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Abstract. Motivated by a question of Sárközy, we study the gaps in the
product sequence B = A · A = {b1 < b2 < · · · } of all products aiaj with
ai, aj ∈ A when A has upper Banach density α > 0. We prove that there are
infinitely many gaps bn+1 − bn ¿ α−3 and that for t ≥ 2 there are infinitely
many t-gaps bn+t − bn ¿ t2α−4. Furthermore we prove that these estimates
are best possible.

We also discuss a related question about the cardinality of the quotient set
A/A = {ai/aj , ai, aj ∈ A} when A ⊂ {1, . . . , N} and |A| = αN .

1. Introduction

Let A = {a1 < a2 < . . .} be an infinite sequence of positive integers. The lower
and upper asymptotic densities of A are defined by

d(A) = lim inf
N→∞

|A ∩ {1, . . . , N}|
N

and d(A) = lim sup
N→∞

|A ∩ {1, . . . , N}|
N

.

The lower and upper Banach density of A are defined by

d∗(A) = lim inf
|I|→∞

|A ∩ I|
|I| and d∗(A) = lim sup

|I|→∞

|A ∩ I|
|I|

where I runs through all intervals. Clearly d∗(A) ≤ d(A) ≤ d(A) ≤ d∗(A).

Sárközy considered the set

B = A · A = {b1 < b2 < . . .}
of all products aiaj with ai, aj ∈ A and asked the following question, stated as
problem 22 in [4].

Question 1. Is it true that for all α > 0 there is a number c = c(α) > 0 such
that if A ⊂ N is an infinite sequence with d(A) > α, then bn+1− bn ≤ c holds for
infinitely many n?

This work was developed during the Doccourse in Additive Combinatorics held in the Centre
de Recerca Matemàtica from January to March 2008. Both authors are extremely grateful for
its hospitality. We would like also to thank Terence Tao for reading a preliminary version of
this paper and giving helpful comments.

1



2 JAVIER CILLERUELO AND THÁI HOÀNG LÊ

This question is not trivial, since for any 0 < α < 1 and ε > 0 there is a
sequence A such that d(A) > α > 0 but d̄(B) < ε, thus the gaps of B are greater
than 1

ε
on average. See the construction in [1].

Bérczi [1] answered Sárközy’s question in the affirmative by proving that we
can take c(α) ¿ α−4. Sándor [3] improved it to c(α) ¿ α−3 even assuming the
weaker hypothesis d(A) > α .

In this work we consider Sárközy’s question for the upper Banach density, that
is to find a constant c∗(α) such that bn+1 − bn ≤ c∗(α) infinitely often whenever
d∗(A) > α. In this setting we can find the best possible value for c∗(α) up to a
multiplicative constant.

Theorem 1. For every 0 < α < 1 and every sequence A with d∗(A) > α, we
have bn+1 − bn ¿ α−3 infinitely often.

Theorem 2. For every 0 < α < 1, there exists a sequence A with d∗(A) > α
and such that bn+1 − bn À α−3 for every n.

We observe that, since d∗(A) ≥ d(A), Theorem 1 is stronger than Sándor’s
result.

We also extend this question and study the difference bn+t − bn for a fixed t,
namely to find a constant c∗(α, t) such that bn+t − bn ≤ c∗(α, t) infinitely often.
Theorems 1 and 2 above correspond to the case t = 1. For greater t the answer
is perhaps surprising, in that the exponent of α involved in c∗(α, t) is −4, not −3
like in the case t = 1.

Theorem 3. For every 0 < α < 1, every t ≥ 2 and every sequence A with
d∗(A) > α, we have bn+t − bn ¿ t2α−4 infinitely often.

Theorem 4. For every 0 < α < 1 and every t ≥ 2, there is a sequence A such
that d∗(A) > α and bn+t − bn À t2α−4 for every n.

The method of proof for Theorems 1 and 3 is related to the Erdős-Turán
method in Sidon sets theory. Sidon sets are also the main tool in the constructions
involved in Theorems 2 and 4.

Notation. We will denote by dxe the smallest integer greater or equal to x,
bxc the greatest integer small than or equal to x. For quantities A,B we write
A ¿ B, or B À A if there is an absolute constant c > 0 such that A ≤ cB.

2. Proof of the results

In our proofs of Theorems 1, 3 we will use the following simple observation:

Lemma 1. Let K be a positive integer, α a real number with 0 < α < 1. Then,
if d∗(A) > α, there exist infinitely many pairwise disjoint intervals I of length K
such that |A ∩ I| ≥ α|I|.
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Proof. Suppose for a contradiction, there exists at most a finite number of in-
tervals I of length K with |A ∩ I| ≥ αK. Thus, there exists N such that if
I ∩ [1, N ] = ∅ and |I| = K then |A ∩ I| < α|I|.

Any interval J can be written as an union of disjoint consecutive intervals

J = J0 ∪ J1 ∪ · · · ∪ Jr ∪ Jr+1,

where J0 = J ∩ [1, N ], |Ji| = K, i = 1, . . . , r and |Jr+1| ≤ K.

We observe that

|A ∩ J |
|J | =

|A ∩ J0|+ |A ∩ J1|+ · · ·+ |A ∩ Jr|+ |A ∩ Jr+1|
|J |

<
N

|J | +
α(|J1|+ · · · |Jr|)

|J | +
K

|J | <
N + K

|J | + α.

Since lim|J |→∞ N+K
|J | = 0 we obtain that d∗(A) = lim sup|J |→∞

|A∩J |
|J | ≤ α, a con-

tradiction.

Finally, it is clear that if there exist infinitely many intervals I of length K with
|A∩I| ≥ α|I|, there exist infinitely many of them which are pairwise disjoint. ¤

Proof of Theorem 1. Let L = d2α−1e. Since d∗(A) > α, the above lemma with
K = L2 implies that there are infinitely many disjoint intervals I of length L2

such that |I ∩ A| ≥ αL2.

We divide each interval I into L subintervals of equal length L. For i = 1, . . . , L,
let Ai be the number of elements of A in the i-th interval. We count the number
of differences a− a′ where 0 < a′ < a are in the same interval. On the one hand,
it is

∑
1≤i≤L

(
Ai

2

)
=

1

2

∑
1≤i≤L

(A2
i − Ai) ≥ 1

2


 1

L

( ∑
1≤i≤L

Ai

)2

−
∑

1≤i≤L

Ai




=
1

2

( |A ∩ I|2
L

− |A ∩ I|
)

=
|A ∩ I|

2

( |A ∩ I|
L

− 1

)

≥ |A ∩ I|
2

(αL− 1) =
|A ∩ I|

2

(
αd2α−1e − 1

)

≥ |A ∩ I|
2

≥ αL2

2
≥ L.
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On the other hand, the number of their possible values is at most L − 1. Thus
we can find 2 couples (a, a′), (a′′, a′′′) such that 0 < a− a′ = a′′ − a′′′ < L. Then

0 < |aa′′′ − a′a′′| = |a(a′′ + a′ − a)− a′a′′|
= |(a− a′)(a′′ − a)|
≤ (L− 1)(L2 − 1) = (L− 1)2(L + 1)

= (d2α−1e − 1)2(d2α−1e+ 1)

≤ 4α−2(2α−1 + 2)

< 4α−2(2α−1 + 2α−1) = 16α−3.

Thus, each interval I provides two distinct elements of B = A · A, say b < b′,
with b′ − b < 16α−3. Since there are infinitely many such intervals and they are
pairwise disjoint, we conclude that bn+1 − bn < 16α−3 infinitely often. ¤

Proof of Theorem 3. Let L = d4tα−2e. Again, since d∗(A) > α, we can apply
Lemma 1 with K = L to deduce that there exist infinitely many intervals I of
length L which contain at least αL elements of A.

For each interval I, the number of sums a + a′, a ≤ a′, a, a′ ∈ I ∩A is greater
than (αL)2/2 and they are all contained in an interval of length 2L.

Since (αL)2

2
= 2L

(
α2L
4

)
= 2L

(
α2d4tα−2e

4

)
≥ 2Lt, the pigeonhole principle im-

plies that some sum s must be obtained in at least t + 1 different ways,

s = a1 + a′1 = · · · = at+1 + a′t+1, ai, a
′
i ∈ I ∩ A, aj 6= ai, a

′
i for i 6= j.

If i 6= j, since aj + a′j = ai + a′i, we have

0 < |aia
′
i − aja

′
j| = |aia

′
i − aj(ai + a′i − aj)| = |(ai − aj)(a

′
i − aj)| < L2,

so the t + 1 products aia
′
i lie in an interval of length

L2 < (4tα−2 + 1)2 ≤ (5tα−2)2 ≤ 25t2α−4.

As in the proof of theorem 1, each interval I provides t + 1 distinct elements
of B = A · A, say bi0 < · · · < bit , such that bit − bi0 < 25t2α−4. Since there
are infinitely many such intervals and they are pairwise disjoint, we can conclude
that bn+t − bn < 25t2α−4 infinitely many times. ¤

In the proofs of Theorems 2 and 4, we will take A to be a union of blocks
sufficiently far apart from one another, so that small differences bi+1 − bi (or
bi+t − bi) can only arise when the bi in question are made up from elements in
the same block. To make this precise let us make the following:
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Definition 1. Given a positive value x1 and an infinite sequence of finite sets
of nonnegative integers A1,A2, . . . , we define a sequence A associated to these
inputs by

A =
∞⋃

n=1

(xn +An),(1)

where the sequence (xn) is defined for n ≥ 2 by

(2) xn = x1 + M2
n + Mn(xn−1 + Mn−1) + (xn−1 + Mn−1)

2

and Mn is the largest element of An.

Clearly all the sets xn + An in (1) are disjoint. Let us now verify that small
gaps in B can only come from products of elements in the same block xn +An.

Lemma 2. Let A be defined as in (1). Then, all the nonzero differences d =
c1c2 − c3c4, with c1, c2, c3, c4 ∈ A but not all ci in the same xn + An, satisfy
|d| ≥ x1.

Proof. Let n be the largest integer such that ci ∈ xn +An for some i = 1, 2, 3, 4.
We can assume that c1 ∈ An. Then there are many possibilities for c2, c3, c4. It
is a routine to check that the inequality |d| ≥ x1 holds in all these cases. We will
use repeatedly the definition of xn in (2) and the fact that if c ∈ xm +Am then
xm ≤ c ≤ xm + Mm.

i) c2 ∈ xn +An and c3 or c4 6∈ xn +An. In this case

|d| ≥ x2
n − |c3c4|

≥ x2
n − (xn + Mn)(xn−1 + Mn−1)

= xn(xn − xn−1 −Mn−1)−Mn(xn−1 + Mn−1)

≥ xn −Mn(xn−1 + Mn−1) ≥ x1.

ii) c2, c3, c4 6∈ xn +An. In this case

|d| ≥ xn − c3c4 ≥ xn − (xn−1 + Mn−1)
2 ≥ x1.

iii) c3 ∈ xn +An and c2, c4 6∈ xn +An.
In this case we write c1 = xn + a1 and c3 = xn + a3. Then

|d| = |xn(c2 − c4) + a1c2 − a3c4|.
If c2 = c4, then |d| = c2|a1 − a3| ≥ x1.
If c2 6= c4, then

|d| ≥ xn − |a1c2 − a3c4| ≥ xn −Mn(xn−1 + Mn−1) ≥ x1,

since |a1c2 − a3c4| ≤ max{a1c2, a3c4} ≤ Mn(xn−1 + Mn−1).

¤
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In order to prove Theorems 2 and 4, we also need the following construction
of Sidon sets due to Erdős and Turán [2]:

Lemma 3. Let p be an odd prime number. Let

Sp = {si = 2pi + (i2)p : i = 0, . . . , p− 1},
where (x)p ∈ [0, p − 1] is the residue of x modulo p. Then Sp is a Sidon set in
[0, 2p2) with p elements and |si − sj| ≥ p for every i 6= j.

Proof. It is clear that

|si − sj| ≥ 2p|i− j| − |(i2)p − (j2)p| ≥ p.

Suppose we have si + sj = sk + sl for some i, j, k, l. Then

2p(i + j − k − l) = (i2)p + (j2)p − (k2)p − (l2)p.

The left hand side is a multiple of 2p while the absolute value of the right hand
side is strictly smaller than 2p. Thus

i− k = l − j

and
(i2)p − (k2)p = (l2)p − (j2)p,

i.e.,
i2 − k2 ≡ l2 − j2 (mod p).

Thus
(i− k)(i + k) = (i− k)(l + j) ≡ 0 (mod p).

Either i = k and j = l, or i + k ≡ l + j (mod p), in which case k = l and
i = j. ¤

Proof of Theorem 2. We can assume that α < 1/16. Otherwise it is clear that
all the gaps in A · A are ≥ 1 À α−3.

Let p be an odd prime such that
1

8α
< p <

1

4α
, Sp the Sidon set defined in

Lemma 3 and m = 2p2. We consider the sequence A defined in (1) with x1 = 4p3

and

(3) An =
n⋃

k=1

(2km + Sp).

First we observe that An is contained in the interval In = [2m, 2mn + m) and
then

d∗(A) ≥ lim sup
n→∞

|An|
|In| = lim sup

n→∞

|np|
|(2m− 1)n| >

1

4p
≥ α.
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Next we will prove that all the nonzero differences d = c1c2 − c3c4 with
c1, c2, c3, c4 ∈ A satisfy |d| ≥ 4p3, and clearly |d| ≥ 2−7α−3.

By Lemma 2 this is true when not all ci belong to the same xn +An. Suppose
then that ci = xn + ai, i = 1, 2, 3, 4. Then

d = (xn + a1)(xn + a2)− (xn + a3)(xn + a4)

= xn(a1 + a2 − a3 − a4) + a1a2 − a3a4.

• If a1 + a2 6= a3 + a4 then

|d| ≥ xn − |a1a2 − a3a4| ≥ xn −M2
n ≥ x1 = 4p3.

• If a1 + a2 = a3 + a4 then

|d| = |a1a2 − a3a4|
= |a1a2 − a3(a1 + a2 − a3)|
= |(a2 − a3)(a1 − a3)|.

Now we write ai = 2kim + si, 1 ≤ ki ≤ n, si ∈ Sp. The condition
a1 + a2 = a3 + a4 implies

2m(k1 + k2 − k3 − k4) = s3 + s4 − s1 − s2.

Since |s1+s2−s3−s4| < 2m, we have k1+k2 = k3+k4 and s1+s2 = s3+s4.
Now we use the fact that Sp is a Sidon set to conclude that {s1, s2} =
{s3, s4}. We can assume that s1 = s3 and s2 = s4, Then

|d| = |2m(k2 − k3) + (s2 − s3)||2m(k1 − k3)|.
– If s2 = s3, since d 6= 0 we have that

|d| ≥ (2m)2 ≥ 16p4 > 4p3.

– If s2 6= s3, by Lemma 3 we know that

p ≤ |s2 − s3| < m.

∗ If k2 6= k3 then |d| ≥ |2m−m||2m| = 2m2 = 8p4 > 4p3.
∗ If k2 = k3 then |d| ≥ p(2m) = 4p3.

In any case |d| ≥ 4p3. ¤

Proof of Theorem 4. For α ≥ 1/16 we consider the sequence A defined in (1)
with x1 = t2 and An = {1, . . . , n}. Clearly d∗(A) = 1 > α.

Next, let c0c
′
0, . . . , ctc

′
t be distinct elements in A · A. We will prove that

(4) |cic
′
i − cjc

′
j| ≥ t2/36

for some i, j, i 6= j.

In view of Lemma 2, we need only to consider the case where all the ci, c
′
i

belong to the same xn +An. Otherwise, |cic
′
i − cjc

′
j| ≥ x1 = t2.
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The inequality (4) is obviously true for 2 ≤ t ≤ 6. Suppose t ≥ 7. We write

di = c0c
′
0 − cic

′
i = (xn + a0)(xn + a′0)− (xn + ai)(xn + a′i)

= xn(a0 + a′0 − ai − a′i) + a0a
′
0 − aia

′
i.

If the coefficient of xn is non zero then |di| ≥ xn −M2
n ≥ x1 = t2.

We suppose then that a0 + a′0 − ai − a′i = 0 for all i = 1, . . . , t. This implies
that ai 6= aj if i 6= j (since if not, cic

′
i = cjc

′
j). Then we have

|c0c
′
0 − cic

′
i| = |a0a

′
0 − aia

′
i|

= |a0a
′
0 − ai(a0 + a′0 − ai)|

= |(a′0 − ai)(a0 − ai)|.

Since all ai are distinct and there are at most 2(1 + 2(t/6)) < t values of i for
which |a0 − ai| ≤ t/6 or |a′0 − ai| ≤ t/6, we obtain

|a′0 − ai||a0 − ai| > (t/6)2 ≥ 2−22t2α−4

for some i.

For 0 < α < 1/16 we take the same sequence A used in the proof of Theorem 2
but with x1 = t2p4. As we saw, this sequence has density d∗(A) ≥ α. As in that
proof, we apply Lemma 2 to see that if ci, c

′
i, cj, c

′
j not in the same xn+An for some

i 6= j then |cic
′
i − cjc

′
j| ≥ x1 = t2p4 and we are done because t2p4 ≥ 2−12t2α−4.

Therefore, if c0c
′
0, . . . , ctc

′
t are distinct elements of A · A, we can assume that

all ci, c
′
i belong to the same xn +An and we write them as ci = xn + ai, ai ∈ An.

Then

di = c0c
′
0 − cic

′
i = xn(a0 + a′0 − ai − a′i) + a0a

′
0 − aia

′
i

If ai + a′i 6= a0 + a′0 for some i 6= 0 then

|di| ≥ xn −M2
n ≥ x1 = t2p4.

So we assume that ai + a′i = a0 + a′0 for all i = 0, . . . , t. We write ai = 2mki + si

and we can assume that si ≤ s′i for i = 0, . . . , t. The condition ai + a′i = a0 + a′0
for all i = 0, . . . , t implies that 2m(ki + k′i− k0− k′0) = s0 + s′0− si− s′i and since
|s0 + s′0 − si − s′i| < 2m, we have ki + k′i = k0 + k′0 and si + s′i = s0 + s′0.

Since Sp is a Sidon set and si ≤ s′i we have si = s0 and s′i = s′0 for i = 0, . . . , t.
Then

cic
′
i − c0c

′
0 = 2m(ki − k0)(2m(ki − k′0) + s0 − s′0).

We observe that all ki are distinct and ki 6= 0. (Otherwise, if ki = kj then k′i = k′j
and then cic

′
i = cjc

′
j.)

Suppose ki 6= k′0. Then

|cic
′
i − c0c

′
0| = |2m(ki − k0)(2m(ki − k′0) + s0 − s′0)|
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Since |s0 − s′0| ≤ m, we have

|cic
′
i − c0c

′
0| ≥ 2m|ki − k0||2m|ki − k′0| −m|

≥ 2m2|ki − k0||ki − k′0|
≥ 8p4|ki − k0||ki − k′0|.

If 2 ≤ t ≤ 6 we consider k1 and k2. One of them (or both) is distinct from k′0.
For that ki we have |c0c

′
0 − cic

′
i| ≥ 8p4 ≥ 2−9α−4 ≥ 2−14t2α−4.

If t ≥ 7 we observe that there are at most 2(1 + 2(t/6)) < t values of i such
that |k0 − ki| ≤ t/6 or |k′0 − ki| ≤ t/6. So there exists some i such that

|c0c
′
0 − cic

′
i| ≥ 8p4(t/6)2 ≥ 2−14t2α−4.

¤

3. A related question

We do not know if the exponent −3 in Theorem 1 can be improved when
d(A) > α or when d(A) > α, which is the original problem of Sárközy. Clearly
nothing better than −2 is possible. We present an alternative approach to this
question, which gives the bound of G. Bérczi quickly.

Let A ⊂ {1, . . . , N} a set with αN elements. We consider the set

A/A = {a/a′, a < a′, a, a′ ∈ A}.
What can we say about the cardinality ofA/A when N is large? Clearly |A/A| ¿
α2N2. Probably it is the true order of magnitude but we do not know how to
improve the theorem below

Theorem 5. If A ⊂ {1, . . . , N} with |A| = αN , then |A/A| À α4N2.

Proof. Let (A×A)d = {(a, a′) ∈ A×A : a < a′, gcd(a, a′) = d}. Then for every
d, all the quotients a/a′, (a, a′) ∈ (A × A)d are distinct and contained in [0,1].

We first show that there exists d such that |(A × A)d| ≥ α4

9
N2. Let T be an

integer to be chosen later. Then

(αN)2 ≤ |A|2 =
∑

d

|(A×A)d|

=
∑

d≤T

|(A×A)d|+
∑

d>T

|(A×A)d|

≤ T max
d≤T

|(A×A)d|+
∑

d>T

(
N

d

)2

≤ T max
d≤T

|(A×A)d|+ N2

T
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Thus there exists d ≤ T such that

|(A×A)d| ≥ N2

(
α2

T
− 1

T 2

)
.

If we choose T = d 2
α2 e and observe that T < 3

α2 when α < 1 we obtain α2

T
− 1

T 2 ≥
1

T 2 ≥ α4

9
. Thus for some d, |(A×A)d| ≥ N2α4/9.

Finally we observe that |A/A| ≥ |(A×A)d| for any d. ¤

We observe that if d(A) > α there exist infinitely many intervals [1, N ] such
that |A ∩ [1, N ]| > α. Theorem above and the pigeon hole principle implies that
there are a/a′, a′′/a′′′ ∈ A/A such that∣∣∣∣

a

a′
− a′′

a′′′

∣∣∣∣ ≤ 9α−4N−2,

so |aa′′′ − a′a′′| ≤ 9α−4.

Theorem 5 motivates the following question of independent interest:

Question 2. Let A ⊂ {1, . . . , N} with |A| = αN . Is it true that |A/A| À α2N2?

Clearly an affirmative answer to Question 2 will answer Question 1 with c(α) À
α−2.
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