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On Sidon sets and asymptotic bases

Javier Cilleruelo

Abstract

Erdős conjectured the existence of an infinite Sidon sequence of positive integers which is an
asymptotic basis of order 3. We progress towards this conjecture in several directions. We prove
the conjecture for all cyclic groups ZN with N large enough. We also show that there is an
infinite B2[2] sequence which is an asymptotic basis of order 3. Finally, we prove that for any
ε > 0 there is a Sidon sequence which is an asymptotic basis of order 3 + ε, that is, any positive
sufficiently large integer n can be written as a sum of 4 elements of the sequence, one of them
smaller than nε.

1. Introduction

A sequence of positive integers A is a Sidon basis of order h if all the sums a+ a′, a ≤
a′, a, a′ ∈ A are distinct (Sidon property) and if every sufficiently large positive integer n can
be written as a sum of h elements of A (asymptotic basis of order h). It is not difficult to
prove that there are no Sidon basis of order 2. However, Erdős has formulated the following
conjecture [7, 10, 11]:

Conjecture 1.1. There is a Sidon basis of order 3.

Even if we are not able to prove this conjecture we give several results relatively close to it.
The first one is the modular version of Conjecture 1.1.

Theorem 1.1. For each large enough N , the cyclic group ZN contains a Sidon set which
is a basis of order 3.

We prove Theorem 1.1 in Section 2. An important ingredient in the proof is a result of
Granville, Shparlinski and Zaharescu [14, Theorem 1] on distributions in the s-dimensional
torus of points coming from curves in Frp.

The next result is concerned with B2[g] sequences, a natural generalization of Sidon
sequences.

Definition 1. A sequence A of positive integers is a B2[g] sequence if each integer n has
at most g representations of the form n = a+ a′, a ≤ a′, a, a′ ∈ A.

The B2[1] sequences are just the Sidon sequences.
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Erdős [7] showed that there exists a B2[g] sequence of positive integers which is an asymptotic
basis of order 3 for some g, and he asked for the minimum possible g (see also [19].) Conjecture
1.1 states that the minimum is g = 1. We prove that g ≤ 2.

Theorem 1.2. There exists a B2[2] sequence of positive integers which is an asymptotic
basis of order 3.

We next introduce a new generalisation of the notion of basis that appears in the statement
of our strongest approximation to Conjecture 1.1.

Definition 2. For any ε > 0, we say that a sequence A of positive integers is an asymptotic
basis of order h+ ε if every sufficiently large positive integer n can be written as a sum of h+ 1
elements of A, one of them smaller than nε:

n = a1 + · · ·+ ah+1, a1, . . . , ah+1 ∈ A, ah+1 ≤ nε.

We say that A is a Sidon basis of order h+ ε if in addition it is a Sidon sequence.

Theorem 1.3. For any ε > 0 there exists a Sidon basis of order 3 + ε. In other words, for
any ε > 0 there exists a Sidon sequence A of positive integers such that every large enough
positive integer n can be written as

n = a1 + a2 + a3 + a4, a1, a2, a3, a4 ∈ A, a4 ≤ nε. (1.1)

We mention some previous related results. Deshoulliers and Plagne [5] have constructed a
Sidon basis of order 7 and Kiss [20] has proved the existence of a Sidon basis of order 5. At
the time when the first version of this work was posted in Arxiv, Kiss, Rozgonyi and Sándor
[21] proved the existence of a Sidon basis of order to 4. Even if their result is a corollary of
Theorem 1.3, it has independent interest. They use a distinct method that we briefly discuss
in Section 3.

Theorems 1.2 and 1.3 are proved with the probabilistic method of Erdős and Renyi [9]. In
the study of sequences satisfying certain additive properties they considered the probabilistic
space S(γ) of sequences of positive integers where all the events x ∈ A are independent and
P(x ∈ A) = x−γ , γ > 0. A formal construction of these probabilistic spaces appears in [16].

An easy application of this method shows that, if γ > 3/4, then almost all sequences in S(γ)
are Sidon sequences (after we remove a finite number of elements from the sequence.) On the
other hand Erdős and Tetali [12] proved that, if γ < 1− 1/h, then almost all sequences are
asymptotic bases of order h. Therefore, for any γ in the interval (3/4, 4/5), we have that almost
all sequences in S(γ) are simultaneously Sidon sequences and asymptotic bases of order 5. This
is the argument used in [20].

In order to get bases of order 3 + ε we must choose γ close to 2/3. In this case the sequences
in this probabilistic space are far from being Sidon sequences. Typically there will be infinitely
many repeated sums of two elements. A way to circumvent this obstacle is to remove the
elements involved in such repetitions to obtain a true Sidon sequence. This general idea, known
as the alteration method or deletion technique, is standard in the probabilistic method (see
e.g. [2]) and has been used previously in a similar context [3, 4, 24].

The main difficulty that appears when applying the alteration method in our problem is that
we have to prevent the destruction of all the representations of the form (1.1) for each integer
n. Therefore we must prove that, for each n, the number of removed elements involved in the
representation of n in the form (1.1) is small.
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As far as Theorem 1.2 is concerned, the standard application of the probabilistic method
also proves that, if γ > g+2

2g+2 , then with probability 1 a sequence in S(γ) is a B2[g] sequence

(after we remove a finite number of elements.) Therefore, if 5
8 < γ < 2

3 , a random sequence in
S(γ) is, with probability 1, simultaneously a B2[3] sequence and an asymptotic basis of order
three. This result appears in [2, Section 8.6]. To get a B2[2] basis of order 3 we must use a
more involved argument.

In Section 3 we explain in more detail our strategy and the new ingredients we introduce:
the vectorial sunflowers and the modular Sidon bases.

The Sunflower Lemma discovered by Erdős and Rado [8] has many applications. In the
probabilistic method it has been used to deal with dependent events when each event can be
identified with a set. In our proofs it is more convenient to identify each event with a vector
and we must use a vectorial version of the Sunflower Lemma. We refer to [1] for a recent study
of other variants of sunflowers.

The modular Sidon bases are used as tool to simplify the computations of the expected
values of some random variables. See Section 3 for a more detailed explanation.

The proofs of Theorems 1.2 and 1.3 are quite similar, except that the last one is
technically more involved. They are proved in sections 4 and 5 respectively. The more technical
computations of the expected values of the random variables appearing in the proofs are
collected in Section 6.

1.1. General Notation

Through the paper we will use the following notation:
• f(n)� g(n) means that there exists C > 0 such that f(n) > Cg(n) for n large enough.

We observe that this includes the possibility that f(n) = 0 for a finite number of positive
integers n.

• f(n) = o(g(n)) means that f(n)/g(n)→ 0 as n→∞.
• We write om(1) to mean a quantity tending to 0 as m→∞.

2. The modular version of the conjecture.

The statement of our first result about modular Sidon bases is essentially contained in
Theorem 1.1. However it includes the extra condition that s1, s2, s3 are pairwise distinct, which
is convenient to be used in the proof of Theorem 1.2. Furthermore the proof is short and has
an amusing relation with elliptic curves.

Theorem 2.1. There exist infinitely many cyclic groups ZN containing a Sidon set S ⊂ ZN
and such that any element x ∈ ZN can be written in the form

x = s1 + s2 + s3, si ∈ S (2.1)

with s1, s2, s3 pairwise distinct.

Proof. Ruzsa [23] observed that for all prime p and g a generator of F∗p, the set

S = {(x, gx) : x = 0, . . . , p− 2}

is a Sidon set in Zp−1 × Zp. Since Zp−1 × Zp is isomorphic to Z(p−1)p the set S provides an
easy example of a dense Sidon set in a cyclic group. We will prove that S is also a basis of
order 3. In other words, that any element (a, b) ∈ Zp−1 × Zp can be written as

(a, b) = (x1, g
x1) + (x2, g

x2) + (x3, g
x3). (2.2)
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Indeed we will prove that the number of solutions of (2.2) is exactly the number of points
(U, V ) ∈ F2

p, V 6= 0 on the elliptic curve U2 = 4V 3 + (bV + ga)2 in Fp.
We count, for any (a, b) ∈ Zp−1 × Zp, the number of solutions (x1, x2, x3) of the system

x1 + x2 + x3 ≡ a (mod p− 1) (2.3)

gx1 + gx2 + gx3 ≡ b (mod p). (2.4)

This can be written as

gx1 + gx2 + ga−x1−x2 ≡ b (mod p),

which is also equivalent to

X + Y +
λ

XY
≡ b (mod p) (2.5)

with XY 6= 0 with the change of variables gx1 = X, gx2 = Y, ga = λ. Now we make an
additional change of variables:

X =
2V 2

U − bV − λ
, Y = − λ

V
.

Since XY 6= 0 we have to add the condition V 6= 0, U 6= bV + λ. With these restrictions the
change of variables is bijective. Applying this change of variables in (2.5) we get

2V 2

U − bV − λ
− λ

V
− U − bV − λ

2V
≡ b (mod p),

or equivalently,

2V 2

U − bV − λ
≡ U + bV + λ

2V
(mod p),

which can be written as

4V 3 + (bV + λ)2 ≡ U2 (mod p).

Each point of this elliptic curve (except the points (U, V ) = (±λ, 0)) corresponds to a solution
(X,Y ) of (2.5). By Hasse’s Theorem [15] we know that the elliptic curve has p+O(

√
p) points

(U, V ).
To complete the proof we have to remove the solutions (x1, x2, x3) of (2.3) such that xi = xj

for some i 6= j. Suppose that x1 = x2. In this case the equation (2.5) leads to 2X + λ
X2 ≡

b (mod p), which is a cubic equation having at most three solutions. Thus, the number of
solutions (x1, x2, x3) of (2.3) with some repeated coordinates is at most 9 and the number of
representations of (a, b) as a sum of three pairwise distinct elements of S is p+O(

√
p).

Corollary 2.1 below is a byproduct of the above proof and it will be used in the proof of
Theorem 1.3.

Corollary 2.1. There exist infinitely many cyclic groups ZN containing a Sidon set
S ⊂ ZN and such that every element x ∈ ZN can be written in the form

x = s1 + s2 + s3 + s4, si ∈ S,

with s1, s2, s3, s4 pairwise distinct.

Proof. We will see that the set S ⊂ Zp−1 × Zp ∼= Z(p−1)p described in Theorem 2.1 satisfies
the conditions of Corollary 2.1. From the proof of Theorem 2.1 we know that the number of
representations of (a, b) as

(a, b) = (x1, g
x1) + (x2, g

x2) + (x3, g
x3) + (0, 1), xi 6= xj , 1 ≤ i < j ≤ 3 (2.6)
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is p+O(
√
p). We observe that all these representations of (a, b) satisfy the conditions of

Corollary 2.1 except those with xi = 0 for some i = 1, 2, 3. In these cases the equation (2.5)
is a quadratic equation and the number of these special representations is at most 6 for each
(a, b).

2.1. Proof of Theorem 1.1

We need the following weaker version of a result of Granville, Shparlinski and Zaharesku
(see Theorem 1 in [14]):

Theorem 2.2. Let r ≥ 2 and s ≥ 1 positive integers. Let C be a curve of degree d
in Frp which is absolutely irreducible in Ar(Fp). Let h : C → As(Fp) be a function h(X) =
(h1(X), . . . , hs(X)) where hi(X), i = 1, . . . , s are polynomial functions.

Assume also that there exists L = L(p)→∞ such that c1 = · · · = cs = 0 whenever |ci| ≤
L, i = 1, . . . , s and c1h1(X) + · · ·+ cshs(X) is constant along C.

Under these conditions, the set

S =

{(
h1(X)

p
, . . . ,

hs(X)

p

)
: X ∈ C

}
is well distributed in Ts when p→∞.

Proposition 2.1 is a consequence of Theorem 2.2.

Proposition 2.1. Let p ≡ 1 (mod 3) be a prime. For any integers r1, r2, let Cr1,r2 be the
curve in F2

p defined by

x2
1 + x2

2 + (x1 + x2 − r1)2 ≡ r2 (mod p). (2.7)

The set

Sr1,r2 =

{(
(x1)p
p

,
(x2)p
p

,
(x2

1)p
p

,
(x2

2)p
p

)
: (x1, x2) ∈ Cr1,r2

}
(2.8)

is well distributed in [0, 1]4 when p→∞. In particular, given c > 0, any box B ⊂ [0, 1]4 of size
|B| > c contains an element of Sr1,r2 if p is large enough.

Proof. The equation (2.7) can be written as

3(2x1 + x2 − r1)2 + (3x2 − r1)2 ≡ 6r2 − 2r2
1 (mod p). (2.9)

We first consider the case 6r2 − 2r2
1 6≡ 0 (mod p). In this case the curve (2.9) is absolutely

irreducible and we will show that the condition of Theorem 2.2 holds with L =
√
p/3. Suppose

that there exists constants c0, c1, c2, c3, c4 such that

c1x1 + c2x2 + c3x
2
1 + c4x

2
2 = c0 (2.10)

for all (x1, x2) ∈ Cr1,r2 . From (2.7) we have

x2
1 = x1(r1 − x2)− x2

2 + r1x2 +
r2 − r2

1

2
( in Fp).

Substituting x2
1 in (2.10) by this expression we have that

c1x1 + c2x2 + c3

(
x1(r1 − x2)− x2

2 + r1x2 +
r2 − r2

1

2

)
+ c4x

2
2 = c0.
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which is equivalent to the equation

(c1 + c3(r1 − x2))x1 = (c3 − c4)x2
2 − (c3r1 + c2)x2 + c0 +

c3(r2
1 − r2)

2
.

We can write this in a short way as P (x2)x1 = Q(x2) with

P (x2) = −c3x2 + c1 + c3r1,

Q(x2) = (c3 − c4)x2
2 − (c3r1 + c2)x2 + c0 +

c3(r2
1 − r2)

2
.

Multiplying (2.10) by 4c3 and completing squares we get

(2c3x1 + c1)2 + 4c2c3x2 + 4c3c4x
2
2 = 4c3c0 + c21.

Multiplying by P (x2)2 and using that P (x2)x1 = Q(x2) we have

(2c3Q(x2) + c1P (x2))2 + P (x2)2
(
4c2c3x2 + 4c3c4x

2
2 − 4c3c0 − c21

)
= 0.

This equality must be satisfied for all x2 corresponding to a point (x1, x2) ∈ Cr1,r2 . Since the
left hand side of the above equality is a polynomial in x2 of degree less than or equal to 4, this
is only possible if it is the zero polynomial. It is easy to check that the coefficient of x4

2 in the
polynomial is

4c23(c3 − c4)2 + 4c33c4 = 4c23(c23 + c24 − c3c4).

If c3 6= 0 we have that c23 + c24 − c3c4 ≡ 0 (mod p). The inequality∣∣c23 + c24 − c3c4
∣∣ ≤ 3L2 < p,

implies that c23 + c24 − c3c4 = 0 and therefore c3 = c4 = 0. Thus c3 = 0 in any case.
Since the equation 2.7 is symmetric in x1 and x2, we can proceed in the same way to

deduce that c4 = 0. Now we have to consider the possibility that c1x1 + c2x2 = c0 for any
(x1, x2) ∈ Cr1,r2 . But this means that all the solutions of the curve Cr1,r2 lie on that line, which
is impossible unless c0 = c1 = c2 = 0.

We have proved that the conditions of Theorem 2.2 are satisfied when 6r2 − 2r2
1 6≡ 0 (mod p)

and then the sets Sr1,r2 are well distributed in this case.

Assume now that 6r2 − 2r2
1 ≡ 0 (mod p).

We observe that in this case the curve (2.9) is not absolutely irreducible. Let ω be a solution
of ω2 ≡ −3 (mod p), which exists because p ≡ 1 (mod 3). It is easy to check that the points
(x1, x2) of (2.9) are those satisfying either 3x2 − r1 = ω(2x1 + x2 − r1) or 3x2 − r1 = −ω(2x1 +
x2 − r1) and then the curve (2.9) is indeed the union of the two lines:

C+
r1 = {(x1, x2) : 3x2 − r1 = +ω(2x1 + x2 − r1) : x1, x2 ∈ Fp}
C−r1 = {(x1, x2) : 3x2 − r1 = −ω(2x1 + x2 − r1) : x1, x2 ∈ Fp}.

We use again Theorem 2.2 to prove that the set (2.8) is well distributed when (x1, x2) belongs
to any one of these two lines. This will be shown for the first line, the proof for the second one
being analogous.

It is clear that C+
r1 is absolutely irreducible because it has degree 1. We will prove that in

this case L = (p/4)1/3 satisfies the condition of Theorem 2.2. By using that ω2 = −3, the line
C+
r1 can also be written as

C+
r1 = {(x1, x2) : x1 = −ω+1

2 x2 + ω+3
6 r1 : x1, x2 ∈ Fp}.

Suppose that there exist constants c0, c1, c2, c3, c4 such that

c1x1 + c2x2 + c3x
2
1 + c4x

2
2 = c0
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for all (x1, x2) ∈ C+
r1 . In this case we would have

c1(−ω+1
2 x2 + ω+3

6 r1) + c2x2 + c3(−ω+1
2 x2 + ω+3

6 r1)2 + c4x
2
2 = c0

for all x2 ∈ Fp, which is not possible if the coefficient of x2
2 is not 0. So c4 = −c3

(
ω+1

2

)2
=

−c3 ω
2+2ω+1

4 = −c3 2ω−2
4 = c3

1−ω
2 and, by using again that ω2 = −3, we have that

c34 = c33

(
1− ω

2

)3

= c33
1− 3ω + 3ω2 − ω3

8
= c33

1− 3ω − 9 + 3ω

8
= −c33.

From c33 + c34 = 0 and |c3|, |c4| < (p/4)1/3 we obtain that c3 = −c4 = c3
ω−1

2 . Thus c3 = c4 = 0.
Now, the relation

c1(−ω+1
2 x2 + ω+3

6 r1) + c2x2 = c0,

can not hold for all x2 if the coefficient of x2 is not cero. Hence, c2 = c1
ω+1

2 and it follows

that c32 = c31
(
ω+1

2

)3
= −c31. From c31 + c32 = 0 and |c1|, |c2| ≤ (p/4)1/3 we obtain again that

c1 = −c2 = −c1 ω+1
2 . Thus c1 = c2 = 0.

We have proved that the conditions of Theorem 2.2 are also satisfied when 6r2 − 2r2
1 ≡ 0

(mod p) for C+
r1 (and similarly for C−r1 .) Therefore, the set Sr1,r2 is well distributed in all the

cases.

2.2. End of the proof of Theorem 1.1

Erdős and Turán [13] have shown that the set

A = {x+ (x2)p(2p) : x = 0, . . . , p− 1},

is a Sidon set of integers for any odd prime p.
For a given N , let p be a prime such that p ≡ 1 (mod 3) and 4p2 < N < 5p2. This prime

exists if N is large enough. Since A ⊂ [0, 2p2) ⊂ [0, N/2), the set A is a Sidon set in ZN . We
will prove that A is also a basis of order 3 in ZN .

We observe that for any integer K, the set of integers of the form

r1 + r2(2p), K ≤ r1, r2 ≤
5p− 1

2
+K (2.11)

covers an interval of length 5p2. This is clear for K = 0 and, by translation, for all K. Since
5p2 > N , in order to prove that A is a basis of order 3 in ZN it is enough to prove that any
element of the form (2.11) can be written as a sum of 3 elements of A. We will take K = dp/4e
throughout the proof.

For each (r1, r2) we consider the box Br1,r2 ⊂ [0, 1]4 of all points (y1, y2, y3, y4) satisfying the
following constraints:∣∣∣∣y1 −

r1

3p

∣∣∣∣ , ∣∣∣∣y2 −
r1

3p

∣∣∣∣ , ∣∣∣∣y3 −
r2

3p

∣∣∣∣ , ∣∣∣∣y4 −
r2

3p

∣∣∣∣ ≤ K

12p
.

We must check that 0 < yi < 1, i = 1, . . . , 4 and that Br1,r2 ⊂ [0, 1]4. Indeed, since p ≥ 7, we
have

y ≤ ri
3p

+
K

12p
≤

5p−1
2 +K

3p
+

K

12p
<

5p− 1

6p
+

5K

12p
≤ 5p− 1

6p
+

5(p+ 3)

48p
≤ 45p+ 7

48p
< 1,

and

y ≥ r1

3p
− K

12p
≥ K

3p
− K

12p
> 0.

The size of the box is |Br1,r2 | ≥
(
K
6p

)4

> 24−4. Therefore, Proposition 2.1 implies that,

for p large enough, there exists an element, say
(
x1

p ,
x2

p ,
(x2

1)p
p ,

(x2
2)p
p

)
, with 0 ≤ x1, x2 ≤ p−
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1, (x1, x2) ∈ Cr1,r2 satisfying∣∣∣∣x1

p
− r1

3p

∣∣∣∣ , ∣∣∣∣x2

p
− r1

3p

∣∣∣∣ , ∣∣∣∣ (x2
1)p
p
− r2

3p

∣∣∣∣ , ∣∣∣∣ (x2
2)p
p
− r2

3p

∣∣∣∣ ≤ K

12p
.

Since (x1, x2) ∈ Cr1,r2 , there exists an integer x3, 0 ≤ x3 ≤ p− 1 satisfying

x1 + x2 + x3 ≡ r1 (mod p)

x2
1 + x2

2 + x2
3 ≡ r2 (mod p).

Let m be such that x1 + x2 + x3 = r1 +mp. We have

|m| ≤
∣∣∣∣x1

p
− r1

3p

∣∣∣∣+

∣∣∣∣x2

p
− r1

3p

∣∣∣∣+

∣∣∣∣x3

p
− r1

3p

∣∣∣∣
≤ K

12p
+

K

12p
+ max

(
r1

3p
, 1− r1

3p

)
≤ K

6p
+ max

(
5p/2 +K

3p
, 1− K

3p

)
≤ max

(
5p+ 3K

6p
, 1− K

6p

)
< 1,

since K = dp4e and p ≥ 7. This proves that indeed x1 + x2 + x3 = r1. The same argument
proves that (x2

1)p + (x2
2)p + (x2

3)p = r2. Thus we have

r1 + r2(2p) = x1 + (x2
1)p(2p) + x2 + (x2

2)p(2p) + x3 + (x2
3)p(2p),

as we wanted to prove.

3. The probabilistic method with some new tools

The proofs of Theorems 1.2 and 1.3 are based on the probabilistic method introduced
by Erdős and Renyi [9] to study sequences satisfying certain arithmetic properties. The
book of Alon and Spencer [2] is the most complete reference on the probabilistic method
and Halberstam and Roth [16] is a classic reference for the probabilistic method applied to
sequences of integers.

For a given γ, with 0 < γ < 1, Erdős and Renyi introduced the probabilistic space S(γ)
of all sequences of positive integers A such that all the events x ∈ A are independent and
P(x ∈ A) = x−γ .

Generally speaking the goal is to prove that a sequence A in S(γ) satisfies certain arithmetic
property (or properties) with high probability. To be more precise, we consider certain families
Ωn of sets of positive integers and the random families

Ωn(A) = {ω ∈ Ωn : ω ⊂ A}

generated by a random sequence A in S(γ). Typically we are interested in the random variable

Xn(A) = |Ωn(A)| =
∑
ω∈Ωn

I(ω ⊂ A).

For example if

Ωn = {ω = {x1, x2, x3} : x1 + x2 + x3 = n}, (3.1)

the random variable Xn(A) counts the number of representation of n as a sum of three elements
of a random sequence A in S(γ). In general we are interested in proving that Xn(A) satisfies
a certain property Pn. The standard strategy is to prove that∑

n

P(Xn(A) does not satisfies Pn) <∞ (3.2)
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and then apply the Borel-Cantelli Lemma to deduce that, with probability 1, the random
variable Xn(A) satisfies property Pn for all n large enough.

We will modify the probabilistic space S(γ) to force that all the elements of A lie in some
residue classes s ∈ C (mod N) for some C ⊂ ZN satisfying suitable conditions. At the end of
this section we explain the advantage of this modification. We will write x ≡ C (mod N) to
mean that x ≡ s (mod N) for some s ∈ C.

Also it is technically more convenient to introduce a parameter m to force that the elements
of A are greater than a fixed m. This idea was introduced before in [4] and allows us to bound
(3.2) by a quantity which is om(1). At a later step we take m arbitrarily large.

Definition 3. Let C be a nonempty set of a cyclic group ZN . For a given γ, 0 < γ < 1
and a given positive integer m, let Sm(γ,CN ) be the probabilistic space of all sequences of
positive integers A such that all the events x ∈ A are independent and such that

P(x ∈ A) =

{
x−γ if x ≡ C (mod N) and x > m

0 otherwise.

Since Xn(A) is a sum of boolean variables we expect that Xn(A) is concentrated around its
expected value, µn = E(Xn(A)), with high probability.

When the variables I(ω ∈ A) are independent (the sets ω ∈ Ωn are disjoint), Chernoff’s
theorem shows that Xn(A) is strongly concentrated around µn. However, when the sets in Ωn
are not disjoint, as in the example (3.1), the study of concentration around the mean is more
involved.

It is expected, however, that if the dependent events have small correlation we still have
enough concentration. Janson’s inequality [17] serves our purpose for the lower tail:

Theorem 3.1 (Janson’s inequality). Let Ω be a family of sets and let A be a random
subset. Let X(A) = |{ω ∈ Ω : ω ⊂ A}| with finite expected value µ = E(X(A)). Then

P(X ≤ (1− ε)µ) ≤ exp
(
−ε2µ2/(2µ+ ∆(Ω))

)
where

∆(Ω) =
∑

ω,ω′∈Ω
ω∼ω′

P(ω, ω′ ⊂ A)

and ω ∼ ω′ means that ω ∩ ω′ 6= ∅ and ω 6= ω′. In particular, if ∆(Ω) < µ we have that

P(X ≤ µ/2) ≤ exp (−µ/12) .

To deal with the upper tail Erdős and Tetali [12] introduced the Sunflowers trick.

3.1. Sunflowers and vectorial Sunflowers

A collection of sets S1, . . . , Sk forms a sunflower if there exists a set S such that Si ∩ Sj = S
whenever i 6= j. The sets Si \ S are the petals and S is the core of the sunflower. Erdős and
Rado [8] proved the following interesting lemma.

Lemma 3.1 (Sunflower Lemma). Let Ω a family of h-sets. If Ω does not contain a sunflower
of k petals then |Ω| ≤ h!(k − 1)h.
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We will work with a variant of the Sunflower Lemma which deals with vectors instead of
sets. The reason is that in our proofs it will be more convenient to work with families Ω of
vectors (instead of sets).

Definition 4. Given a vector x = (x1, . . . , xh) we define Set(x) = {x1, . . . , xh}. We say
that a collection of k distinct vectors xj , j = 1, . . . , k forms a disjoint set of k vectors (k-d.s.v.
for short) if Set(xj) ∩ Set(xj′) = ∅ whenever j 6= j′.

Definition 5. We say that k distinct vectors with h coordinates form a vectorial sunflower
(of k petals) if for some I ⊂ [h] the following two conditions are satisfied:

– For all i ∈ I all the vectors have the same i-th coordinate.
– The set of vectors obtained by removing all the i-th coordinates, i ∈ I, forms a k-d.s.v.

We say that the vectorial sunflower is of type I.

We observe that a vectorial sunflower (of k petals) of type I = ∅ is a k-d.s.v. The example
below forms a vectorial sunflower (of 4 petals) of type I = {2, 5}.

x1 = ( 7, 7, 1, 13, 8)

x2 = (17, 7, 6, 6, 8)

x3 = ( 8, 7, 18, 8, 8)

x4 = (11, 7, 4, 5, 8)

We need a vectorial version of Lemma 3.1.

Lemma 3.2 (Vectorial Sunflower Lemma). Let Ω be a family of vectors of h coordinates.
If Ω does not contain a vectorial sunflower of k petals then

|Ω| ≤ h!((h2 − h+ 1)(k − 1))h.

Proof. Suppose that |Ω| > h!((h2 − h+ 1)(k − 1))h. For any x = (x1, . . . , xh) ∈ Ω we con-
sider the set Seth(x) = {hx1 + 1, hx2 + 2, . . . , hxh + h} and the family Ω̂ = {Seth(x) : x ∈ Ω}.
The sunflower lemma of Erdős-Rao applied to Ω̂ implies that there exists a classical sunflower
with (h2 − h+ 1)(k − 1) + 1 petals, say Seth(x1), . . . ,Seth(x(h2−h+1)(k−1)+1). It is clear that
from these sets we can recover the corresponding vectors x1, . . . , x(h2−h+1)(k−1)+1 which satisfy
the following conditions:

– There exists I ⊂ {1, . . . , h} such that for each i ∈ I all the (h2 − h+ 1)(k − 1) + 1 vectors
have the same i-th coordinate.

– For each i 6∈ I, the i-th coordinates of all these vectors are pairwise distinct.

We observe that the conditions above are not enough to make sure that the vectors form a
vectorial sunflower. We will prove, however, that the set {x1, . . . , x(h2−h+1)(k−1)+1} contains a
vectorial sunflower of k petals.

Fix one vector, say x1. We know that if i 6∈ I, the i-th coordinate of x1 cannot be equal to
the i-th coordinate of a distinct vector. However it may be equal to a different i′-th coordinate
(i′ 6∈ I) of a distinct vector. We observe that for each i 6∈ I and for each i′ 6∈ I, i′ 6= i there is
at most one such vector. We remove, for each i 6∈ I and for each i′ 6∈ I, i′ 6= i, such a vector
(if it exists). Thus removing at most h(h− 1) vectors we make sure that for all i 6∈ I, the i-th
coordinate of x1 is not equal to any i′-th coordinate (i′ 6∈ I, i′ 6= i) of a distinct vector.
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Now we select a second vector and proceed as above. Since the number of original vectors
was (h(h− 1) + 1)(k − 1) + 1 we can select at least k vectors in this way forming a vectorial
sunflower of k petals.

Typically we will deal with families of vectors Ω and with the corresponding random families
Ω(A) = {x ∈ Ω : Set(x) ⊂ A}.

Corollary 3.1. Let Ωn be a sequence of families of vectors of h coordinates. Suppose
that with probability 1− om(1) the random families Ωn(A) do not contain vectorial sunflowers
of K petals for any n. Then, with probability 1− om(1) the inequality

|Ωn(A)| ≤ h!((h2 − h+ 1)(K − 1))h

holds for all n.

The following proposition will be used several times in the proofs of Theorems 1.2 and 1.3.

Proposition 3.1. Let {Ωn} be a sequence of families of vectors and {Ωn(A)} the
corresponding random family where A is a random sequence in Sm(γ,CN ) for some C ⊂ ZN .
Suppose that there is δ > 0 such that E(|Ωn(A)|)� (n+m)−δ. If K > 1/δ then

P(Ωn(A) contains a K-d.s.v. for some n) = om(1).

Proof.

P (Ωn(A) contains a K-d.s.v.) ≤
∑

x1,...,xK∈Ωn
form a K-d.s.v.

P
(
Set(x1), . . . ,Set(xK) ⊂ A

)
=

∑
x1,...,xK∈Ωn
form a K-d.s.v.

P
(
Set(x1) ⊂ A

)
· · ·P

(
Set(xK) ⊂ A

)

≤ 1

K!

(∑
x∈Ωn

P
(
Set(x) ⊂ A

))K

=
E(|Ωn(A)|)K

K!
� (n+m)−δK

K!
.

Then,

P(Ωn(A) contains a K-d.s.v. for some n)�
∑
n

P (Ωn(A) contains a K-d.s.v. )

�
∑
n

(n+m)−δK

K!
= om(1).

A powerful tool to control the concentration of sum of random boolean dependent variables is
the method invented by Kim and Vu [18]. Indeed, it was the main ingredient in [21]. However,
in order to apply this method to our problems we would need to estimate a large amount
of expressions (expectations of derivatives) which would duplicate the length of this paper.
Instead we have used the Erdős-Tetali method combined with some tricks as the modular
trick.
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3.2. The modular trick

Before we explain the strategy of the proof of Theorem 1.2 let us mention that we will be
dealing with sums of the form ∑

x=(x1,...,x8)
x1+x2+x3=n

x1+x4=x5+x6=x7+x8

{x1,x4}6={x5,x6}6={x7,x8}

P(x1, . . . , x8 ∈ A), (3.3)

where A is a random sequence. If the coordinates of a vector x are pairwise distinct,
then P(x1, . . . , x8 ∈ A) =

∏8
i=1 P(xi ∈ A) and the computation of (3.3) is straightforward.

Unfortunately we have also to consider those vectors with repeated coordinates. There are
many patterns to consider and the computation of the sum above would be hard in a standard
probabilistic space S(γ). To reduce this unpleasant task we will restrict the sequences A to
belong to some residue classes s ∈ C, (mod N) for some C ⊂ ZN given in Theorem 2.1. This
trick will simplify a lot the case analysis of the possible coincidences between the coordinates
in the proofs of Lemmas 6.5 and 6.8.

4. B2[2] sequences which are asymptotic basis of order 3

In this section we prove Theorem 1.2.

4.1. Strategy of the proof

We start by fixing a cyclic group ZN and a set C ⊂ ZN satisfying the conditions of Theorem
2.1. Throughout this section we will consider the probabilistic space Sm(7/11, CN ). Actually,
any value of γ in the interval (5/8, 2/3) would work equally fine. We consider the sequence of
sets

Qn =
{
ω = {x1, x2, x3} : x1 + x2 + x3 = n, xi 6≡ xj (mod N), i 6= j

}
.

Given a sequence of positive integers A we define, for each n, the set

Qn(A) = {ω ∈ Qn : ω ⊂ A}.

Definition 6 (Lifting process). The B2[2]-lifting process of a sequence A consists in
removing from A those elements a1 ∈ A such that there exist a2, a3, a4, a5, a6 ∈ A with
a1 + a2 = a3 + a4 = a5 + a6 and {a1, a2} 6= {a3, a4} 6= {a5, a6}.

We denote by AB2[2] the surviving elements of A after this process. The sequence AB2[2] is
clearly a B2[2] sequence.

We define

Tn = {x = (x1, . . . , x8) : x satisfies cond(Tn)} where

cond(Tn) :=


{x1, x2, x3} ∈ Qn
x1 + x4 = x5 + x6 = x7 + x8, {x1, x4} 6= {x5, x6} 6= {x7, x8}
x1 ≡ x5 ≡ x7 (mod N), x4 ≡ x6 ≡ x8 (mod N).

We define also

Tn(A) = {x ∈ Tn : Set(x) ⊂ A}.

We will show that |Tn(A)| is an upper bound for the number of representations of n counted
in Qn(A) that are removed in the B2[2]-lifting process of A defined above.
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Suppose that ω = {x1, x2, x3} ∈ Qn(A) contains an element, say x1, which is removed in
the B2[2]-lifting process. Then there exist x4, x5, x6, x7, x8 ∈ A such that x1 + x4 = x5 + x6 =
x7 + x8 with {x1, x4} 6= {x5, x6} 6= {x7, x8}. On the other hand, since all xi ≡ C (mod N)
and C is a Sidon set in ZN , interchanging x5 with x6 and x7 with x8 if needed, we have
that x1 ≡ x5 ≡ x7 (mod N) and x4 ≡ x6 ≡ x8 (mod N). Thus, any ω ∈ Qn(A) removed in
the B2[2]-lifting process is counted at least once in Tn(A) and we have

|Qn(AB2[2])| ≥ |Qn(A)| − |Tn(A)|.

Since AB2[2] is a B2[2] sequence for any sequence A, the proof of Theorem 1.2 reduces to show
that there exists a sequence A such that |Qn(A)| � nδ for some δ > 0 and for n large enough
and such that |Tn(A)| � 1. We do these tasks in Propositions 4.1 and 4.2.

Proposition 4.1. With probability 1 we have |Qn(A)| � n1/11 for n large enough.

Proof. We apply Janson’s inequality to Ω = Qn and X = |Qn(A)| = {ω ∈ Qn : ω ⊂ A}
where A is a random sequence in Sm(7/11,CN). In Lemma 6.4 we prove that µn = E(Qn(A))�
n1/11 and in Proposition 6.1 we prove that ∆(Qn)� n−2/11 for

∆(Qn) =
∑

ω,ω′∈Qn

ω∼ω′

P(ω, ω′ ∈ A).

Therefore, for n large enough, we have that ∆n < µn and Janson’s inequality implies that

P(|Qn(A)| ≤ µn/2) ≤ exp (−µn/12) .

Then, for some c > 0, we can write∑
n

P (|Qn(A)| ≤ µn/2) <
∑
n

exp
(
−cn1/11

)
<∞

and the Borell-Cantelli Lemma implies that |Qn(A)| ≥ µn/2� n1/11 with probability 1 for all
n large enough.

In the proof of Proposition 4.2 we use several times Lemma 4.1. We first introduce the
following families of vectors, whose expected values are bounded in Lemma 6.3.

U2r = {x = (x1, x2) : x1 + x2 = r, x1 6= x2} (4.1)

V2r = {x = (x1, x2) : x1 − x2 = r}
Wr = {x = (x4, x5, x6, x7, x8) : x5 + x6 − x4 = x7 + x8 − x4 = r, xi 6= xj}.

Lemma 4.1. Let Xr be any of the three families in (4.1). Then

P(Xr(A) contains a 12-d.s.v. for some r) = om(1).

Proof. Lemma 6.3 implies that E(|Xr(A)|)� (r +m)−2/11. The result follows from
Proposition 3.1.

Proposition 4.2. With probability 1− om(1) we have |Tn(A)| ≤ 1026 for any n.

Proof. We first show that the statement follows from the next Claim.
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Claim. With probability 1− om(1), the family Tn(A) does not contain vectorial sunflowers
of 12 petals for any n.

Assuming the Claim we can apply Corollary 3.1 to the families Tn to deduce that, with
probability 1− om(1), we have that |Tn(A)| ≤ 8!((82 − 8 + 1)11)8 < 1026 for all n. Hence the
Claim implies Proposition 4.2.

We prove the Claim for the distinct possible types I ⊂ {1, . . . , 8} of the vectorial sunflowers
in Tn(A). The types we analyze below will cover all the cases, as we will explain later.

1. I = ∅. By Lemma 6.5 we have E(|Tn(A)|)� (n+m)−1/11. Now, Proposition 3.1 implies
P(Tn(A) has a 12-d.s.v. for some n) = om(1).

2. |I ∩ {1, 2, 3}| = 1. Assume that I ∩ {1, 2, 3} = {1}, the other two cases being similar.
If Tn(A) contains a vectorial sunflower (of 12 petals) of type I for some n (denote by l1
the common first coordinate) then there is a 12-d.s.v. xj = (x2j , x3j), j = 1, . . . , 12 such
that x2j + x3j = n− l1. Thus, for r = n− l1, U2r(A) contains a 12-d.s.v. and Lemma 4.1
implies the Claim for vectorial sunflowers of this type.

3. |I ∩ {1, 4, 5, 6, 7, 8}| = 1. Assume that I ∩ {1, 4, 5, 6, 7, 8} = {1}, the other cases being
similar.
If Tn(A) contains a vectorial sunflower (of 12 petals) of type I for some n (denote by
l1 the common first coordinate) then there is a 12-d.s.v. xj = (x4j , x5j , x6j , x7j , x8j), j =
1, . . . 12 such that x5j + x6j = x7j + x8j = l1 + x4j . Therefore, for r = l1, Wr(A) contains
a 12-d.s.v. and Lemma 4.1 implies the Claim for vectorial sunflowers of this type.

4. |I ∩ {1, 4, 5, 6}| = 2 or |I ∩ {1, 4, 7, 8}| = 2 or |I ∩ {5, 6, 7, 8}| = 2. Suppose that |I ∩
{1, 4, 5, 6}| = 2. The other cases are similar. We need to distinguish between two essentially
distinct cases:
i) I ∩ {1, 4, 5, 6} = {1, 4}. If Tn(A) contains a vectorial sunflower (of 12 petals) of type I

(denote by l1, l4 the value of the common coordinates) then there is a 12-d.s.v. xj =
(x5j , x6j), j = 1, . . . 12 such that x5j + x6j = l1 + l4. Thus, for r = l1 + l4, U2r(A) has
a 12-d.s.v. Lemma 4.1 implies the Claim for vectorial sunflowers of this type.

ii) I ∩ {1, 4, 5, 6} = {1, 5}. If Tn(A) contains a vectorial sunflower (of 12 petals) of type I
(denote by l1, l5 the value of the common coordinates and assume that l1 > l5) we have
that there is an 12-d.s.v. xj = (x4j , x6j), j = 1, . . . 12 such that x6j − x4j = l1 − l5.
Hence, for r = l1 − l5, V2r(A) contains a 12-disjoint set and Lemma 4.1 implies the
Claim for vectorial sunflowers of this type.

We observe that the sets I considered in the previous analysis cover all the possible cases. The
point is that if the subscripts of one of the equations x1 + x2 + x3 = n, x1 + x4 = x5 + x6,
x1 + x4 = x7 + x8, x5 + x6 = x7 + x8 are all but one in I, then a vectorial sunflower of that
type I cannot exist. For example the cases such that |I ∩ {1, 2, 3}| = 2 are not possible because
if two vectors have the same coordinates x1, x2, also x3 must be the same in both vectors.
For example, if {4, 5, 6} ⊂ I then these coordinates must be the same in all the vectors of the
sunflower, but also x1 should be the same in all of them. The reader can check that the types
not studied above are of this kind. Thus we have proved the Claim.

5. Sidon basis of order 3 + ε

In this section we will prove Theorem 1.3. The proof follows the same steps as the proof of
Theorem 1.2 but is a little more involved because we have to distinguish an element x4 ≤ nε.
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5.1. Strategy of the proof of Theorem 1.3

We start by fixing a cyclic group ZN and a set C ⊂ ZN satisfying the conditions of Corollary
2.1. Throughout this section we will consider the probabilistic space Sm(γ,CN ) with

γ =
2

3
+

ε

9 + 9ε
.

Indeed we could take any γ with 2+3ε
3+4ε < γ < 2+ε

3+ε . We consider the families of sets

Rn =
{
ω = {x1, x2, x3, x4} : satisfying the conditions cond(Rn)

}
where

cond(Rn) =


x1 + x2 + x3 + x4 = n,

min(x1, x2, x3, x4) ≤ nε

xi 6≡ xj (mod N), 1 ≤ i < j ≤ 4.

Given a sequence of positive integers A we define the families:

Rn(A) =
{
ω ∈ Rn : ω ⊂ A

}
.

Definition 7 (Sidon lifting process). The Sidon lifting process of a sequence A consists
in removing from A those elements a ∈ A such that there exist a′, a′′, a′′′ ∈ A with a+ a′ =
a′′ + a′′′, {a+ a′} 6= {a′′, a′′′}.

We denote by ASidon the surviving elements of A after this process.

We define

Bn(A) = {x = (x1, . . . , x7) : xi ∈ A, x satisfies cond(Bn)} where

cond(Bn) :=


{x1, x2, x3, x4} ∈ Rn
x1 + x5 = x6 + x7, {x1, x5} 6= {x6, x7}
x1 ≡ x6 (mod N), x5 ≡ x7 (mod N).

By a similar argument as the one used in the proof of Theorem 1.2 we can see that |Bn(A)|
is an upper bound for the number of the representations of n counted in Rn(A) but removed
in the Sidon lifting process of A. Thus,

|Rn(ASidon)| ≥ |Rn(A)| − |Bn(A)|.

Since ASidon is a Sidon sequence, to prove Theorem 1.3 it is enough to prove that there exists
a sequence A such that |Rn(A)| � nδ for some δ > 0 and for n large enough, and such that
|Bn(A)| � 1.

Proposition 5.1. With probability 1 we have that |Rn(A)| � n
2ε2

9+9ε for n large enough.

Proof. We apply Janson’s inequality to Ω = Rn and X = |Rn(A)| = {ω ∈ Rn : ω ⊂ A}
where A is a random sequence in Sm(γ,CN ). In Proposition 6.7 we prove that µn =

E(Rn(A))� n
2ε2

9+9ε and in Proposition 6.2 that ∆(Rn)� n
−3ε+2ε2

9+9ε where

∆(Rn) =
∑

ω,ω′∈Rn

ω∼ω′

P(ω, ω′ ∈ A).

Thus for n large enough we have ∆(Rn) < µn and Janson’s inequality implies that

P(|Rn(A)| ≤ µn/2) ≤ exp (−µn/12) .
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Then, for some C > 0, we have∑
n

P(|Rn(A)| ≤ µn/2) <
∑
n

exp
(
−Cn

2ε2

9+9ε

)
<∞

and the Borell-Cantelli lemma implies that with probability 1 we have |Rn(A)| ≥ µn/2� n
2ε2

9+9ε

for all n. This proves Proposition 5.1.

In the proof of Proposition 5.2 we use several times Lemma 5.1. We first introduce the
following families of vectors, whose expected values are bounded in Lemma 6.6.

U2r = {x = (x1, x2) : x1 + x2 = r, x1 6= x2} (5.1)

U3r = {x = (x1, x2, x3) : x1 + x2 + x3 = r, xi 6= xj}
V2r = {x = (x1, x2) : x1 − x2 = r}
V3r = {x = (x1, x2, x3) : x1 + x2 − x3 = r, xi 6= xj}.

Lemma 5.1. Let K a positive integer such that K > 18/ε2. Then for any of the four families
Xr in (5.1)

P(Xr(A) contains a K-d.s.v. for some r) = om(1).

Proof. Lemma 6.6 implies E(|Xr(A)|)� (r +m)−ε/6 � (r +m)−ε
2/18. Then the result

follows from Proposition 3.1.

Proposition 5.2. With probability 1− om(1) we have |Bn(A)| � 1.

Proof. We first show that the statement follows from the next Claim.
Claim: Let K a positive integer such that K > 18/ε2. Then Bn(A) does not contain vectorial

sunflowers of K petals for all n, with probability 1− om(1).
Assuming the Claim we can apply Corollary 3.1 to the families Bn to deduce that |Bn(A)| ≤

7!((72 − 7 + 1)(K − 1))7 for all n, with probability 1− om(1).
We prove the Claim for the distinct possible type I ⊂ {1, . . . , 7} of the vectorial sunflowers in

Bn(A). The types we analyze below will cover all the cases. It is clear that if I ∩ {1, 2, 3, 4} =
{1, 2, 3}, then vectorial sunflowers of type I cannot exists because the conditions on Bn implies
that also the 4th-coordinate is common for all vectors. The same argument works for any I such
that |I ∩ {1, 2, 3, 4}| = 3 or |I ∩ {1, 5, 6, 7}| = 3. Also it is clear that there do not exist vectorial
sunflowers of type I = {7}. Thus we have to consider the types: I = ∅, |I ∩ {1, 2, 3, 4}| = 1,
|I ∩ {1, 2, 3, 4}| = 2, |I ∩ {1, 5, 6, 7}| = 1 and |I ∩ {1, 5, 6, 7}| = 2.

1. I = ∅. By Lemma 6.8 E(|Bn(A)|)� (n+m)−
ε2

18 . Hence, Proposition 3.1 implies
P(Bn(A) has a K-d.s.v. for some n) = om(1).

2. |I ∩ {1, 2, 3, 4}| = 1. Suppose that I ∩ {1, 2, 3, 4} = {1}. The other three cases are similar.
If Bn(A) contains a vectorial sunflower of K petals of this type for some n (denote
by l1 to the common first coordinate) we have that there exists an K-d.s.v. xj =
(x2j , x3j , x4j), Set(xj) ⊂ A, j = 1, . . . ,K such that x2j + x3j + x4j = n− l1. Thus, for
r = n− l1, U3r(A) contains a K-d.s.v. and Lemma 5.1 implies the Claim for vectorial
sunflowers of this type.

3. |I ∩ {1, 2, 3, 4}| = 2. Suppose that I ∩ {1, 2, 3, 4} = {1, 2}. The other six cases are similar.
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If some Bn(A) contains a vectorial sunflower of K petals of this type for some n (denote
by l1, l2 the common first and second coordinate) we have that there exists an K-d.s.v.
xj = (x3j , x4j), Set(xj) ⊂ A, j = 1, . . .K such that x3j + x4j = n− l1 − l2. Thus, for r =
n− l1 − l2 we have that U2r(A) contains a K-d.s.v. and Lemma 5.1 implies the Claim for
vectorial sunflowers of this type.

4. |I ∩ {1, 5, 6, 7}| = 1. Suppose that I ∩ {1, 5, 6, 7} = {1}. The other four cases are similar.
If some Bn(A) contains a vectorial sunflower of K petals of this type (denote by l1 the com-
mon first coordinate) we have that there exists an K-d.s.v. xj = (x5j , x6j , x7j), Set(xj) ⊂
A, j = 1, . . .K such that x6j + x7j − x5j = l1. Thus, for r = l1 we have that V3r(A)
contains a K-d.s.v. and Lemma 5.1 implies the Claim for vectorial sunflowers of this
type.

5. |I ∩ {1, 5, 6, 7}| = 2. We distinguish two essentially distinct cases:
i) I ∩ {1, 5, 6, 7} = {1, 5}. The case I ∩ {1, 5, 6, 7} = {6, 7} is similar.

If some Bn(A) contains a vectorial sunflower of K petals of this type (let us denote by
l1, l5 the common first and fifth coordinates respectively) we have that there exists an
K-d.s.v. xj = (x6j , x7j), Set(xj) ⊂ A, j = 1, . . .K such that x6j + x7j = l1 + l5. Thus,
for r = l1 + l5 we have that U2r(A) contains a K-d.s.v. and Lemma 5.1 implies the
Claim for vectorial sunflowers of this type.

ii) I ∩ {1, 5, 6, 7} = {1, 6}. The case I ∩ {1, 5, 6, 7} = {5, 7} is similar.
If some Bn(A) contains a vectorial sunflower of K petals of this type (denote by l1, l6 the
common first and fifth coordinates and assume that l1 > l6) then there exists a K-d.s.v.
xj = (x5j , x7j), Set(xj) ⊂ A, j = 1, . . .K such that x7j − x5j = l1 − l6. Therefore, for
r = l1 − l6 we have that V2r(A) contains a K-d.s.v. and Lemma 5.1 implies the Claim
for vectorial sunflowers of this type.

6. Expected values

We define the quantities:

σα,β(n) =
∑
x,y≥1
x+y=n

x−αy−β =
∑

1≤x<n

x−α(n− x)−β ,

τα,β(n) =
∑
x,y≥1
x−y=n

x−αy−β =
∑
1≤x

x−α(n+ x)−β

and in general

σα,β(n;m) =
∑
x,y>m
x+y=n

x−αy−β , τα,β(n;m) =
∑
x,y>m
x−y=n

x−αy−β .

The next Lemma will be applied many times later on. We will write
∗
� to mean that we are

using Lemma 6.1 in the inequality. All xi appearing in this section are positive integers.

Lemma 6.1. For any α, β < 1 with α+ β > 1 we have

i) σα,β(n;m)� (n+m)1−α−β . iii) σα,β(n)� n1−α−β .
ii) τα,β(n;m)� (n+m)1−α−β . iv) τα,β(n)� n1−α−β .



Page 18 of 26 JAVIER CILLERUELO

Proof. If n < 2m, i) holds because σα,β(n;m) = 0. If n ≥ 2m we have

σα,β(n;m) ≤
∑

1≤x≤n/2

x−α(n− x)−β +
∑

n/2<x<n

x−α(n− x)−β

�
∑

1≤x≤n/2

x−αn−β +
∑

n/2<x<n

n−α(n− x)−β

� n1−α−β � (n+m)1−α−β .

To prove ii) we distinguish two cases. If n < m we have

τα,β(n;m) ≤
∑
x>m

x−α(n+ x)−β ≤
∑
x>m

x−α−β � m1−α−β � (n+m)1−α−β .

If n ≥ m we have

τα,β(n;m) ≤
∑
x>m

x−α(n+ x)−β =
∑

m<x<n

x−α(n+ x)−β +
∑
x≥n

x−α(n+ x)−β

� n−β
∑

1≤x<n

x−α +
∑
x≥n

x−α−β � n1−α−β � (n+m)1−α−β .

The cases iii) and iv) follow from i) and ii) taking m = 0.

Lemma 6.2. Let a, b be positive integers. Then for any γ, 1/2 < γ < 1,

∑
1≤x

x−γ(x+ a)−γ(x+ b)1−2γ � (ab)1−2γ .

Proof. Suppose that a < b and split the sum:

S =
∑
x≤b

x−γ(x+ a)−γ(x+ b)1−2γ +
∑
x>b

x−γ(x+ a)−γ(x+ b)1−2γ

� b1−2γ
∑
x≤b

x−γ(x+ a)−γ +
∑
x>b

x1−4γ ∗�b1−2γa1−2γ + b2−4γ � (ab)1−2γ .

6.1. Expected values in Sm(7/11, CN )

Lemma 6.3. We have

i) E(|U2r(A)|)� (r +m)−3/11.
ii) E(|V2r(A)|)� (r +m)−3/11.

iii) E(|Wr(A)|)� (r +m)−2/11.
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Proof.

E(|U2r(A)|) =
∑
x,y>m
x+y=r

(xy)−γ � (r +m)1−2γ � (r +m)−3/11.

E(|V2r(A)|) =
∑
x,y>m
x−y=m

(xy)−γ � (r +m)1−2γ � (r +m)−3/11.

E(|Wr(A)|) ≤
∑

x4,x5,x6,x7,x8>m
x5+x6=x7+x8=r+x4

(x4x5x6x7x8)−γ �
∑
x4≥1

x−γ4

( ∑
x,y>m

x+y=r+x4

(xy)−γ
)2

∗
�
∑
x4≥1

x−γ4 (r +m+ x4)2−4γ ∗�(r +m)3−5γ � (r +m)−2/11.

Lemma 6.4. E(|Qn(A)|)� n1/11 for n large enough.

Proof. We have E(|Qn(A)|) =
∑
{x1,x2,x3}∈Qn

P(x1, x2, x3 ∈ A) ≥ n−3γ |Q′n|, where

Q′n =
{
{x1, x2, x3} ∈ Qn : xi ≡ S (mod N), xi > m

}
.

We observe that S ⊂ ZN is such that n ≡ s1 + s2 + s3 (mod N) for some pairwise distinct
s1, s2, s3. We fix s1, s2, s3 and write xi = si +Nyi and l = n−s1−s2−s3

N . Then |Q′n| ≥ |Q∗n| where

|Q∗n| =
∣∣∣{{y1, y2, y3} : y1 + y2 + y3 = l : yi > m

}∣∣∣ � l2 � n2,

if l > 10mN . Thus, E(|Qn(A)|) ≥ n−3γ |Q∗n| � n−3γ+2 � n1/11 for n large enough.

Proposition 6.1. ∆(Qn)� n−2/11.

Proof. If ω ∼ ω′ with ω, ω′ ∈ Qn, both sets have exactly one common element, say x1. Thus

∆(Qn) =
∑

ω,ω′∈Qn

ω∼ω′

P(ω, ω′ ⊂ A)�
∑

1≤x1,x2,x3,x
′
2,x
′
3

x2+x3=n−x1

x′2+x′3=n−x1

(x1x2x3x
′
2x
′
3)−γ

≤
∑

1≤x1<n

x−γ1

( ∑
1≤x,y

x+y=n−x1

(xy)−γ
)2 ∗
�

∑
1≤x1<n

x−γ1 (n− x1)2−4γ

∗
� n3−5γ � n−2/11.

Lemma 6.5. E(|Tn(A)|)� (n+m)−1/11.

Proof. It is clear that E(|Tn(A)|) = 0 if n < 3m, so it is enough to prove that E(|Tn(A)|)�
n−1/11.

We observe that, if (x1, . . . , x8) ∈ Tn, then we have some of the following situations:
i) All xi are pairwise distinct.
ii) x7 = x8 and x1, x2, x3, x4, x5, x6, x7 are pairwise distinct.
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iii) x4 ∈ {x2, x3} and x1, x2, x3, x5, x6, x7, x8 are pairwise distinct.
iv) x6 ∈ {x2, x3} and x1, x2, x3, x4, x5, x7, x8 are pairwise distinct.
v) x8 ∈ {x2, x3} and x1, x2, x3, x4, x5, x6, x7 are pairwise distinct.

In order to simplify the above conditions we observe that iv) and v) are essentially the same
one and that x2 and x3 play the same role, so iii) can be substituted by x4 = x2 and iv) and
v) by x6 = x2. Thus we have

E(|Tn(A)|)�
∑

1≤x1,x2,x3,x4,x5,x6,x7,x8
x1+x2+x3=n

x1+x4=x5+x6=x7+x8

(x1x2x3x4x5x6x7x8)−γ +
∑

1≤x1,x2,x3,x4,x5,x6,x7
x1+x2+x3=n

x1+x4=x5+x6=2x7

(x1x2x3x4x5x6x7)−γ

+
∑

1≤x1,x2,x3,x5,x6,x7,x8
x1+x2+x3=n

x1+x2=x5+x6=x7+x8

(x1x2x3x5x6x7x8)−γ +
∑

1≤x1,x2,x3,x4,x5,x7,x8
x1+x2+x3=n

x1+x4=x5+x2=x7+x8

(x1x2x3x4x5x7x8)−γ

= S1 + S2 + S3 + S4.

S1 �
∑

1≤x1,x4<n

(x1x4)−γ
∑

1≤x2,x3
x2+x3=n−x1

(x2x3)−γ
∑

1≤x5,x6
x5+x6=x1+x4

(x5x6)−γ
∑

1≤x7,x8
x7+x8=x1+x4

(x7x8)−γ

∗
�

∑
1≤x1,x4<n

(x1x4)−γ(n− x1)1−2γ(x1 + x4)2−4γ ∗�
∑

1≤x1<n

x3−6γ
1 (n− x1)1−2γ ∗�n5−8γ .

S2 �
∑

1≤x1,x4<n

(
x1x4

x1+x4

2

)−γ ∑
1≤x2,x3

x2+x3=n−x1

(x2x3)−γ
∑

1≤x5,x6
x5+x6=x1+x4

(x5x6)−γ

∗
�

∑
1≤x1,x4<n

(x1x4(x1 + x4))
−γ

(n− x1)1−2γ(x1 + x4)1−2γ

�
∑

1≤x1<n

x−γ1 (n− x1)1−2γ
∑
1≤x4

x−γ4 (x1 + x4)1−3γ ∗�
∑

1≤x1<n

x2−5γ
1 (n− x1)1−2γ ∗�n4−7γ .

S3 �
∑

1≤x1,x2
x1+x2<n

(x1x2(n− x1 − x2))−γ
∑

x5,x6>m
x5+x6=x1+x2

(x4x5)−γ
∑

x7,x8>m
x7+x8=x1+x2

(x7x8)−γ

�
∑

1≤l<n

∑
1≤x1,x2
x1+x2=l

(x1x2)−γ(n− l)−γ
∑

x5,x6>m
x5+x6=l

(x4x5)−γ
∑

x7,x8>m
x7+x8=l

(x7x8)−γ

∗
�

∑
1≤l<n

(n− l)−γ l3−6γ ∗�n4−7γ .

The estimate of S4 is more involved. We observe that given x1, x3, x4 the values of x2 and x5

are determined by

x2 = n− x3 − x1, x5 = x4 + 2x1 + x3 − n.

S4 �
∑

1≤x1<n

∑
1≤x3<n−x1

∑
1≤x4

x−γ1 (n− x3 − x1)−γx−γ3 x−γ4 (x4 + 2x1 + x3 − n)−γ
∑

1≤x7,x8
x7+x8=x1+x4

(x7x8)−γ

∗
�

∑
1≤x1<n

∑
1≤x3<n−x1

x−γ3 x−γ1 (n− x3 − x1)−γ
∑
1≤x4

x−γ4 (x4 + 2x1 + x3 − n)−γ(x4 + x1)1−2γ .
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Now we apply Lemma 6.2 to the last sum and later we write x3 = n− x1 − z, z ≥ 1 to get

S4 �
∑

1≤x1<n

∑
1≤x3<n−x1

x−γ3 x1−3γ
1 (n− x3 − x1)−γ(2x1 + x3 − n)1−2γ

�
∑

1≤x1<n

∑
1≤z<n−x1

(n− x1 − z)−γx1−3γ
1 z−γ(x1 + z)1−2γ

�
∑

1≤x1<n

x2−5γ
1

∑
1≤z<n−x1

(n− x1 − z)−γz−γ
∗
�

∑
1≤x1<n

x2−5γ
1 (n− x1)1−2γ ∗�n4−7γ .

6.2. Expected values in Sm( 2
3 + ε

9+9ε , CN )

Lemma 6.6. We have

i) E(|U2r(A)|)� (r +m)−1/3, ii) E(|U3r(A)|)� (r +m)−ε/6.
iii) E(|V2r(A)|)� (r +m)−1/3, iv) E(|V3r(A)|)� (r +m)−ε/6.

Proof.

E(|U2r(A)|) =
∑
x,y>m
x+y=r

(xy)−γ � (r +m)1−2γ � (r +m)−1/3.

E(|V2r(A)|) =
∑
x,y>m
x−y=m

(xy)−γ � (r +m)1−2γ � (r +m)−1/3.

E(|U3r(A)|) ≤
∑

x,y,z>m
x+y+z=r

(xyz)−γ ≤
∑
z>0

z−γ
∑
x,y>m

x+y=r−z

(xy)−γ

∗
�
∑
z

z−γ(r − z +m)1−2γ ∗�(r +m)2−3γ � (r +m)−ε/6.

E(|V3r(A)|) ≤
∑

x,y,z>m
x+y−z=r

(xyz)−γ =
∑
z≥1

z−γ
∑
x,y>m

x+y=r+z

(xy)−γ

∗
�
∑
z≥1

z−γ(r + z +m)1−2γ ∗�(r +m)2−3γ � (r +m)−ε/6.

Lemma 6.7. E(Rn(A))� n
2ε2

9+9ε .

Proof. We have E(|Rn(A)|) =
∑
{x1,x2,x3,x4}∈Rn

P(x1, x2, x3, x4 ∈ A) ≥ n−(3+ε)γ |R′n|, where

R′n = {{x1, x2, x3, x4} ∈ Rn : xi ≡ S (mod N), xi > m}.

We observe that S ⊂ ZN is such that n ≡ s1 + s2 + s3 + s4 (mod N) for some pairwise distinct
s1, s2, s3, s4. We fix s1, s2, s3, s4 and write xi = si + 256yi and l = n−s1−s2−s3−s4

N . Then |R′n| ≥
|R∗n| where

|R∗n| = # {{y1, y2, y3, y4} : y1 + y2 + y3 + y4 = l, m < min(y1, y2, y3, y4) ≤ nε/256}
� nεl2 � n2+ε

Thus, E(|Rn(A)|) ≥ n−(3+ε)γ |R∗n| � n−(3+ε)γ+2+ε � n
2ε2

9+9ε .
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Proposition 6.2. ∆(Rn)� n
−3ε+2ε2

9+9ε .

Proof. We have that

∆(Rn) =
∑

ω,ω′∈Rn

ω∼ω′

P(ω, ω′ ∈ A)

We split ∆(Rn) in several sums according to the common elements of ω and ω′. We suppose
that i = 1 is the index for which x1 ≤ nε.

1. ω ∩ ω′ = {x1}∑
1≤x1,x2,x3,x4,x

′
2,x
′
3,x
′
4

x1+x2+x3+x4=n
x1+x′2+x′3+x′4=n

x1≤nε

(x1x2x3x4x
′
2x
′
3x
′
4)−γ �

∑
1≤x1≤nε

x−γ1

( ∑
x2,x3,x4

x2+x3+x4=n−x1

(x2x3x4)−γ
)2

∗
�

∑
1≤x1≤nε

x−γ1 (n− x1)4−6γ � n4−6γ+ε(1−γ).

2. ω ∩ ω′ = {xj} for some j = 2, 3, 4. Without lost of generality we consider the case x2 = x′2:∑
1≤x1,x2,x3,x4,x

′
1,x
′
3,x
′
4

x1,x
′
1≤n

ε

x3+x4=n−x2−x1

x′3+x′4=n−x2−x′1

(x1x2x3x4x
′
1x
′
3x
′
4)−γ �

∑
1≤x2

x−γ2

( ∑
x1≤nε

x−γ1

∑
1≤x,y

x+y=n−x2−x1

(xy)−γ
)2

Now we split the sum in two sums according to x2 ≤ n− 2nε or n− 2nε < x2 < n.

∑
1≤x2≤n−2nε

x−γ2

 ∑
1≤x1≤nε

x−γ1 (n− x2 − x1)1−2γ

2

�
∑

1≤x2≤n

x−γ2

(
n− x2

2

)2−4γ
 ∑

1≤x1≤nε

x−γ1

2

∗
� n3−5γn2(1−γ)ε � n(2−2γ)ε+3−5γ .

∑
n−2nε<x2≤n

x−γ2

 ∑
1≤x1≤nε

x−γ1 (n− x2 − x1)1−2γ

2

∗
�

∑
n−2nε<x2≤n

x−γ2 (n− x2)4−6γ

� n−γ
∑

n−2nε<x2≤n

(n− x2)4−6γ � n−γ+(5−6γ)ε.

3. ω ∩ ω′ = {x1, xj} for some j = 2, 3, 4. Without lost of generality we consider the case x1 = x′1
and x2 = x′2:∑

1≤x1,x2,x3,x4,x
′
3,x
′
4

x1+x2+x3+x4=n
x1+x2+x′3+x′4=n

x1≤nε

(x1x2x3x4x
′
3x
′
4)−γ �

∑
1≤x1≤nε

x−γ1

∑
1≤x2

x−γ2

( ∑
x3,x4

x3+x4=n−x1−x2

(x3x4)−γ
)2

∗
�

∑
1≤x1≤nε

x−γ1

∑
1≤x2

x−γ2 (n− x1 − x2)2−4γ

∗
�

∑
1≤x1≤nε

x−γ1 (n− x1)3−5γ � n3−5γ+ε(1−γ).
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4. ω ∩ ω′ = {xj , xk} for some 2 ≤ j < k ≤ 4. Without lost of generality we consider the case
x2 = x′2 and x3 = x′3:

∑
1≤x1,x2,x3,x4,x

′
1,x
′
4

x1+x2+x3+x4=n
x′1+x2+x3+x′4=n

x1,x
′
1≤n

ε

(x1x2x3x4x
′
1x
′
4)−γ �

∑
1≤x2,x3
x2+x3<n

(x2x3)−γ

 ∑
1≤x1≤nε

x−γ1 (n− x2 − x3 − x1)−γ

2

∗
�

∑
1≤x2,x3

x2+x3<n−2nε

(x2x3)−γ

n−εγ ∑
1≤x1≤nε

x−γ1

2

+
∑

1≤x2,x3

n−2nε≤x2+x3<n

(x2x3)−γ
(
(n− x2 − x3)1−2γ

)2
�

∑
1≤x2,x3

x2+x3<n−2nε

(x2x3)−γ
(
n−εγnε(1−γ)

)2

+
∑

n−2nε≤l<n

∑
1≤x2,x3
x2+x3=l

(x2x3)−γ(n− l)2−4γ

∗
�

∑
1≤x2,x3

x2+x3<n−2nε

(x2x3)−γnε(2−4γ) + n1−2γ
∑

n−2nε≤l<n

(n− l)2−4γ ∗�n1−2γ+ε(2−4γ) + n1−2γ+ε(3−4γ).

Observe that if ω 6= ω′ it is not possible that they have three common coordinates. Putting
γ = 2

3 + ε
9+9ε in each estimate we have that

∆(Rn)� n4−6γ+ε(1−γ) + n3−5γ+ε(1−γ) + n−γ+ε(5−6γ) + n1−2γ+ε(2−4γ) + n1−2γ+ε(3−4γ)

� n
−3ε+2ε2

9+9ε + n
−3−5ε+2ε2

9+9ε + n
−6+2ε+3ε2

9+9ε + n
−3−11ε−10ε2

9+9ε + n
−3−2ε−ε2

9+9ε � n
−3ε+2ε2

9+9ε .

Lemma 6.8. E(Bn(A))� (n+m)−
ε2

18 .

Proof. It is clear that E(|Bn(A)|) = 0 if n < 4m, so it is enough to prove that E(Bn(A))�
n−

ε2

9+9ε .
We observe that if (x1, . . . , x7) ∈ Bn(A) then some of the following conditions hold:

i) All xi are pairwise distinct.
ii) x6 = x7 and all x1, x2, x3, x4, x5, x6 are pairwise distinct.

iii) x5 ∈ {x2, x3, x4} and all x1, x2, x3, x4, x6, x7 are pairwise distinct.
iv) x6 ∈ {x2, x3, x4} and all x1, x2, x3, x4, x5, x7 are pairwise distinct.
v) x7 ∈ {x2, x3, x4, } and all x1, x2, x3, x4, x5, x6 are pairwise distinct.

Thus we have

E(|Bn(A)|) ≤
′∑

x=(x1,x2,x3,x4,x5,x6,x7)
x1+x2+x3+x4=n
x1+x5=x6+x7

min(x1,x2,x3,x4)≤nε

P(x1, . . . , x7 ∈ A)

and
∑′

means that x satisfies i), ii), iii), iv) or v).
In order to simplify these conditions we observe that iv) and v) are essentially the same one,

and that x2, x3, x4 play the same role, so iii) can be substituted by x5 = x2 and iv) and v) by
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x7 = x2. Therefore we have that

E(Bn(A))�
∑

1≤x1,x2,x3,x4,x5,x6,x7
x1+x2+x3+x4=n
x1+x5=x6+x7

min(x1,x2,x3,x4)≤nε

(x1x2x3x4x5x6x7)−γ +
∑

1≤x1,x2,x3,x4,x5,x6
x1+x2+x3+x4=n

x1+x5=2x6

min(x1,x2,x3,x4)≤nε

(x1x2x3x4x5x6)−γ

+
∑

1≤x1,x2,x3,x4,x5,x6
x1+x2+x3+x4=n
x1+x2=x6+x7

min(x1,x2,x3,x4)≤nε

(x1x2x3x4x6x7)−γ +
∑

1≤x1,x2,x3,x4,x5,x6
x1+x2+x3+x4=n
x1+x5=x6+x2

min(x1,x2,x3,x4)≤nε

(x1x2x3x4x5x6)−γ

= S1 + S2 + S3 + S4.

We write S1 ≤ S′1 + S′′1 to distinguish the cases x1 ≤ nε and x2 ≤ nε.

S′1 �
∑

1≤x1≤nε

∑
x2<n

∑
x5

(x1x2x5)−γ
∑

1≤x3,x4
x3+x4=n−x1−x2

(x3x4)−γ
∑
x6,x7

x6+x7=x1+x5

(x6x7)−γ

∗
�

∑
1≤x1≤nε

∑
1≤x2<n

∑
x5

(x1x2x5)−γ(n− x1 − x2)1−2γ(x1 + x5)1−2γ

∗
�

∑
1≤x1≤nε

∑
1≤x2<n−x1

x2−4γ
1 x−γ2 (n− x1 − x2)1−2γ �

∑
1≤x1≤nε

x2−4γ
1 (n− x1)2−3γ

∗
� n2−3γ+ε(3−4γ) � n−

ε
3+3ε +ε( 1

3−
4ε

9+9ε ) � n−
ε2

9+9ε � n−ε
2/18.

S′′1 �
∑

1≤x2≤nε

∑
1≤x1<n

∑
x5

(x1x2x5)−γ
∑

1εx3,x4
x3+x4=n−x1−x2

(x3x4)−γ
∑
x6,x7

x6+x7=x1+x5

(x6x7)−γ

∗
�

∑
1≤x2≤nε

∑
1≤x1<n−x2

∑
x5

(x1x2x5)−γ(n− x1 − x2)1−2γ(x1 + x5)1−2γ

∗
�

∑
1≤x2≤nε

∑
1≤x1<n−x2

x2−4γ
1 x−γ2 (n− x1 − x2)1−2γ ∗�

∑
1≤x2≤nε

x−γ2 (n− x2)4−6γ

∗
� n4−6γ+ε(1−γ) � n−

2ε
3+3ε +ε( 1

3−
ε

9+9ε ) � n
−3ε+2ε2

9+9ε � n−ε
2/18.

In the estimates of S2, S3 and S4 we remove the annoying condition min(x1, x2, x3, x4) ≤ nε.

S2 ≤
∑

1≤x1,x2,x3,x4,x5,x6
x1+x2+x3+x4=n

x1+x5=2x6

(x1x2x3x4x5x6)−γ

≤
∑

1≤x1,x2
x1+x2<n

(x1x2)−γ
(∑

x5

(x5(x1 + x5)/2)−γ
)( ∑

1≤x3,x4
x3+x4=n−x1−x2

(x3x4)−γ
)

∗
�

∑
1≤x1,x2
x1+x2<n

(x1x2)−γx1−2γ
1 (n− x1 − x2)1−2γ ∗�

∑
1≤x1<n

x1−3γ
1 (n− x1)2−3γ � n4−6γ .
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S3 ≤
∑

1≤x1,x2,x3,x4,x5,x6
x1+x2+x3+x4=n
x1+x2=x6+x7

(x1x2x3x4x6x7)−γ

≤
∑

1≤x1,x2
x1+x2<n

(x1x2)−γ
∑

1≤x6,x7
x6+x7=x1+x2

(x6x7)−γ
∑

1≤x3,x4
x3+x4=n−x1−x2

(x3x4)−γ

∗
�

∑
1≤x1,x2
x1+x2<n

(x1x2)−γ(x1 + x2)1−2γ(n− x1 − x2)1−2γ

�
∑

1≤l<n

∑
1≤x1,x2
x1+x2=l

(x1x2)−γ l1−2γ(n− l)1−2γ ∗�
∑

1≤l<n

l2−4γ(n− l)1−2γ ∗�n4−6γ .

S4 ≤
∑

1≤x1,x2,x3,x4,x5,x6
x1+x2+x3+x4=n
x1+x5=x6+x2

(x1x2x3x4x6x7)−γ

�
∑

1≤x1,x2
x1<x2

x1+x2<n

(x1x2)−γ
∑

1≤x5,x6
x5−x6=x2−x1

(x6x5)−γ
∑

1≤x3,x4
x3+x4=n−x1−x2

(x3x4)−γ

∗
�

∑
1≤x1,x2
x1<x2

x1+x2<n

x−2γ
1 (x2 − x1)1−2γ(n− x1 − x2)1−2γ

�
∑

1≤x1<n/2

x−2γ
1 (n− 2x1)3−4γ �

∑
1≤x1<n/2

x−2γ
1 (n/2− x1)3−4γ ∗�n3−4γn1−2γ .

Thus, S2, S3, S4 � n4−6γ � n−
2ε

3+3ε � n
−ε2

18 .
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