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ON A QUESTION OF SÁRKOZY AND SÓS FOR BILINEAR FORMS

JAVIER CILLERUELO and JUANJO RUÉ

Abstract

We prove that if 2 ≤ k1 ≤ k2, then there is no infinite sequenceA of positive integers such that the representation
function r(n) = #{(a, a′) : n = k1a + k2a′, a, a′ ∈ A} is constant for n large enough. This result completes
previous work of Dirac and Moser for the special case k1 = 1 and answers a question posed by Sárkozy and Sós.

1. Introduction

Given an infinite sequence of positive integers A, the representation functions r(n) and R(n)
are defined as the number of solutions of the equations

n = a + a′, a, a′ ∈ A
n = a + a′, a, a′ ∈ A, a ≤ a′,

respectively.
It is obvious that r(n) is odd when n = 2a, a ∈ A, and even otherwise. So it is not possible

for r(n) to be constant for n large enough. This asymmetry disappears in R(n) but Dirac [1]
gave a beautiful argument that also proves that R(n) cannot be constant for n large enough.

For k ≥ 2, Moser [3] considered the representation function

r(n) = #{(a, a′), n = a + ka′, a, a′ ∈ A}.
Surprisingly he constructed a sequence A such that r(n) = 1 for all n ≥ 0.

Sárkozy and Sós [4] asked for which (k1, k2) the representation function

rk1,k2(n,A)) = #{(a, a′) : n = k1a + k2a
′, a, a′ ∈ A}.

can be constant for n large enough. We answer this question by showing that the only cases
with affirmative answer are those considered by Moser.

Theorem 1.1. Let k1, k2, 2 ≤ k1 ≤ k2. Then there is no infinite sequence of positive
integers A such that

rk1,k2(n,A) = #{(a, a′) : n = k1a + k2a
′, a, a′ ∈ A}

is constant for n large enough.

The question posed in [4] actually concerns general linear forms k1x1 + · · · + khxh, h ≥ 2.
The same arguments we use for the case h = 2 can be extended to the general case when
the k′is are pairwise coprimes but they are best illustrated in the situation presented in this
paper. The more general case with arbitrary coefficients requires a different approach and it is
considered in a forthcoming paper.
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2. Translation of the problem into generating functions: Dirac’s and Moser’s arguments

As Dirac and Moser did, we use the language of generating functions: to every set A of
nonnegative integers, we write the formal power series fA(z) defined as

fA(z) := f(z) =
∑

a∈A
za.

This formal power series is called the generating function associated to A.
For every set A, the corresponding generating function defines an analytic function around

z = 0. This analytic function is a polynomial if A is finite and has a singularity at z = 1 if
|A| is infinite. In fact, if |A| is infinite, then the Taylor expansion around z = 0 defined by the
formal power series has radius of convergence r = 1.

We proceed to translate the general problem into the language of generating functions. The
fundamental equation we use is:

f(zk1)f(zk2) =
∑

a,a′∈A
zk1a+k2a′ =

∞∑
n=0

rk1,k2(n,A)zn. (2.1)

2.1. Dirac’s argument

We observe that for the functions r(n) and R(n) we have the relation r(n) = 2R(n)− δ(n),
where δ(n) = 1 if n = 2a for some a ∈ A and 0 otherwise. By (2.1) we obtain

f2(z) =
∞∑

n=0

r(n)zn = 2
∞∑

n=0

R(n)zn −
∑

a∈A
z2a,

which can be written in the form

f2(z) + f(z2) = 2
∞∑

n=0

R(n)zn.

Dirac proved that R(n) cannot be a constant c for n ≥ n0 with an easy but clever argument:
suppose that R(n) = c for n ≥ n0. Then

f2(z) + f(z2) = Q(z) + 2c
zn0+1

1− z
=

P (z)
1− z

,

where P (z) is a polynomial of finite degree with P (1) 6= 0. Then we obtain a contradiction by
taking the limit for z → −1 in both sides of the equation: the left hand side of the equality
diverges, but the right hand side has a finite limit.

2.2. Moser’s argument

Moser [3] studied the case k1 = 1, k2 ≥ 2. He wondered if for these cases there exists an
infinite sequence of nonnegative integers such that r1,k(n,A) = 1 for all n ≥ 0. If this is the
case, equation (2.1) implies

f(z)f(zk) =
∑

n≥0

zn =
1

1− z
.

If we make the change of variables z := zk we get

f(zk)f(zk2
) =

1
1− zk

.
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Dividing the initial equation by this one we obtain

f(z) =
1− zk

1− z
f(zk2

) = (1 + z + z2 + · · ·+ zk−1)f(zk2
).

By iterating we get the relation

f(z) =
∞∏

j=0

(1 + z(k2)j

+ z2(k2)j

+ · · ·+ z(k−1)(k2)j

).

This product defines an analytic function at the origin, which can be written using its series
expansion around z = 0. Moreover, by the unique k2–adic representation of an integer, the
Taylor’s coefficients of f(z) are either 0 or 1. So this function f(z) defines a set A which
satisfies our assumptions.

More precisely, the set A is the set of all nonnegative integers such that all its digits in its
k2–adic expansion are smaller than k.

2.3. The general case

We want to know if, given k1, k2, 1 ≤ k1 ≤ k2, there exists an infinite sequence of non
negative integers A and a value (say n0) such that rk1,k2(n,A) is a positive constant c for
n ≥ n0. Since the cases k1 = 1 have been considered by Dirac (k2 = 1 with negative answer in
both ordered and unordered representations) and Moser (k2 ≥ 2 with affirmative answer) we
may assume that 2 ≤ k1 ≤ k2. We may also assume that gcd(k1, k2) = 1, since otherwise we
have rk1,k2(n,A) = 0 for all n 6≡ 0 (mod gcd(k1, k2)).

If such a sequence A exists, then by (2.1) we have

f(zk1)f(zk2) =
n0−1∑
n=0

anzn +
∞∑

n=n0

czn = Q(z) +
czn0+1

1− z
=

P (z)
1− z

,

where Q(z), P (z) are polynomials in Z[z] with P (1) 6= 0. This last relation is equivalent to the
condition c 6= 0.

For convenience, we take the square of the previous equation. By writing F (z) = f2(z), we
want to show that there is no function F (z), analytic in the disc |z| < 1, such that

F (zk1)F (zk2) =
P 2(z)

(1− z)2
.

Theorem 1.1 will be a consequence of a more general theorem:

Theorem 2.1. For any integers k1, k2, 2 ≤ k1 < k2 with gcd(k1, k2) = 1 and any
polynomial P (z) ∈ Z[z] with P (1) 6= 0, there is no function F (z), analytic in the disc |z| < 1,
satisfying

F (zk1)F (zk2) =
P 2(z)

(1− z)2
. (2.2)

In what follows we concentrate in the proof of Theorem 2.1.

3. Algebraic preliminaries and notation used

In our work we will use cyclotomic polynomials.
Recall that the cyclotomic polynomial of order n is defined by the relation

Φn(z) =
∏

ξ∈φn

(z − ξ) ∈ Z[z],
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where φn denotes the set of primitive roots of order n,

φn = {ξ ∈ C : ξk = 1 if and only if k ≡ 0 (mod n)}.
Many properties of these polynomials are well–known. The most important one for our

present purposes is that they are irreducible over Z[z]. As a consequence, it is known that if
a polynomial P (z) ∈ Z[z] vanishes at a primitive root of order n then there exists a positive
integer s such that

P (z) = Φs
n(z)Q(z)

where Q(z) ∈ Z[z] and Q(ξ) 6= 0 for all primitive roots ξ of order n.
Given k1, k2, 2 ≤ k1 < k2 we write ξj1,j2 to denote a primitive root of order kj1

1 kj2
2 , 0 ≤ j1, j2,

and we let sj1,j2 denote the nonnegative integer such that

P (z) = Φsj1,j2

k
j1
1 k

j2
2

(z)Pj1,j2(z)

with Pj1,j2(z) ∈ Z[z] and Pj1,j2(ξ) 6= 0 for all ξ ∈ φ
k

j1
1 k

j2
2

.

It is not true in general that for an analytic function F (z) with integer coefficients there
exists rj1,j2 such that

F (z) = Φrj1,j2

k
j1
1 k

j2
2

(z)Fj1,j2(z)

with limz→ξ Fj1,j2(z) 6= 0,∞ for any ξ ∈ φj1,j2 . However we will prove that there is such a
factorization if F (z) satisfies (2.2).

4. Proof of theorem 2.1

The proof of Theorem 2.1 is a consequence of the two propositions below:

Proposition 4.1. With the notation used in Section 3, rj,0 and r0,j are well defined for
any j ≥ 0 and they verify the following recurrence relations

rj+1,0 = 2sj+1,0 − rj,0 (horizontal recurrence)

r0,j+1 = 2s0,j+1 − r0,j (vertical recurrence)

for any j ≥ 0, and initial condition r0,0 = −1.

Proposition 4.2. With the notation used in Section 3, rj1,j2 are well defined for any
j1, j2 ≥ 0 and these numbers verify the recurrence relation

rj1−1,j2 + rj1,j2−1 = 2sj1,j2 (diagonal recurrence)

for j1 ≥ 1, j2 ≥ 1.

Before proving the above propositions we show how Theorem 1.1 can be deduced from them.
Since r0,0 = −1 is an odd number, from the two propositions above we see that all values

rj1,j2 are odd numbers.
As P (z) is a polynomial, it is clear that sj1,j2 = 0 when j1 + j2 ≥ j for a suitable j.
Using proposition 4.1 and for this value of j, we obtain the relations:

rj+1,0 = −rj,0 and
r0,j+1 = −r0,j .

From proposition 4.2 we get that rj+1,0 = −rj,1 = rj−1,2 = · · · , so

rj+1,0 = (−1)j+1r0,j+1 and
rj,0 = (−1)jr0,j .
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The above relations are possible if and only if rj,0 = rj+1,0 = r0,j = r0,j+1 = 0, giving a
contradiction. This proves Theorem 2.1 and Theorem 1.1.

We next prove the two propositions. In what follows all the limits considered are taken along
a radius.

Proof of proposition 4.1. We deal only with the horizontal recurrence. The proof for the
vertical recurrence is similar.

We write rj = rj,0, sj = sj,0 and ξj = ξj,0 for simplicity. We shall prove by induction that
all the rj ’s are well defined.

By writing F (z) = F0(z)/(z − 1) in (2.2) we have

F0(zk1)F0(zk2) = P 2(z)(1 + z + · · · zk1−1)(1 + z + · · · zk2−1).

For z → 1 the left hand side of the above equation clearly goes to F 2
0 (1) and the right hand

side is neither 0 nor ∞. Since Φ1(z) = z − 1 we obtain that r0 = −1.
Assume now that rj is well defined. Then

F (z) = Φrj

kj
1
(z)Fj(z), (4.1)

where Fj(ξ) 6= 0,∞ for all ξ ∈ φkj
1
. Now we write

F (z) = Φ2sj+1−rj

kj+1
1

(z)Fj+1(z). (4.2)

In what follows, we prove that limz→ξj+1 Fj+1(z) 6∈ {0,∞} for any ξ ∈ φkj+1
1

. This will show
that rj+1 exists and that rj+1 = 2sj+1 − rj .

We use (4.1) in F (zk1) and (4.2) in F (zk2) to write the equation (2.2) in the form

Fj+1(zk2) =
P 2

j+1(z)Φ2sj+1

kj+1
1

(z)

(1− z)2Φ2sj+1−rj

kj+1
1

(zk2)Fj(zk1)Φrj

kj
1
(zk1)

.

By making the substitution z = ξj+1ω we have

Fj+1(ξk2
j+1ω

k2) =
P 2

j+1(ξj+1ω)
(1− ξj+1ω)2

· 1
Fj(ξk1

j+1ω
k1)

·
Φ2sj+1

kj+1
1

(ξj+1ω)

Φ2sj+1−rj

kj+1
1

(ξk2
j+1ω

k2)Φrj

kj
1
(ξk1

j+1ω
k1)

. (4.3)

We let ω → 1 and we observe that all the primitive roots of order kj+1
1 can be written in the

form ξk2
j+1 for a suitable ξj+1 since gcd(k2, k1) = 1.

To conclude, we show that the limit is neither 0 nor ∞. In fact, this is the case for each of
the three factors on the right hand side of (4.3).

It is clear that Pj+1(ξj+1) 6= 0 by definition.
Since ξk1

j+1 ∈ φkj
1
, we use the induction hypothesis to conclude that the limit of the second

factor is neither 0 nor ∞.
To study the third factor when ω → 1 it suffices to analyze the factors in the cyclotomic

polynomials which vanish at ω = 1. It should be noticed that ξk1
j+1 ∈ φkj

1
and ξk2

j+1 ∈ φkj+1
1

.
The contribution of these factors is

(ξj+1ω − ξj+1)2sj+1

(ξk2
j+1ω

k2 − ξk2
j+1)2sj+1−rj (ξk1

j+1w
k1 − ξk1

j+1)rj

=
ξ
2sj+1
j+1

ξ
k2(2sj+1−rj)
j+1 ξ

k1rj

j+1

· (ω − 1)2sj+1

(ωk2 − 1)2sj+1−rj (ωk1 − 1)rj
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which tends to
ξ
2sj+1(1−k2)+rj(k2−k1)
j+1

k
2sj+1−rj

2 k
rj

1

as ω → 1. The relevant fact about this limit is that it is neither zero nor infinity.

The next proof is quite similar to the previous one:

Proof of proposition 4.2. We will prove, for each diagonal j1 + j2 = j, that all rj1,j2 , 0 ≤
j2 ≤ j are well defined. For each j we will do it by induction on j2.

This is true for rj,0 by Proposition 4.1. Suppose that rj1,j2 is well defined. Thus

F (z) = Φrj1,j2
j1,j2

(z)Fj1,j2(z) (4.4)

where Fj1,j2(ξ) 6∈ {0,∞} for all ξ ∈ φ
k

j1
1 k

j2
2

.

We prove that rj1−1,j2+1 is also well defined and also that rj1−1,j2+1 = sj1,j2+1 − rj1,j2 .
In order to do this we write

F (z) = Φ2sj1,j2+1−rj1,j2
j1−1,j2+1 (z)Fj1−1,j2+1(z).

What we have to prove is that limz→ξ Fj1−1,j2+1(z) 6∈ {0,∞} for any ξ ∈ φj1−1,j2+1.

We use (4.4) in F (zk2) and (4) in F (zk1) to write the equation (2.2) in the form

Fj1−1,j2+1(zk1) =
P 2

j1,j2+1(z)Φ2sj1,j2+1

j1,j2+1 (z)

(1− z)2Φ2sj1,j2+1−rj1,j2
j1−1,j2+1 (zk1)Φrj1,j2

j1,j2
(zk2)Fj1,j2(zk2)

.

Now we make the substitution z = ξj1,j2+1ω for some arbitrary ξj1,j2+1 ∈ φ
k

j1
1 k

j2+1
2

. We
obtain the expression

Fj1−1,j2+1(ξk1
j1,j2+1ω

k1) =
P 2

j1,j2+1(ξj1,j2+1ω)
(1− ξj1,j2+1ω)2

· 1
Fj1,j2(ξ

k2
j1,j2+1ω

k2)

· Φ2sj1,j2+1

j1,j2+1 (ξj1,j2+1ω)

Φ2sj1,j2+1−rj1,j2
j1−1,j2+1 (ξk1

j1,j2+1ω
k1)Φrj1,j2

j1,j2
(ξk2

j1,j2+1ω
k2)

.

Now we let ω → 1. We observe that all the primitive roots of order kj1−1
1 kj2−1

2 can be written
in the form ξk1

j1,j2+1 for a suitable ξj1,j2+1 ∈ φ
k

j1
1 k

j2+1
2

. As in the previous proposition, we show
that the limit is neither 0 nor ∞, showing that this is the case for every factor in the previous
equation.

For the first factor, it is clear that Pj1,j2+1(ξj1,j2+1) 6∈ {0,∞} by definition.
Since ξk1

j1,j2+1 ∈ φ
k

j1−1
1 k

j2+1
2

, we use induction hypothesis to conclude that the limit in the
second factor does not belong to {0,∞}.

Finally, to study the third factor when ω → 1 we look at the cyclotomic polynomials which
vanish at ω = 1. It should be noticed that ξk1

j1,j2+1 ∈ φ
k

j1−1
1 k

j2+1
2

and ξk2
j1,j2+1 ∈ φ

k
j1
1 k

j2
2

. The
contribution of these factors is

(ξj1,j2+1ω − ξj1,j2+1)2sj1,j2+1

(ξk1
j1,j2+1ω

k1 − ξk1
j1,j2+1)

2sj1,j2+1−rj1,j2 (ξk2
j1,j2+1ω

k2 − ξk2
j1,j2+1)

rj1,j2
.

which tends to a number which is neither zero nor infinity. This concludes the proof.
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