LATTICE POINTS ON CIRCLES

JAVIER CILLERUELO

Abstract. We prove that the lattice points on the circles $x^{2}+y^{2}=n$ are well distributed for most circles containing lattice points.

1. Introduction

The number of lattice points on the circle $x^{2}+y^{2}=n$ is denoted by $r(n)$. It is known that $r(n)$ is an unbounded function and it is a natural question to ask for the distribution of the $r(n)$ lattice points on the circle $x^{2}+y^{2}=n$

In order to give a measure of the distribution of the lattice points, we consider the polygon with vertices on the $r(n)$ lattice points and we denote by $S(n)$ the area of such polygon. When the lattice points are well distributed, the area of the polygon will be close to the area of the circle, i.e. $\frac{S(n)}{\pi n} \sim 1$.

If $r(n)>0$, trivially $\frac{2}{\pi} \leq \frac{S(n)}{\pi n}<1$. In [1] we proved that the set $\left\{\frac{S(n)}{\pi n}: r(n)>0\right\}$ is dense in the interval $\left[\frac{2}{\pi}, 1\right]$. In this paper we prove that for most integer $n, r(n)>0$, the quantity $\frac{S(n)}{\pi n}$ is close to 1 .

Theorem 1.1. Let $x \geq 10^{10^{30}}$. Then, for any $n \leq x$ with $r(n) \neq 0$,

$$
\begin{equation*}
\frac{S(n)}{\pi n}>1-\left(\frac{12 \log \log \log x}{\log \log x}\right)^{2} \tag{1.1}
\end{equation*}
$$

with at most

$$
O\left(\frac{x}{(\log x)^{1 / 2} \log \log x \log \log \log x}\right) \quad \text { exceptions. }
$$

It should be noted [2] that if we call $R_{x}=\{n \leq x: r(n) \neq 0\}$, then $\left|R_{x}\right| \sim c \frac{x}{(\log x)^{1 / 2}}$

2. Background

In the proof of theorem 1.1 we will use the prime number theorem for Gaussian primes on small arcs, and the Selberg sieve. We present them in a suitable form in this section.

Theorem 2.1. Let D a sector of the circle $x^{2}+y^{2} \leq R^{2}$ with angle θ. Then

$$
\begin{equation*}
\sum_{\rho \in D} 1=\frac{\theta R^{2}}{\pi \log R}+O\left(\frac{R^{2}}{\log ^{2} R}\right) \tag{2.1}
\end{equation*}
$$

where $\rho=a+b i$ are primes in $Z[i]$ and the constant in the error term does not depend on θ.

Proof. Stronger versions of this result can be found in [2] and [3]
The sieving function $S(\mathcal{A}, P, z)$ denotes the number of terms of the sequence \mathcal{A} that are not divisible by any prime $p \in P$ such that $p<z$.

Theorem 2.2. If P is an infinite subset of primes such that

$$
\begin{equation*}
\pi_{P}(x)=\alpha \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{2.2}
\end{equation*}
$$

and $\mathcal{A}=\{1, \ldots, x\}$, then

$$
\begin{equation*}
S(\mathcal{A}, P, x) \ll \frac{x}{(\log x)^{\alpha}} . \tag{2.3}
\end{equation*}
$$

Proof. It will be a consequence of the Selberg sieve.
For every square-free positive integer d, let $\left|A_{d}\right|$ denote the number of terms of the sequence \mathcal{A} that are divisible by d. Then $\left|A_{d}\right|=\frac{1}{d} x+r(d)$, with $|r(d)| \leq 1$.

Let

$$
G(z)=\sum_{m<z, p \mid m \text { implies } p \in P} \frac{1}{m}
$$

Selberg sieve ([4], pg 180) implies that

$$
S(A, P, z) \leq \frac{x}{G(z)}+\sum_{d<z^{2}, d \text { square-free }} 3^{\omega(d)}
$$

Observe that

$$
G(z) \prod_{p<z, p \notin P}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right) \geq \sum_{m<z} \frac{1}{m} \gg \log z
$$

and

$$
\begin{gathered}
\prod_{p<z, p \notin P}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right)=\prod_{p<z, p \notin P}\left(\frac{p}{p-1}\right) \leq \\
\leq \prod_{p}\left(\frac{p^{2}}{p^{2}-1}\right) \prod_{p<z, p \notin P}\left(1+\frac{1}{p}\right)
\end{gathered}
$$

The first product is a constant and the second product can be estimated taking logarithms.

$$
\log \left(\prod_{p<z, p \notin P}\left(1+\frac{1}{p}\right)\right) \leq \sum_{p<z, p \notin P} \frac{1}{p}=\sum_{p<z} \frac{1}{p}-\sum_{p<z, p \in P} \frac{1}{p} .
$$

The two sums can be estimated using the Abel summation and the formulas

$$
\pi(x)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right), \quad \pi_{P}(x)=\alpha \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) .
$$

Then

$$
\sum_{p<z} \frac{1}{p}-\sum_{p<z, p \in P} \frac{1}{p}=(1-\alpha) \log \log z+O(1)
$$

and we have

$$
S(\mathcal{A}, P, z) \ll \frac{x}{(\log z)^{\alpha}}+\sum_{m<z^{2}, m \text { square-free }} 3^{\omega(m)} .
$$

Observe that

$$
\begin{aligned}
& \sum_{m<z^{2}, m \text { square-free }} 3^{\omega(m)}=\sum_{m<z^{2}, m \text { square-free }}\left(2^{\omega(m)}\right)^{\frac{\log 3}{\log 2}} \leq \\
& \leq \sum_{m<z^{2}, m \text { square-free }} d^{2}(m) \ll z^{2} \log ^{3} z
\end{aligned}
$$

Now if we choose $z=\left[x^{1 / 3}\right]$ we obtain

$$
S(\mathcal{A}, P, x) \leq S(\mathcal{A}, P, z) \ll \frac{x}{(\log x)^{\alpha}}
$$

Also we present in this section two easy propositions that we will need in the proof of theorem 1.1.
Proposition 2.3. Let $\left\{x_{j}\right\}_{j=0}^{2 k-1}$ be a set of real numbers such that

$$
x_{j} \in I_{j}=\left(\frac{j}{2 k}, \frac{j+1}{2 k}\right], \quad j=0, \ldots, 2 k-1
$$

and for any real ϕ let $S=\left\{\phi+\sum_{j=0}^{2 k-1} \epsilon_{j} x_{j}, \quad \epsilon_{j}= \pm 1\right\}$. Then, for any $j=0, \ldots k-1$, there exist $s \in S$ such that

$$
\left(\frac{s}{2}\right) \in J_{j}=\left(\frac{j}{k}, \frac{j+1}{k}\right],
$$

where $\left(\frac{s}{2}\right)$ denotes the fractional part of $\frac{s}{2}$.

Proof. Let $\alpha=\phi-\sum_{j=0}^{2 k-1} x_{j}$. Then we can write

$$
\frac{1}{2} S=\left\{\frac{\alpha}{2}+\sum_{j=0}^{2 k-1} \gamma_{j} x_{j}, \quad \gamma_{j} \in\{0,1\}\right\}
$$

The elements $\frac{s_{i}}{2}=\frac{\alpha}{2}+x_{i}, i=0, \ldots, 2 k-1$ satisfy $\frac{s_{i+1}}{2}-\frac{s_{i}}{2}<\frac{1}{k}$ and $\frac{s_{0}}{2}+1-\frac{s_{2 k-1}}{2}<\frac{1}{k}$. Then, for each interval J_{j} there exist a $\frac{s_{i}}{2}$ such that $\left(\frac{s_{i}}{2}\right) \in J_{j}$.

Proposition 2.4. Let $n=n_{1} n_{2}$ such that $n_{j}=x_{j}^{2}+y_{j}^{2}, x_{j}+i y_{j}=$ $\sqrt{n_{j}} e^{i \phi_{j}}, j=1,2$. Then, the angles

$$
\pm \phi_{1} \pm \phi_{2}
$$

correspond to lattice points on the circle $x^{2}+y^{2}=n$.
Proof. Obvious. See [1] for more details.

3. Proof of Theorem 1.1

For each prime $p=2$ or $p \equiv 1(\bmod 4)$ let $\phi_{p}=\frac{4}{\pi} \tan ^{-1}(a / b)$ where a, b are the only integers such that $a^{2}+b^{2}=p, \stackrel{\pi}{0}<a \leq b$. Then $\phi_{p} \in(0,1]$.

We split the interval $(0,1]$ in the $2 k$ intervals $I_{j}=\left(\frac{j}{2 k}, \frac{j+1}{2 k}\right], j=$ $0,1, \ldots, 2 k-1$ and we define

$$
\begin{equation*}
G_{k}(x)=\left\{n \in R_{x} ; n=p_{0} p_{1} \cdots p_{2 k-1} m, \text { with } \phi_{p_{j}} \in I_{j}\right\} \tag{3.1}
\end{equation*}
$$

In proposition 3.1 we will prove that if $n \in G_{k}(x)$ the lattice points on the circle $x 2+y^{2}=n$ are well distributed, and in proposition 3.2 we will estimate the cardinality of $B_{k}(x)=R_{x} \backslash G_{k}(x)$. Theorem 1.1 will be a consequence of these propositions for a suitable k.

Proposition 3.1. If $n \in G_{k}(x)$ then

$$
\begin{equation*}
\frac{S(n)}{\pi n}>1-\frac{13 \pi^{2}}{24 k^{2}} \tag{3.2}
\end{equation*}
$$

Proof. We can write $n=p_{0} \cdots p_{2 k-1} n^{\prime}$. Obviously, n^{\prime} has, at least, a representation as a sum of two squares, $n^{\prime}=x^{\prime 2}+y^{\prime 2}, x^{\prime}+i y^{\prime}=$ $\sqrt{n^{\prime}} \exp \left(i \frac{\pi}{4} \phi^{\prime}\right)$.
Proposition 2.4 implies that the angles $\frac{\pi}{4}\left(\phi^{\prime}+\sum_{j=0}^{2 k-1} \epsilon_{j} \phi_{p_{j}}\right), \epsilon_{j}=$ ± 1 correspond to lattice points on the circle $x^{2}+y^{2}=n$.

Suppose that $\frac{\pi}{4} s$ is one of these angles. Then, due to the symmetry of the lattice points, the angle $\frac{\pi}{4} s-\frac{\pi}{2}\left[\frac{s}{2}\right]=\frac{\pi}{2}\left(\frac{s}{2}\right)$ also corresponds to a lattice point.

Now we apply proposition 2.3 to conclude that for every $j=0, \ldots, k-$ 1 there exists an angle s such that $\left(\frac{s}{2}\right) \in J_{j}=\left(\frac{j}{k}, \frac{j+1}{k}\right]$. In other words, for every $j=0, \ldots, k-1$ there exists a lattice point on the arc

$$
\sqrt{n} \exp \left(\frac{\pi}{2} \theta i\right) \quad \theta \in J_{j} .
$$

Again, due to the symmetry of the lattice points we can find, for every $j=0, \ldots, k-1$, for $r=0,1,2,3$ a lattice point on the arc

$$
\sqrt{n} \exp \left(\frac{\pi}{2}(\theta+r) i\right) \quad \theta \in J_{j} .
$$

Now we choose a lattice point for each arc. Let P_{0} be the polygon with vertices in these $4 k$ lattice points. Obviously $S_{0}(n) \leq S(n)$, where $S_{0}(n)=$ Area $\left(P_{0}\right)$. Now we denote by $\theta_{1}, \ldots \theta_{4 k}$ the angles between each pair of two consecutive lattice points.

If we consider a sector with angle θ and radius \sqrt{n}, an easy geometric argument prove that the part of the sector outside the triangle is less than $\frac{13}{48} n \theta^{3}$.

Then

$$
\pi n-S_{0}(n) \leq \frac{13}{48} n \sum_{j=1}^{4 k} \theta_{j}^{3}
$$

We know that $\theta_{j} \leq \frac{\pi}{k}$ and that $\sum_{j=1}^{4 k} \theta_{j}=2 \pi$. Then the maximum happens when the half of the angles are 0 and the other half are $\frac{\pi}{k}$. Then

$$
\pi n-S(n) \leq \pi n-S_{0}(n) \leq n \frac{13 \pi^{3}}{24 k^{2}}
$$

Proposition 3.2.

$$
\begin{equation*}
\left|B_{k}(x)\right| \ll \frac{k x}{\log ^{\frac{1}{2}+\frac{1}{4 k}} x}+k x^{3 / 4} \tag{3.3}
\end{equation*}
$$

Proof. If we apply theorem 2.1 to the region

$$
D_{j}=\left\{(a, b): a^{2}+b^{2} \leq x, \quad 0<a \leq b, \quad \frac{4}{\pi} \tan ^{-1}\left(\frac{a}{b}\right) \in I_{j}\right\}
$$

we obtain

$$
\begin{equation*}
\pi_{P_{j}}(x)=\frac{x}{4 k \log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{3.4}
\end{equation*}
$$

where $P_{j}=\left\{p \not \equiv 3(\bmod 4): \phi_{p} \in I_{j}\right\}$.

On the other hand, if we denote by $Q=\{q \equiv 3(\bmod 4): q$ primes $\mid\}$, the prime number theorem for arithmetic progressions says that $\pi_{Q}(x)=$ $\frac{x}{2 \log x}+O\left(\frac{x}{\log ^{2} x}\right)$. Then, if $Q_{j}=Q \cup P_{j}$ we obtain

$$
\begin{equation*}
\pi_{Q_{j}}(x)=\left(\frac{1}{2}+\frac{1}{4 k}\right) \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{3.5}
\end{equation*}
$$

We define, for any $1 \leq l \leq \sqrt{x}, \mathcal{A}_{l}^{*}=\left\{m \leq x / l^{2}: m\right.$ squarefree $\}$ and $\mathcal{A}_{l}=\left\{m \leq x / l^{2}\right\}$.

Now, suppose that $n \in B_{k}(x)$ with $n=l^{2} m, m$ squarefree.
Because $n \in R_{x}$ then m has not prime divisors $q \equiv 3(\bmod 4)$.
Because $n \notin G_{x}$, then there exists an integer j such that m has not prime divisors p with $\phi_{p} \in I_{j}$

Then, that integer n is shifted in $S\left(\mathcal{A}_{l}^{*}, Q_{j}, x / l^{2}\right)$. Then

$$
\begin{equation*}
\left|B_{k}(x)\right| \leq \sum_{1 \leq l \leq \sqrt{x}} \sum_{j=0}^{2 k-1} S\left(\mathcal{A}_{l}^{*}, Q_{j}, x / l^{2}\right) \leq \sum_{1 \leq l \leq \sqrt{x}} \sum_{j=0}^{2 k-1} S\left(\mathcal{A}_{l}, Q_{j}, x / l^{2}\right) \tag{3.6}
\end{equation*}
$$

For $l<x^{1 / 4}$ we apply theorem 2.2 to each $S\left(\mathcal{A}_{l}, Q_{j}, x / l^{2}\right)$

$$
S\left(\mathcal{A}_{l}, Q_{j}, x / l^{2}\right) \ll \frac{x}{l^{2}\left(\log \left(x / l^{2}\right)\right)^{1 / 2+1 / 4 k}} \ll \frac{x}{l^{2}(\log x)^{1 / 2+1 / 4 k}}
$$

and then

$$
\sum_{1 \leq l \leq x^{1 / 4}} \sum_{j=0}^{2 k-1} S\left(\mathcal{A}_{l}, Q_{j}, x / l^{2}\right) \ll \frac{k x}{(\log x)^{1 / 2+1 / 4 k}}
$$

For $l \geq x^{1 / 4}$ we use the trivial estimate $S\left(\mathcal{A}_{l}, Q_{j}, x / l^{2}\right) \leq x / l^{2}$
Then

$$
\sum_{x^{1 / 4} \leq l} \sum_{j=0}^{2 k-1} S\left(\mathcal{A}_{l}, Q_{j}, x / l^{2}\right) \ll k x^{3 / 4}
$$

and we finish the proof.
We finish the proof of theorem 1.1 taking $k=\left[\frac{\log \log x}{8 \log \log \log x}\right]$.
Observe that if $x \geq 10^{10^{30}}$, then $k=\left[\frac{\log \log x}{8 \log \log \log x}\right]>\frac{\log \log x}{16 \log \log \log x}$ and then

$$
\begin{equation*}
\frac{S(n)}{\pi n}>1-\frac{13}{24}\left(\frac{16 \log \log \log x}{\log \log x}\right)^{2}>1-\left(\frac{12 \log \log \log x}{\log \log x}\right)^{2} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|B_{k}(x)\right| \ll \frac{\log \log x}{8 \log \log \log x} \frac{x}{(\log x)^{1 / 2}(\log x)^{\frac{2 \log \log \log x}{\log \log x}}} \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{x}{(\log x)^{1 / 2} \log \log x \log \log \log x} \tag{3.9}
\end{equation*}
$$

References.

[1] Javier Cilleruelo, "The distribution of the lattice points on circles". Journal of Number theory,Vol. 43, No. 2, Febrery 1993, 198-202.
[2] I. Kubilyus, "The distribution of Gaussian primes in sectors and contours". Leningrad. Gos. Univ. Uc. Zap. Ser. Mat. Nauk 137 (19) (1950), 40-52.
[3] T. Mitsui, "Generalized prime number theorem", Jap. J. Math. 26 (1956), 1-42.
[4] M. Nathanson, "Additive number theory: The classical bases." Springer,174 (1996).

