n2/3<p<Cn, pEPy ap(

* n—Upa n—Vp2
a (n) = + +2
() { p ] { p ]

:2n+(1_%n)+(1_%w)+1_{n—%J}+1_{n—%z}
P \2 p 2 p/ 2 L p J 2 LU »p
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Thus
1+ (D lo
S5(n) =n Z ( (D/p))logp (30)
n2/3<p<Cn p
1 v 1 n—v
+ Z (5—;> logp + Z (5—{ » })1ng (31)
n?/3<p<Cn n?/3<p<Cn
0sv<p 0<v<p
f(w)=0 (mod p) f(v)=0 (mod p)
1 D 1
=n ) L+ (D/p))loep O(n*?) (32)
p—1
n2/3<p<Cn
1 v 1 n—v
+ > (5 - 2;) logp + > (5 —~ { S }) log p (33)
or<p<Cn or<p<Cn
f(v)=0 (mod p) f(v)=0 (mod p)

Substituting this in (28) and then in (27) we obtain

)1
log L,,(f) =2nlogn +n | loga —2 — Z Zw (34)
p|2aD k>1 p

S (L+(D/P)I0BP o ) 7y (n) = Ty(n) + O(n?* log )

p<Cn p= 1
pf2aD
where
Sa(n) = > By(n)logp (35)
p<Cn
pGPf
1 v
n = <Z (5- 5) log p (36)
<r<p<Cn

f(v)=0 (mod p)

nm= Y (- {5 e (37)

or<p<Cn
F(¥)=0 (mod p)

Sums T3 (n) and Tz(n) will be o(n) as a consequence of Theorem 2. But this is not completely obvious
and we will provide a detailed proof in the next subsection.

First we will obtain in the next lemma a simplified expression for (34).

LEMMA 7.
log L (f) = nlogn + cn + Sa(n) — Ti(n) — Ta(n) + O(n?/3logn), (38)

where

(d/p)logp 1 s(f,p")
c:loga—logC—2+’y—Z?—i—Zlogp(p_l—Z p )
pf2aD p|2aD k>1

and Sz(n), Ti(n) and Tz(n) are as in (35), (36) and (37).

Proof. Let D = I2d where d is a fundamental discriminant. First we observe that (D/p) = (I/p)%(d/p)

and that if p t+ D then (D/p) = (d/p). As a consequence of the prime number theorem on arithmetic

progressions we know that the sum Zp (d/pp)# is convergent. On the other hand, the well known estimate
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> Lep — Jogz — 4 + o(1) where 7 is the Euler constant, implies that

<z p—1
1+ (D 1 1
Z (L+( /pi) ng:logn+log0—7— Z ogp (39)
p<Cn p— p|2aD p=
pf2aD
d/p logp
+ > +o(1).
pf2aD
Finally we substitute (39) in (34). O

2.6 Equidistribution of the roots (mod p) of a quadratic polynomial

Now we develop a method to prove that T;(n), T2(n) and other similar sums which will appear in the
estimate of So(n) are all o(n). These sums are all of the form

> a(v,p,x)logp (40)
ov<p<Lez, peS
F()=0 (mod p)

for some function a(v,p,z) < 1. By partial summation we also get easily that

Z a(v,p,z)logp = logz Z a(v,p,z) — /gc % Z a(v,p, ) (41)

or<p<Le, peES orv<p<Le, peS 1 o<r<p<t, peS
f()=0 (mod p) f()=0 (mod p) f(1)=0 (mod p)
=logx Z a(v,p,z) + o(z/log x). (42)

or<p<Le, peS
f(¥)=0 (mod p)

Hence, to prove that the sums (40) are o(z) we must show that
S a(npx) = ofa/ logz).

ov<p<Lz, peS
F@)=0 (mod p)

Theorem 2 implies, in particular, that for any arithmetic progression S and for any piecewise continuos
function ¢ in [0, 1] such that f01 g = 0 we have that

E g(v/p) = o(z/logx). (43)
ov<p<Lez, peS
F)=0 (mod p)

LEMMA 8. Let f be an irreducible polynomial in Z[zx]. We have that the sums Ti(n) and T(n) defined
n (36) and (37) are both o(n).
Proof. To prove that T1(n) = o(n) we apply (43) to the function g(z) =z — 1/2.

To prove that Ta(n) = o(n), the strategy is splitting the range of the primes in small intervals such
that n/p are almost constant in each interval. We take H a large, but fixed number and we divide the

interval [1,Cn] in H intervals L, = (“z1Cn, £Cn], h=1,...,H. Now we write
— 1
S (") - 2) =D+ Dan + S + O/ (H logm) (a4
P 2
or<p<n

f(¥)=0 (mod p)
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where

e Sy (e

H2/3<h<H O<v<p€Ly
f()=0 (mod p)

n v H v
Ygo = Z Z ({*_7}_{7_7})
H2/3<h<H O0<v<p€lLy, p p h P
F(¥)=0 (mod p)
AR s

n v H v
e £ S (@000
H2/3<h<H O0O<Sv<p€lLy P P p
f(r)=0 (mod p)
veldwiy

To estimate X351 we apply (43) with the function {% — x} — % in each L; and we obtain

Y31 = o(Hn/logn) = o(nlogn) (45)
since H is a constant.
To bound X3, we observe that if p € Lj, and % g [%, %], then
n v H v n H H
N T
p P h pl p h " hh-1)
Thus
H 1 m(n) n
[B32| < Z Z 2 < Z Z T3 < gis < gis logn’ (46)
H2/3<h<H pELp H2/3<h<H pELp

To bound X33 first we observe that

Y33 K Z Z 1

H2/3<h<H 0<
flv)=
€

H2/3<h<H  0<
flv)=

> D Wh—1)’

H2/3<h<H OSv<p€elLy,
f(¥)=0 (mod p)

where, here and later, x[q4)(z) denotes the characteristic function of the interval [a, b].
Theorem 2 implies that
H
Z (X[H/h,H/(h—l)](V/p) - m) = o(n/logn).

0<v<p€eLy
f(v)=0 (mod p)

Thus,

D DI (e N > (47)

logn

H2/3<h<H H2/3<h<H O<v<p€lLy
f(v)=0 (mod p)
m(n) 1/3
< o(n/logn)+ e < o(n/logn)+ O(n/(H"/"logn)).

Estimates (45), (46) and (47) imply Y3 < o(n/logn) + n/(H3logn). Since H can be chosen arbi-
trarily large, we have that X3 = o(n/logn) which finishes the proof. O

10
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To present Lemma 10 we need some previous considerations.
For primes p € Py the congruence f(z) =0 (mod p) has exactly two solutions, say 0 < vp1, Vp2 < D.
In some parts of the proof of Theorem 1 we will need to estimate some quantities depending on
min(v, 1, Vp,2). For this reason it is convenient to know how they are related.
If f(z) = az® 4+ bx + c and p € Py then vp1 + vpo = —b/a (mod p). The next lemma will give more
information when the prime p belongs to some particular arithmetic progression.
LEMMA 9. Let ¢ = a/(a,b), | = b/(a,b). For any r, (r,q) = 1 and for any prime p = Ir~! (mod q) and
p € Py we have
1% v, r l
2l 2=l (mod 1). (48)
p p q pq
Proof. To avoid confusions we denote by g, and p, the inverses of ¢ (mod p) and p (mod q) respectively.
From the obvious congruence ¢g, + pp, = 1 (mod pq) we deduce that %” + %‘1 — p—lq € Z. Since p = 7,

(mod ¢q) we obtain I — 1l (mod 1). Thus

v v, l 1 rl T l
bl Up2 _ qp:_l<_ q)E_ (mod 1)
P p p pe q q pq
O
) . ! : les i L1
Since the two roots are symmetric respect to ;—q ~ g necessarily one of then lies in |:2Lq T g 2 +

25— 2;71) (mod 1) and the other in the complementary set.
DEFINITION 2. For (r,q) =1, 1 <r <gq,p=Ir~' (mod q) and p € P; we define v, ; the root of f(z) =

(mod p) such that

Vp.1 [ T l T )
eTr, = |— (mod 1),
p 7ol 2pq 272 q
and we define vy o the root of f(x) =0 (mod p) such that Vp 2 [0, 1)\ Typ.

LEMMA 10. Assume the notation above. Let aq, a, 1, B2, 1,2 be constants and g1(x), go(x) two linear

functions satisfying that
n c n c
Jn(p) = [91 () + .92 <) - 2} CTrp
p p p p

for any prime p € K,, = [ayn + B1, agn + B2]. We have

> (o () ~ 215 0)]) ogp = o(n) (49)
pGKnﬁPf
p=lr—?!

(mod q)

where xy is the characteristic function of the set I.

Proof. Since J,(p) C T;p, then vo/p & J,,(p) and we can write

Z X (p)( ) logp = Z Jn(p) <p) log p

pEK,NP; 1<v<peKy,
p=lr~' (mod q) f(¥)=0 (mod p)
p=lr~' (mod q)
and
> 2L)llogp= > |Ju(p)|logp.
pEKnmPf 1<v<peKy,,
p=lr~!  (mod q) f(¥)=0 (mod p)
p=lr~! (mod q)
Thus,
Up,1 14
S () -2ne)eer= S (xnw ()~ 1a0)) logp.
pEK,NPy p 1<vpeK,, p
p=lr~'  (mod q) f(v)=0 (mod p)
p=lr~' (mod q)

11
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The proof will be accomplished by showing that

v
> (ww(5) = a®l) = o(n/logn). (50)
1<v<peks, p
f(v)=0 (mod p)
p=lr~'  (mod q)

We split K, in intervals L, = (2ztn, £n] of length n/H and two extra intervals I, F (the initial and the
final intervals) of length < n/H. Here h runs over a suitable set of consecutive integers H of cardinality

< (az - al)H.
Let Ij, denote the interval [g1(H/h) + c1 H/(nh), g2(H/h) + caH/(nh)].

We write
v
S (e (B) - 1hm) =S+ S+ 55 (51)
1<V <pe Ko, p
f(¥)=0 (mod p)
p=lr~—' (mod q)
where

14
=Y X (w(;) - nl)
heH ov<pelLy P
f(v)=0 (mod p)
p=lr~! (mod q)

> > (Il = @)

heH  O0Sv<p€eLy
F()=0  (mod p)
p=lr~! (mod q)

S (el w(®)

heH  0<v<peLy P

f(V)E(l) (mod p)

b))

23

p=lr~

v
> (w(G)-1nwml).
0<v<p€eIUF p
F)=0 " (mod p)
p=lr~—' (mod q)

(mod q)

4

The inner sum in ¥; can be estimated as we did in Lemma 8, (with the function g(z) = xr(x) — |I|
instead of g(x) = x — 1/2), and we get again that ¥, = o(n/logn).

To estimate ¥ and Y3 we observe that if p € Lj, then J,(p) and I, are almost equal. Actually,
comparing the end points of both intervals and because g is a linear function, we have that and x s, () (z) =
X1, () except for an interval (or union of two intervals) Ej, of measure

|Ep| < min(1, H/h?).
In particular, the estimate ||J,,(p)| — |Ix|| < min(1, H/h?) holds.
Thus, we have

Sy Yy omin(LH/MB) < YT Y 1+ Y Z#

heH peLln h<H?2/3 pELp H?/3<heH pELn
1
H1/3

< w(n/HY3) + m(ann + o) < n/(HY?logn).

12
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To bound X3 first we observe that

S5 Y > xm.(v/p)

REH  O<v<pELn
f(v)=0 (mod p)

p=lr~t (mod q)
=Y > GmWwp-lED+Y Y |E
heH 0<v<p€ELy heH 0<v<p€ELy
f(¥)=0 (mod p) f(v)=0 (mod p)
p=lr~! (mod q) p=lr~! (mod q)
Theorem 2 implies that
> (B, (v/p) = |En|) = o(n/logn).
O<v<p€eLy
f()=0 (mod p)
p=lr~' (mod q)

On the other hand,

SIS SRR DD SEED DI DF-

heH  Osv<p€Lp h<H?2/3 pELn H2/3<heH pEln
f(v)=0 (mod p)
p=lr~! (mod q)
< w(n/HY3) +
< "
HY3logn’

1
s m(ain + ag)

Thus, X3 < o(n/logn) 4+ n/(H'/?logn).
Finally we estimate Y,. We observe that
1S4l <D 14+ ) 1< n/(Hlogn)
pel peEF

as a consequence of the prime number theorem. Then

140 + 23434 = O(n/(HY3logn)) + O(n/(Hlogn)) + o(n/ logn)

finishing the proof because we can take H arbitrarily large. O
2.7 Estimate of S3(n) and end of the proof
LEmMMA 11.
1
Sa(n) = n(l +logC —logd + — Z log(1 + f)) +o(n) (52)
#a) q
,q)=1
Proof. Following the notation of Lemma 9 we split
San) = > Sar(n)+ > Bi(n)logp= Y Sa(n)+0(1)
(r,g)=1 p<l (r,q)=1
1<r<q 1<r<q
where
Sar(n) = Z B, (n)logp. (53)
I<p<Cn
p=lr~' (mod q)
Since p = Ir~! (mod q), Lemma 9 implies that ”’;T’l + % =r- é (mod 1). We observe also that,
sincep>lwehavethat0<gfégl.

13



JAVIER CILLERUELO

Now we will check that

: n 1 T l

1, if 23t e g

X[z -t ny(Vp,1/P), if t-tcnoclyr L

5 (n) = Erint rris AN 2 ¢ pg > p ~2 T2 2pg
P - r_ 1l ecncr_ 1
X[%*zﬁfqé*l](yp*l/m’ oo 2 S5 S§

n r _ 1

X[i—ﬁ—ﬁyg—’](ypvl/p) if p <2 2pg

We observe that (;(n) = 1 if and only if % < % or &2 %. We remind that

r l Vp1 1 T l
——— <o - — 54
2¢  2pq P 2 2q 2pq 54

Also we observe that Lemma 9 implies that

r 1 _ VYpa if Vpil r__ 1
’/p,QZ{q PP if P Sy pa (55)
r_t _ Y1 if Y.t r_ L
p a pq p+1 1fp>q pg’
— Assume%>%+i—2—pq Thenup1<p( +2—Z—ﬁ)<n,50ﬁ;(n):
— Assume L — L <« 1y r L
9 g p 2 ' 29 2pq’
# U xz_ 1 n)(vp,1/p) =1then v,1 <n,soBy(n)=1
29  2pq’ p vy 1 n r 1 . . Vp.2
x If X[ - L ,n] 1(Up,1/p) = 0 then =2+ > 2 > = — = Relations (54) and (55) imply that =22 =
1+§—i—”‘;1 >§—|—@—m>ﬂ Since v, 1 > n and vy 2 > n we get 3;(n) = 0.
— r 1l en v 1
Assume 2¢ 2pqg S p S q pq’
# U X;z_ o r 14(vp1/p) = 1 then (55) imply that 0 < 2 o — 3, which implies that
2q 2pq’q_ pg ’ p q Pq
Vp2 <M, 80 (B(n) =
_ Vp,1 r L n : Vp2 __
* If X[i*ﬁ»%*ﬁ](ypvl/p) = 0 then =2+ > £ — -~ > 2 and relation (55) imply that =22 =
1 v l
C T pg 1> g— o> 2. Since vp1 > nand vp 2 > nowe get G5(n) = 0.
— n i,L
Assume 2 b <25~ g

* Ifxr_1 _nr_11(vp1/p)=1then 21 < ﬁ—i and relation (55) implies that ””2 =r_L_
=25 2o pglV P P q q pq
Yp.a r_ 1 _(r_1 _n * —
P S g pg (q pq p)_ SO’G()
* U Xr_t_nr_1y(vp1/p) =0 we dlstlngmsh two cases:
Pqg  P’q  pq
. r o _ L Yp,1 r_ 1 _n vi,p r o _ 1 n Yp2 _
If 3 ~ 24 < e < G T P p then b > 55— 2 > p,and also we have that m
r_ L _VYa S r_ L _(r_1 _n)y_n —
q P P~ a7 b (q Pq p>_p'ThuSﬁP()_O
~Iff—i<%<%+é—ithen%>%(£—;—q) %Ontheotherhand
z_L_Vpl r_ 1 _ (1, r __ 1 1, r _ L ﬁ
7 pa +1>q 27 (-i— 2pq)+1—2+2 557 Thus, agalnwehave

that 43 (n n) = 0.

14
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Now we split Sa,.(n) = Zle Sari(n) according the ranges of the primes involved in the lemma above.

Sgrl (TL) = Z IOg p

+1/(2q)
I<P<1/3%/ G0
p=lr~—! (mod q)

pEP;

Sara(n) = > X(z - 5,21 (Vp,1/p) log p
n+l/(2q) ntl/q
T72Fr/ @0 “P< 574

p=lr~'  (mod q)
pG'P’f

Sarz(n) = Z X[L,L,L,ﬁ](upyl/p) log p

L(n+L<p<E (ntd)
1

p=lr~" (mod q)
pG'Pf

527”4(”) = Z X[z—L_n 1_#](1/;),1/17) log p.

27‘1('n-i-2lfq)<p<0n
p=lr~! (mod q)
pEP;

Since (¢, D) = 1 and the primes are odd numbers, the primes p = Ir~! (mod gq), p € Py lie in a
set of ¢(4gD)/(2¢(q)) arithmetic progressions modulo 4¢D. The prime number theorem for arithmetic

progressions implies that

> logp ~ QL
= ¢(q)
(mod q), pePy

p=ir—?!

and

Z logp _ 1Og(b/a) +0(1)

P 20(q)

ar<p<bx

! (mod q), pEPy

p=lr™

We will use these estimates and lema 10 to estimate Sa.;(n), i =1,2,3,4.

By (56) we have

o(q)q+r
To estimate So,.0 we write
Sara(n) = > X[z 5t ) (Vp1/p) logp
3ty <P< 7L
p=lr~! (mod q)

= Z (2ﬁ—f+i)logp

p q Ppq
n+l/(2q) n+l/q
727/ a0 <P< 774

p=lr~! (mod q)
nor l
+ (Xt 11 /2) = 2(5 = -+
n+l/(2q)z: n+l/q [QQ pa’ p] P p 2q 2pq
1724/ (2) “P<"77q
p=lr~' (mod q)

(56)
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Lemma 10 implies that the last sum is o(n). Thus,

2n r
Sore = E (? - 6) logp + o(n)
nt1/(2q) ntl/q
T/2¥r/Ca <P<57q
pElr’l (mod q)
pEPy
logp r
=2n E - - E logp + o(n)
p q
n+l/(2q) n+l/q n+1/(2q) n+l/q
T/2%r/(2) “P<"7q T/2%+/(2a) “P<"7q
p=lr~'  (mod q) p=lr~'  (mod q)
pEPy pEPy

S O S I R O
= %00 log(2 N 2r> #(q) (2 q—l—r) + o)
by (56) and (57).
To estimate Sa,3(n) we write

ro 1
Sarz(n) = > (* - *) logp
L(n+L)<p<E (n+d)
p=lr~' (mod q)
pG'Pf

r l
* Z (X[ﬁ—gﬁ%—ﬁ](’/p,l/]o) - (* - 7)) logp
$(n+ )<< (nt4)
p=lr~!  (mod q)
pEPy

= 25(q) + o(n)

by (56) and lema 10.
To estimate Sa,4(n) we write

2n 21
S2r4(n) = Z (; + @) logp
27q(n+;7)<p<0n
p=lr~! (mod q)
pEP;

2n 21
= > (X[gfg—qu,gfi](vp,l/p) - (* + Fq)) log p
27q(n+;7)<p<0n
p=lr~' (mod q)
pE"Pf

= % (1og C - log(2q/7‘)) + o(n)
by (57) and Lemma 10.
Thus
Sor(n) = Sor1(n) + Sar2(n) + Sorz(n) + Sa2ra(n) + O(1)
nq

= D aiT +o(n)

“gig G ) ~ag G o
+ %@ﬂw(n)

+ Lq)(logC—IOgQQ/T)) + o(n)
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Now sum in all » < ¢, (r,¢) =1 to finish the estimate of S2(n). O

Finally we substitute (52) in (38) to conclude the proof of Theorem 1.

3. Computation of the constant By

The sum Z M , appearing in the formula of the constant By converges very slowly. The next lemma
gives an alternatlve expression for this sum, more convenient in order to obtain a fast computation.

LEMMA 12.
d/P logp Z ¢'(2 i 2%, xa)
) + Z 5p- (59)
» 1 e aXd
where s, = > po logpl.

(d/p)
Proof. For s > 1 we consider the function Ga(s) =[], (1 - pi) . Taking the derivative of the logarithm
of G4(s) we obtain that

z = d}é P _lolgp . (60)
Since L(s, xa) = [, (1 - wpﬁs)il we have
Ga(s)L(s,xa) =[] (1- pls)(d/p) (1- (CZf))_l (61)
1 \-1
= 1- — (62)
(d/p>——1< P )
1\ o=t 1/2

:H(l_ 25) H(l_p2s) (63)

p pld
= G/%(25)¢Y?(25)TY/2(25) (64)

where T'(s) = H;;\d(l - p%)
The derivative of the logarithm gives

Gals) _ Gy(2s) _ ('(29)

Ga(s)  Ga(2) ~ ((25) ' Tu(s)  L(sxa)’
Thus
Gy(s)  Gh2ms) R~ [(Gh(2Fs)  Gy(2Mtls)
Ga(s) Ga(2ms) & (Gd(2ks) Gd(2k+1s)> (65)
L (2Fs) N TH(2Rs) = L (2Fs, xa)
=2 TR T Ty 2 LT (66)

17
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By (60) we have that for s > 2,

¢'(s) A(n) log 2 logn
< <
|C(3)| Zns—l 25—1+Zns—1
n=2 n>3
4log2 9 logn 41og?2 9/°° log x
<= - - d
325+8§n5 372 T8), o ™
_4log?2 9( log 2 1 )
3025 8\2s7l(s—1)  2571(s—1)2
< 1 (2010g2+8)<§ 2- .
25(s—1) 9 2 s—1
/ ’ k 1ok
Thus, |<<((22k))| s Qk . The same estimate holds for |gjgkg| |;ng) | & |LL((22k ,’;‘;)) |. When m — oo and

then s — 1 we get

Z d/p Ing ZC’

(67)
) = L2 xa) i Ta2)
Finally we observe that % = Zmd oep. -, 80 200 %gk; > pld Sp- O

The advantage of the lemma above is that the series involved converge very fast. For example,

0o 6

Z(’Xd -3

k=0 ’ Xd k=0

2k:;(5 + Error
with |Error| < 1070.

Hence we can write By = Cy + Cq + C(f) where Cj is an universal constant, Cy depends only on d,
and C(f) depends on f. More precisely,

Co=~v—1—2log2 — Z C ) = —1.1725471674190148508587521528364 . . .
k=1
7Xd
Z k - Z Sp
— L(2%,xa) o

C) = 5= Y tog(1+5) +loga+ Y togp( 11U -

(a) 1<r<q pl2aD p—1
(r)=1

> ohy,

k>1

The values of s, and ;- L'(2% x4)/L(2¥, x4), can be calculated with MAGMA with high precision.
We include some of the values of Cy and C(f):

C_y4 =+ 0.346538435736895987549 — s9 =+ 0.066550762366036180349 . ..
C_g = —0.076694093066485311184 — s9 = —0.356681766437345118384 . ..
C_s =+ 0.586272400297149523649 — s3 =+ 0.435045713698422447292 . ..

C_~ = — 0.070022837990444988815 — s7
= —0.486320692903261758405 — s3 — s5

18
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C(z?+1) = (3log2)/2 = 1.039720770839917964125 . . .
C(z%+2) = (3log2)/2 = 1.039720770839917964125 . . .
Ca® +x+1) = log2 + (log 3)/6 = 0.876249228671296924649 . . .
C(a® +x+2) = log2 + (log 7)/(42) = 0.739478374585071816681 . . .
C(22° +1) = 3log?2 = 2.079441541679835928251 . . .
C(22° +x +1) = 2log 2 + log 3 + (log 7)/(42) = 1.838090663253181508076 . . .
C(22° + x +2) = log2 + (710g 3)6 + (log 5)/(20) = 2.055333412961111634775 . ..
C(24° 4+ 2z +1) = 3log2 = 2.079441541679835928251 . . .

Table below contains the constant B = By for all irreducible quadratic polynomial f(z) = az?®+bzx+c
with 0 < a,b,¢ < 2. When f1, fo are irreducible quadratic polynomials such that fi(z) = fa(x + k) for
some k, we only include one of them since L, (f1) = Ly (f2) + O(logn).

f(z) d By
22+ 1 4 ~0.06627563421306070638. . .
2+ 2 8 —0.48950816301644200511. . .

2?4+ +1 -3
224+ z+2 -7

2¢2 +1 -8
20 4 x+1 | -7
207 +2+2 | -15
202 42z +1 ] 4

+0.13874777495070452108. ..
—0.54444255904220314164. . .
+0.55021260782347595900. . .
+0.55416972962590654974. . .
+0.17559560541609675388. . .
+0.97344513662685725774. . .

= I e e A R )

Table below shows the error term Ey(n) = log L, (f) — nlogn — Byn for the polynomials above and
some values of n.

f(z) E;(10%) | Ef(10°) [ E,(10%) | E;(10°) | E(10°%) | E;(107)

22 +1 —18 +6 —111 +34 [ —2634 | —1557
2+ 2 —36 —11 —263 —761 | —1462 | —8457

22 4+x+1 —6 -9 +17 —654 | —2528 | —1685
224+ z+2 +9 —20 —218 | —2120 +687 —686
222 +1 —15 -1 —301 —251 | +1084 | —14821
202 + 2 +1 -1 +6 +18 | —1289 +235 | —2553
222+ +2 —34 +4 —295 +27 | 1169 | +1958
222 + 2z +1 -9 —89 +9 —232 | —2876 | —10624

4. Quadratic reducible polynomials

To complete the problem of estimating the least common multiple of quadratic polynomials we will study
here the case of reducible quadratic polynomials. Being this case much easier than the irreducible case,
we will give a complete description for the sake of the completeness.

If f(x) = ax?® + bz + ¢ with g = (a,b,¢) > 1, it is easy to check that log L, (f) = log L,(f") + O(1)
where f/(x) = a’2® + 'z + ¢ with o’ = a/g, b’ =b/g, ¢ =c/g.

If f(z) = (ax + b)? with (a,b) = 1 then, since (m?,n?) = (m,n)?, we have that L, ((ax + b)?) =
L2 (ax + b) and we can apply (1) to get

1
Z = (68)

1<k<a
( a)=1

loglc.m.{(a+b)?, ..., (an +b)?

19
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Now we consider the more general case f(z) = (ax + b)(cx + d), (a,b) = (¢,d) = 1.
THEOREM 3. Let f(z) = (ax +b)(cx + d) with (a,b) = (¢,d) =1 and ad # bd. Let q = ac/(a,c). We have

log e ((1),-, f ) ~ s 1<T<qz(:r . max(m, m). (69)

Proof. Suppose p? | L,,(f). It implies that p? | (ai + b)(ci + d) for some i. If p | ai + b and p | ¢i + d then
p | (ad — be)i. If p 1 (ad — be) then p | i and consequently p | b and p | d. Thus, if p 1 (ad — be)bd and
p? | (ai+0b)(ci+d) then p? | (ai+b) or p? | (ci+d). In these cases p < M,, = max(v/an + b,ven + d, |(ad —
bd)bd]).

Thus we write

Ln(f): H p:ﬁp(n) H pEp(n) — H pﬁp(”)_ep(n)HpE;n(")’ (70)

p<My p>M,, pP<M, P

where €,(n) = 1if p | f(i) for some i < n and €,(n) = 0 otherwise. Since p”»(™ < f(n) we have that
Bp(n) < logn/logp and then

> (Bp(n) — p(n)) log p < (logn)m(M,) < v/n. (71)
Thus, o
logLn(f)= > logp+O(v/n). (72)
plf (%)

for some i<n
Let ¢ = ac/(a, c). Suppose that p=r~! (mod q), (r,q) = 1. Let k = (br), the least positive integer such
that k = br (mod a). Then p | (ai + b) for some i < n if and only if kp < an + b. Similarly, let j = (dr).
be the least positive integer such that j = dr (mod ¢). Again, p | (ci 4+ d) for some < i < nif jp < en+d.
Thus, the primes p = r~! (mod ac) counted in the sum above are those such that p < max(%“’, C”J—M)
The prime number theorem for arithmetic progressions implies that there are ~ ﬁ max(f, ?) of such
primes.

We finish the proof summing up in all 1 <r < ¢, (r,q) = 1. O
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