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Abstract. We give the first explicit construction of an infinite Sidon sequence A

with A(x)� xc+o(1) for some c > 1/3. Our method allows to take c =
√

2− 1. Ruzsa

proved the existence of a Sidon sequence with similar counting function but his proof

was not constructive.

Our method generalizes to Bh sequences when h ≥ 3. In these case our con-

structions are not explicit but they give the first improvements on the trivial lower

bounds for these sequences: for all h ≥ 3, there is a Bh sequence A such that

A(x) = x
√

(h−1)2+1−(h−1)+o(1).

1. Introduction

According to Erdős [3], in 1932 Simon Sidon asked him about the growing of those

infinite sequences A with the property that all sums a+a′, a ≤ a′, a, a′ ∈ A are distinct.

Later Erdős named them Sidon sequences. Sidon had found one with counting function

A(x) � x1/4 and Erdős observed that the greedy algorithm, described below, provides

another with A(x)� x1/3.

Starting with a1 = 1, let us define an to be the smallest integer greater than an−1 and

such that the set {a1, . . . , an} is a Sidon set. Since there are at most (n − 1)3 distinct

elements of the form ai+aj−ak, 1 ≤ i, j, k ≤ n−1, it is then clear that an ≤ (n−1)3+1

and the counting function of the sequence A generated by this algorithm (the greedy

algorithm) certainly satisfies A(x) ≥ x1/3.

Erdős conjectured that for any ε > 0 should exist a Sidon sequence with A(x) �
x1/2−ε, but the sequence given by the greedy algorithm was, for almost 50 years, the

densest example known. That was until that, in 1981, Atjai, Komlos and Szemeredi [1]

proved the existence of an infinite Sidon sequence such that A(x) � (x log x)1/3. The

main tool was a remarkable new result in graph theory that they proved in that seminal

paper. They wrote:
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The task of constructing a denser sequence has so far resisted all efforts, both con-

structive and random methods. Here we use a random construction for giving a sequence

which is denser than the above trivial one.

So that, it was a surprise when Ruzsa [5] overcome the barrier of the exponent 1/3,

proving the existence of an infinite Sidon sequence A with A(x) = x
√
2−1+o(1). The

starting point of Ruzsa’s approach was the sequence (log p) where p runs over all the

prime numbers. Ruzsa’s proof is not constructive. For each α ∈ [1, 2] he considered a

sequence Aα = (ap)p∈P where each ap is built using the binary digits of α log p. What

Ruzsa proved is that for almost all α ∈ [1, 2] the sequence Aα is nearly a Sidon sequence

in the sense that removing not too many elements from the sequence it is possible to

destroy all the repeated sums that eventually appear.

Here we present a method to construct explicitly dense infinite Sidon sequences. It

has been inspired by the finite Sidon set

A = {logg p : p prime , p ≤ √q},

where g a generator of F∗q and logg x denotes the discrete logarithm of x in F∗q. The

set A is indeed a Sidon set in Zq−1 with size |A| = π(
√
q) ∼ 2

√
q/ log q. Despite the

simplicity of the construction of this finite Sidon set we have not seen it previously in

the literature.

To warm up we construct first an infinite Sidon sequence A = (ap)p∈P indexed with

all the prime numbers with an easy explicit expression for the elements ap. This is

the first time that an infinite Sidon sequence A with A(x) � xδ for some δ > 1/3 is

constructed explicitly.

Theorem 1.1. Let A := Aq,c = (ap)p∈P be the sequence constructed in section 2. We

have that for c = 3−
√
5

2
it is an infinite Sidon sequence with

A(x) = x
3−
√
5

2
+o(1).

Theorem 1.1 is weaker than Theorem 1.2, but we have included it as a separated

theorem because the simplicity of the construction. In Theorem 1.2 we construct ex-

plicitly a denser infinite Sidon sequence A = (ap)p∈P∗ adding the deletion technique

to our method. The starting point is the sequence Aq,c = (ap)p∈P with c =
√

2 − 1.

This sequence is not a Sidon sequence but we can delete some elements ap from the

sequence to destroy the repeated sums that could appear. Thus, the final set of indexes

of our sequence will be not the whole set of the prime numbers, as in the construction

of Theorem 1.1, but the set P∗ formed by the survived primes after we remove a thin

subsequence of the primes that we can describe explicitly.

Theorem 1.2. There exists a Sidon sequence A, which can be explicitly constructed,

with counting function A(x) = x
√
2−1+o(1).
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Note that the exponent of the counting function in the explicit construction of The-

orem 1.2 is the same that Ruzsa obtained in his random construction. Furthermore,

it can be checked easily that the algorithm used to construct the Sidon sequence in

Theorem 1.2 is efficient in the sense that only O(x
√
2−1+o(1)) elementary operations are

needed to list all the elements ap ≤ x.

Our approach also generalizes to Bh sequences, that is, sequences such that all the

sums a1 + · · · + ah, a1 ≤ · · · ≤ ah are distinct. To deal with theses cases, however, we

need to introduce a probabilistic argument in an unusual way and it becomes the proof

of the following theorem not constructive.

Theorem 1.3. For any h ≥ 3 there exists an infinite Bh sequence A with

A(x) = x
√

(h−1)2+1−(h−1)+o(1).

The exponent in Theorem 1.3 is the first improvement for h ≥ 3 on the trivial

exponent 1/(2h − 1) given by the greedy algorithm for Bh sequences. It should be

mentioned that R. Tesoro and the author [2] have proved recently Theorem 1.3 in the

cases h = 3 and h = 4 using a variant of Ruzsa’s approach which makes use of the

sequence (θ(p)) of arguments of the Gaussian primes p = |p|e2πiθ(p) instead of the

sequence (log p) considered by Ruzsa. However, that proof does not extend to all h.

In the last section we present an alternative method to construct infinite Sidon se-

quences. It has the same flavor than the construction described in section 2 but the

irreducible polynomials in F2[X] play the role of the prime numbers in the set of pos-

itive integers. The finite version of this construction is the following. We identify

F2n ' F2[X]/q(X) where q := q(X) is an irreducible polynomial in F2[X] with deg q = n.

Let g a generator of F2n and g := g(X) the corresponding polynomial

A = {x(p) : gx(p) ≡ p (mod q), p irreducible in F2[X], deg(p) < n/2}

is a Sidon set in Z2n−1 of size |A| � 2n/2/n.

We present an sketch of how to reprove Theorems 1.1, 1.2 and 1.3 using this alternative

approach.

2. The construction

Let us consider the following well known fact, which will be used in the construction

of our sequence:

Given an infinite sequence of positive integers b := b1, . . . , bj, . . . (the base), any non

negative integer n can be written, in an only way, in the form

n = x1 + x2b1 + x3b1b2 + · · ·+ xjb1 · · · bj−1 + · · ·

with digits 0 ≤ xj < bj, j ≥ 1 and we represent it as n := xk . . . x1.
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2.1. Construction of the sequence Aq,c. We consider the basis q := 4q1, . . . , 4qj . . .

where q1, . . . , qj, . . . is a given infinite sequence of prime numbers satisfying

(2.1) 22j−1 < qj ≤ 22j+1

for all j ≥ 1. Choose, for each j, a primitive root gj of F∗qj .
Fix c, 0 < c < 1/2 and consider the partition of the set of the prime numbers,

P =
⋃
k≥2

Pk, where Pk =
{
p prime : 2c(k−1)

2−3 < p ≤ 2ck
2−3
}
.

Let us construct the sequence Aq,c = (ap)p∈P as follows: for p ∈ Pk, we define

ap = xk(p) . . . x1(p),

where the digit xj(p) in the basis q is the solution of the congruence

g
xj(p)
j ≡ p (mod qj), qj + 1 ≤ xj(p) ≤ 2qj − 1.(2.2)

We define xj(p) = 0 when j > k.

2.2. Properties of the sequence Aq,c.

Proposition 1. All the elements ap of the sequence Aq,c are distinct and the counting

function satisfies Aq,c(x) = xc+o(1).

Proof. Suppose that ap = ap′ . Thus xj(p) = xj(p
′) for all j ≥ 1 and we have, by

construction, that p, p′ ∈ Pk where k is the largest j such that xj(p) 6= 0. We also know

that

p ≡ gxj(p) ≡ gxj(p
′) ≡ p′ (mod qj)

for all j ≤ k and then, p ≡ p′ (mod q1 · · · qk). If p 6= p′ we would have

2ck
2 ≥ |p− p′| ≥ q1 · · · qk > 21+3+···+(2k−1) = 2k

2

,

which is impossible because c < 1.

To study the growing of the sequence Aq,c, we consider, for any x, the integer k such

that

(4q1) · · · (4qk) < x ≤ (4q1) · · · (4qk+1).

Using (2.1) we can check that 2k
2+2k < x ≤ 2(k+2)2+2(k+1) and then 2k

2
= x1+o(1).

We observe that if p ≤ 2ck
2−3 then p ∈ Pl for some l ≤ k and then

ap = x1(p) +
∑
j≤l

xj(p)(4q1) · · · (4qj−1) ≤ (4q1) · · · (4qk) ≤ x.

Thus

Aq,c(x) ≥ π(2ck
2−3) = 2ck

2(1+o(1)) = xc+o(1).
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For the upper bound we observe that if p > 2c(k+1)2−3 then p ∈ Pl for some l ≥ k + 2

and then ap > (4q1) · · · (4ql−1) ≥ (4q1) · · · (4qk+1) ≥ x. Thus

Aq,c(x) ≤ π(2c(k+2)2−3) = 2ck
2(1+o(1)) = xc+o(1).

�

The next proposition concerns to the Sidoness quality of the sequence Aq,c.

Proposition 2. Suppose that there exist ap1 , ap2 , ap′1 , ap′2 ∈ Aq,c, ap1 > ap′1 ≥ ap′2 > ap2
such that

ap1 + ap2 = ap′1 + ap′2 .

Then we have that:

i) there exist k2, k1, k2 ≤ k1 such that p1, p
′
1 ∈ Pk1 , p2, p′2 ∈ Pk2.

ii) p1p2 ≡ p′1p
′
2 (mod q1 · · · qk2)

iii) p1 ≡ p′1 (mod qk2+1 · · · qk1) if k2 < k1.

iv) (1− c)k21 < k22 <
c

1−ck
2
1.

Proof. Since 0 ≤ xj(p1)+xj(p2) < 4qj for all j, the equality ap1 +ap2 = ap′1 +ap′2 implies

that the digits of both sums are equal:

(2.3) xj(p1) + xj(p2) = xj(p
′
1) + xj(p

′
2)

for all j. By construction, p1 ∈ Pk1 and p2 ∈ Pk2 where k1 is the largest j such that

xj(p1) + xj(p2) ≥ qj + 1

and k2 is the largest j such that

xj(p1) + xj(p2) ≥ 2qj + 2.

This observation proves part i) and we can represent ap1 , ap2 , ap′1 , ap′2 as

ap1 = xk1(p1) . . . xk2(p1) . . . x1(p1)

ap2 = xk2(p2) . . . x1(p2)

ap′1 = xk1(p
′
1) . . . xk2(p

′
1) . . . x1(p

′
1)

ap′2 = xk2(p
′
2) . . . x1(p

′
2).

To prove parts ii) and iii) first we observe that (2.3) implies that for all j we have

g
xj(p1)+xj(p2)
j ≡ g

xj(p
′
1)+xj(p

′
2)

j (mod qj).

We also know that if p ∈ Pk, then g
xj(p)
j ≡ p (mod qj) for j ≤ k and g

xj(p)
j ≡ 1 (mod qj)

when j > k.

Thus, for j ≤ k2 we have that p1p2 ≡ p′1p
′
2 (mod qj) and then

p1p2 ≡ p′1p
′
2 (mod q1 · · · qk2).
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If k2 < k1, for k2 + 1 ≤ j ≤ k1 we have that p1 ≡ p′1 (mod qj) and then

p1 ≡ p′1 (mod qk2+1 · · · qk1).

Part ii) and the inequalities on pi and qj yield

2c(k
2
1+k

2
2) ≥ |p1p2 − p′1p′2| ≥ q1 · · · qk2 > 21+3+···+(2k2−1) = 2k

2
2 =⇒ k22 <

c

1− c
k21.

In particular it implies that k2 < k1 and we can apply part iii), which gives

2ck
2
1 ≥ |p1 − p′1| ≥ qk2+1 · · · qk1 > 2(2k2+1)+···+(2k1−1) = 2k

2
1−k22 =⇒ k22 > (1− c)k21.

�

2.3. Proof of Theorem 1.1. To prove the first part of Theorem 1.1 we simply observe

that if there is a repeated sum, then Proposition 2, iv) implies that 1− c < c
1−c , which

does not hold for c = 3−
√
5

2
. Thus, Aq,c is a Sidon sequence for this value of c.

2.4. Proof of Theorem 1.2. Proposition 2 implies that all the repeated sums that

may appear are of the form:

(2.4) ap1 + ap2 = ap′1 + ap′2 , {p1, p2} 6= {p′1, p′2}

with p1, p
′
1 ∈ Pk1 , p2, p′2 ∈ Pk2 and k22 <

c
1−ck

2
1.

Using the notation Q1 = q1 · · · qk2 and Q2 = qk2+1 · · · qk1 we can write

p1(p2 − p′2) = p1p2 − p′1p′2 + (p′1 − p1)p′2

=
p1p2 − p′1p′2

Q1

Q1 +
(p′1 − p1)

Q2

p′2Q2.

Proposition 2 also implies that if (2.4) holds then s1 =
p1p2−p′1p′2

Q1
and s2 =

p′1−p1
Q2

are

nonzero integers satisfying

|s1| =
|p1p2 − p′1p′2|

Q1

≤ 2c(k
2
1+k

2
2)−6

Q1

, |s2| =
|p′1 − p1|
Q2

≤ 2ck
2
1−3

Q2

.

Thus, if p1 ∈ Pk1 is involved in sum repeated sum as in (2.4) then it divides some integer

s 6= 0 of the set

Sk2,k1 =

{
s = s1Q1 + s2p

′
2Q2 : 1 ≤ |s1| ≤

2c(k
2
1+k

2
2)−6

Q1

, 1 ≤ |s2| ≤
2ck

2
1−3

Q2

, p′2 ∈ Pk2

}
.

We denote by Bk1 the set of these primes:

Bk1 =
{
p1 ∈ Pk1 : p1 | s for some s ∈ Sk2,k1 , s 6= 0, with k22 <

c
1−ck

2
1

}
.

From the analysis above it is clear that for

P∗ =
⋃
k1

(Pk1 \ Bk1)
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the sequence A∗q,c = (ap)p∈P∗ is a Sidon sequence. To prove that A∗q,c(x) = xc+o(1) it is

enough to show that |Bk1| ≤ (1
2
+o(1))|Pk1|. We will prove that this holds for c =

√
2−1.

First we observe that an integer s 6= 0 of Sk2,k1 cannot be divided by two primes

p, p′ ∈ Pk1 . Otherwise, we would have that

22c(k1−1)2−6 < pp′ ≤ |s| ≤ 2 · 2c(k21+k22)−6 < 2
c

1−c
k21−5,

which does not hold for k1 large enough since 2c > c
1−c for c < 1/2.

Therefore, using the estimates Q1Q2 = q1 . . . qk1 > 2k
2
1 and |Pk2| = π(2ck

2
2) ≤ 2 ·

2ck
2
2/ log(2ck

2
2) we have

|Bk1| ≤
∑

k22<
c

1−c
k21

|Sk2,k1| ≤
∑

k22<
c

1−c
k21

(
2 · 2c(k

2
2+k

2
1)−6

Q1

)(
2 · 2ck

2
1−3

Q2

)
|Pk2|

≤ 2−6

c log 2
2(2c−1)k21

∑
k22<

c
1−c

k21

22ck22

k22
≤ 2−6

c log 2
· 2(1− c)

c
· 2( 2c

1−c
−1)k21

k21
.

Then, using the the identities 2c
1−c − 1 = c and 1−c

c
=
√

2 for c =
√

2 − 1 and the

estimate

|Pk1| = π
(

2ck
2
1−3
)
− π

(
2c(k1−1)

2−3
)

=
2ck

2
1−3

ck21 log 2
(1 + o(1))

we have the wanted inequality,

|Bk1| ≤
2−5
√

2

c log 2

2ck
2
1

k21
≤
(

1

2
+ o(1)

)
|Pk1|.

3. Infinite Bh sequences

In the following we shall use the same notation with only minor changes. We consider

the basis q := h2q1, . . . , h
2qj . . . where the primes qj satisfy 22j−1 < qj ≤ 22j+1. For each

j, let gj be a generator of F∗qj .

Fix c =
√

(h− 1)2 + 1− (h− 1) and let P = ∪k≥3Pk where

Pk =

{
p prime : 2

c(k−1)2
(
1−1/
√

log(k−1)
)
< p ≤ 2ck

2(1−1/
√
log k)

}
.

We construct the sequence Aq,c = (ap)p∈P as follows: for p ∈ Pk we define

ap = xk(p) . . . x1(p),

where the digit xj(p) is the solution of the congruence

g
xj(p)
j ≡ p (mod qj), (h− 1)qj + 1 ≤ xj(p) ≤ hqj − 1.
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We define xj(p) = 0 for j > k.

We observe that the sequence Aq,c = (ap)p∈P will be a Bh sequence if and only if for

any l, 2 ≤ l ≤ h there not exists a repeated sum in the form

ap1 + · · ·+ apl = ap′1 + · · ·+ ap′l(3.1)

{ap1 , . . . , apl} ∩ {ap′1 , . . . , ap′l} = ∅
ap1 ≥ · · · ≥ apl

ap′1 ≥ · · · ≥ ap′l .

The following proposition is just a generalization of Proposition 2.

Proposition 3. Suppose that there exist p1, . . . , pl, p
′
1, . . . , p

′
l ∈ Aq,c satisfying (3.1).

Then we have:

i) pi, p
′
i ∈ Pki , i = 1, . . . , l for some kl ≤ · · · ≤ k1.

ii)

p1 · · · pl ≡ p′1 · · · p′l (mod q1 · · · qkl)
p1 · · · pl−1 ≡ p′1 · · · p′l−1 (mod qkl+1 · · · qkl−1

) if kl < kl−1
· · · · · ·
p1 ≡ p′1 (mod qk2+1 · · · qk1) if k2 < k1.

iii) k2l <
c

1−c

(
k21 + · · ·+ k2l−1

)
.

iv) q1 · · · qk1 |
∏l

i=1 (p1 · · · pi − p′1 · · · p′i) .

Proof. The proof is similar to the proof of Proposition 2. Here ki is the largest j such

that xj(p1)+· · ·+xj(pl) ≥ i((h−1)qj+1). Part iii) is consequence of the first congruence

of part ii). Part iv) is also an obvious consequence of part ii). �

3.1. Proof of Theorem 1.3. The sequence Aq,c defined at the beginning of this section

may not be a Bh sequence. The plan of the proof is to remove from Aq,c = (ap)p∈P the

largest element appearing in each such repeated sum to obtain a true Bh sequence.

More precisely, we define P∗ = P∗(q) as the set

P∗ =
⋃
k

(Pk \ Bk(q))

where Bk(q) = {p ∈ Pk : ap is the largest involved in some equation (3.1)}.
It is then clear that the sequence A∗q,c = (ap)p∈P∗ is a Bh sequence.

We can proceed as in the previous section to deduce that Aq,c(x) = xc+o(1). If in

addition, |Bk(q)| = o(|Pk|), we have that

A∗q,c(x) ∼ Aq,c(x) = xc+o(1).
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Thus, the proof of Theorem 1.3 will be completed if we prove that there exists a basis

q such that |Bk(q)| = o(|Pk|).
For 2 ≤ l ≤ h we write

Badl(q, kl, . . . , k1) = {(p1, . . . , p′l) : pi, p
′
i ∈ Pki , i = 1, . . . , l satisfying (3.1)}.

Next let us observe that each p ∈ Bk(q) comes from some (p1, . . . , p
′
l) ∈ Badl(q, kl, . . . , k1),

2 ≤ l ≤ h, kl ≤ · · · ≤ k1 = k. Thus,

|Bk(q)| ≤
h∑
l=2

∑
kl≤···≤k1=k

|Badl(q, kl, . . . , k1)|(3.2)

≤ hkh−1 max
2≤l≤h

kl≤···≤k1=k

|Badl(q, kl, . . . , k1)|.

It happens that we are not able to give a good upper bound for |Badl(q, kl, . . . , k1)|
for a concrete basis q := h2q1 < h2q2 < · · · , but we can do it in average. If the reader is

familiarized with Ruzsa’s work, the basis q will play the same role as the real parameter

α in Ruzsa’s construction.

We consider the probability space of the basis q := h2q1, h
2q2 . . . where each qj is

chosen at random uniformly between all the primes in the interval (22j−1, 22j+1]. In

particular we use that π(22k+1) − π(22k−1) � 22k/k = 22k−1+O(log k) to deduce that for

any primes q1 < · · · < qk1 satisfying 22j−1 < qj ≤ 22j+1 we have

P(h2q1, . . . , h
2qk1 ∈ q) =

k1∏
k=1

1

π(22k+1)− π(22k−1)

≤ 2−k
2
1+O(k1 log k1).

Thus, for a given (p1, . . . , p
′
l), we use Proposition 3, iv) and the estimate τ(n) =

nO(1/ log logn) for the divisor function to deduce that

P((p1, . . . , p
′
l) ∈ Badl(q, kl, . . . , k1)) ≤

∑
q1,...,qk1

q1···qk1 |
∏l

i=1(p1···pi−p′1···p′i)

P(q1, . . . , qk1 ∈ q)

≤ τ

(
l∏

i=1

(p1 · · · pi − p′1 · · · p′i)

)
2−k

2
1+O(k1 log k1)

≤ 2−k
2
1+O(k21/ log k1).
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Thus, using Proposition 3 iii) in the last inequality we have:

E(|{(p1, . . . , p′l) : pi, p
′
i ∈ Pki , i = 1, . . . , l satisfying (3.1)}|)

≤ 2−k
2
1+O(k21/ log k1)#{(p1, . . . , p′l) : pi, p

′
i ∈ Pki}

≤ 2−k
2
1+O(k21/ log k1)|Pk1|2 · · · |Pkl |2

≤ 2−k
2
1+O(k21/ log k1) · 22c(k21+···+k2l )−2ck21/

√
log k1

≤ 2−k
2
1+

2c
1−c(k21+···+k2l−1)−(2c+o(1))k21/

√
log k1

≤ 2(−1+ 2c(l−1)
1−c )k21−(2c+o(1))k21/

√
log k1 .

Using (3.2) we have

E(|Bk(q)|) ≤ 2(−1+ 2c(h−1)
1−c )k2−(2c+o(1))k2/

√
log k.

Finally we use that −1 + 2c(h−1)
1−c − c = 0 for c =

√
(h− 1)2 + 1− (h− 1) to obtain

E

(∑
k

|Bk(q)|
|Pk|

)
≤

∑
k

k22(−1+ 2c(h−1)
1−c

−c)k2−(c+o(1))k2/
√
log k

≤
∑
k

k22−(c+o(1))k
2/
√
log k.

Since the series is convergent we have that for almost all sequences q the series∑
k

|Bk(q)|
|Pk|

is convergent. Therefore, for any of these q we have that |Bk(q)| = o(|PK |), which is

what we wanted to prove.

4. An alternative construction

The theorems proved in this paper could have been proved using the following al-

ternative construction, which, although has the same flavor than the one described in

section 2, it uses the irreducible polynomials in F2[X] instead of the prime numbers.

We consider the basis q := 4 · 1, 4 · 3, . . . , 4 · (2j − 1), . . . and any infinite sequence of

irreducibles polynomials in F2[X] of degree deg(qj) = 2j − 1. For each j, let gj(X) a

generator of F2[X]/qj(X). Fix c, 0 < c < 1/2 and for each k ≥ 2, let

(4.1) Pk =
{
p irreducible polynomials in F2[X] : c(k − 1)2 < deg p ≤ ck2

}
.

Consider the sequence Aq,c = (ap) where, for any p(X) ∈ Pk (we write p := p(X) for

short), the element ap is defined by

ap := xk(p) . . . x1(p)
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where xj(p) is the solution of the polynomial congruence

gj(X)xj(p) ≡ p(X) (mod qj(X)), 22j−1 + 1 ≤ xj(p) ≤ 22j − 1.

Let us define xj(p) = 0 for j > k. More formally we can write

(4.2) ap =
∑

1≤j≤k

xj(p)2
j2−1.

We use that the number of irreducible polynomials of degree j in F2[X] is � 2j/j to

deduce easily that in this case we also have Aq,c(x) = xc+o(1). Proposition 2 also works

here, except that now the congruences are in F2[X]. It is then easy to adapt the proofs

of Theorems 1.1 and 1.2 to this new construction.

The proof of Theorem 1.3 using this construction is also similar to that given in

section 2, except that now we consider the basis q = h2 · 1, h2 · 3, . . . , h2 · (2j − 1), . . .

and define

ap = xk(p) . . . x1(p)

where xj(p) is the solution of the congruence

g
xj(p)
j ≡ p(X) (mod qj(X)), (h− 1)22j−1 + 1 ≤ xj(p) ≤ h22j−1 − 1.

Perhaps, the less known ingredient needed in the proof may be the upper bound

τ(r(X)) ≤ 2O(n/ logn) for the number of the divisors of a polynomial r(X) ∈ F2[X] of

degree n (see [4]).
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