
INFINITE C4-FREE GRAPHS.

JAVIER CILLERUELO

Abstract. We construct, for any g ≥ 1, an infinite countable K2,g+1-free
graph G having the property that the graphs Gn induced by the first n vertices
have minimum degree δ(Gn)� n1/2−εg , where εg = 1/(4g + 2). Using a more
involved argument we construct an infinite K2,2-free graph (C4-free graph)

with δ(Gn)� n
√
2−1+o(1).

1. Introduction

Given an infinite countable graph G(V, E), denote by Gn(Vn, En) the graph
spanned by the vertices Vn = {1, . . . , n}. Extremal problems on infinite countable
graphs have been studied before [7, 8, 10]. We study here an extremal problem
on infinite graphs without cycles of length four.

The minimum degree of finite graph G(V, E) is defined by δ(G) = min{deg v :
v ∈ V }. It is not difficult to prove (see Proposition 2.1) that for any n there
exists a C4-free graph G of order n with δ(G) = (1 + o(1))n1/2. The analogous
result for infinite graphs is more difficult to prove. Indeed, it is not clear if there
is an infinite countable C4-free graph G with δ(Gn) � n1/2. The starting point
in our work are two conjectures concerning this question which, as we will see
later, are closely related to some results and conjectures of Erdős on infinite Sidon
sequences.

Conjecture 1. If G is an infinite countable C4-free graph, then

lim inf
n→∞

δ(Gn)/
√
n = 0

for the sequence of the graphs Gn spanned by the first n vertices.

The second one goes in the opposite direction.

Conjecture 2. For any ε > 0 there exists an infinite countable C4-free graph G
with

δ(Gn)� n1/2−ε.
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Our main results can be considered an approach to Conjecture 2.

Theorem 1.1. For any g ≥ 1 there is an infinite countable K2,g+1-free graph G
with

δ(Gn)� n1/2−εg ,

where εg = 1/(4g + 2).

We can improve Theorem 1.1 when g = 1.

Theorem 1.2. There is an infinite countable C4-free graph G(V, E) with

δ(Gn)� n
√
2−1+o(1).

The main obstruction to get an infinite C4-free graph with δ(Gn)� n1/2 is that
the constructions of dense finite C4-free graphs come from algebraic constructions
and theses constructions are too rigid to be extended to an infinite C4-free graph.
A similar problem appears in the analogous problem for Sidon sequences, those
sequences of integers having the property that all the differences of two elements
of the sequence are distinct. While algebraic constructions provide Sidon sets
A ⊂ [1, n] with |A| = (1 + o(1))

√
n, it is not possible to extend them to get an

infinite Sidon sequence with A(n)�
√
n, where we denote by A(n) = |A∩ [1, n]|

the counting function of the sequence A. Indeed, Erdős [14] proved that

(1.1) lim inf
n→∞

A(n)/
√
n = 0

for any infinite Sidon sequence. Conjecture 1 can be considered as the analogous
of (1.1) for infinite C4-free graphs.

The core of this work is, precisely, the conexion between infinite C4-free graphs
and infinite Sidon sequences. More generally, between infinite K2,g+1-free graphs
and infinite B−2 [g] sequences of positive integers, those sequences A such that
dA(x) ≤ g for any x 6= 0, where

dA(x) = |{x = a− b : a, b ∈ A}|.
The following theorem shows this conexion.

Theorem 1.3. Let g ≥ 1 and A an infinite B−2 [g] sequence. Then there exists
an infinite countable K2,g+1-free graph G, with

δ(Gn) ≥ min
x≤n

A(n+ x)− A(x)− 1

where Gn is the graph spanned by the first n vertices.

In [6] we used the probabilistic method to prove the existence of an infinite
B−2 [g] sequence with A(n) � n1/2−1/(4g+2)+o(1). The proof was involved and, in
addition, that sequences are not suitable to be used in Theorem 1.3. The reason
is that we have not control on the lower bound of the counting function of that
sequences.
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Here we adapt the ideas introduced in [5] to construct, using a greedy algo-
rithm, denser B−2 [g] sequences that can be used in Theorem 1.3 in an easy way.

Theorem 1.4. For any positive integer g, there is an infinite B−2 [g] sequence
A = {an} with

6gn2+1/g ≤ an ≤ 8gn2+1/g.

Sidon sequences, which corresponds to the B−2 [1] sequences, were introduced
by Erdős in the thirties. A major problem on infinite Sidon sequence is the con-
struction of Sidon sequences A with counting function A(n) as large as possible.
The trivial counting argument shows that A(n) �

√
n but, as we have men-

tioned above, Erdős also proved that (1.1) holds for any infinite Sidon sequence.
In the opposite direction Erdős conjectured that for any ε > 0 there is an infinite
Sidon sequence with A(n) � n1/2−ε. Conjecture 2 can be seen as the analogous
conjecture in graphs.

The greedy algorithm provided an infinite Sidon sequence with A(n) � n1/3

and, almost fifty years later, Atjai, Komlos and Szemeredi [1] proved the existence
of an infinite Sidon sequence with A(n) � (n log n)1/3. Ruzsa [12] proved the

existence of a Sidon sequence with A(n) = n
√
2−1+o(1) and an explicit construction

with similar growing was given in [4].

The construction that proves Theorem 1.2 is closely related to the special
construction described in [4]. Unfortunately we cannot apply directly Theorem
1.3 because that sequence is quite irregular and we have not control enough on
the lower bound of the counting function of the sequence. What we do is to
construct the graph directly, but using the ideas behind the construction of that
Sidon sequence. The construction, which is quite involved, depends of the fact
that the sequence of the prime numbers is a multiplicative Sidon sequence. Some
tools of analitic number theory will be used in the construction.

2. A few remarks

1. The usual extremal problems on graphs concern to the maximum number
of edges of a graph not containing a given subgraph (for example, the subgraph
C4). A clasic result of Kovari, Sos and Turan [9] says that the maximum number
of edges of a C4-free graph of order n es bounded by n3/2(1/2 + o(1)), and then
that the minimum degree is bounded by n1/2(1 + o(1)).

An easy way to construct an infinite countale C4-free graph G(V, E) with |En| �
n3/2 was communicated to us by Simonovits [13]. Consider the graph G(V, E) that
is the infinite union of independent graphs G(k), where G(k) is an extremal C4-
free graph with 2k vertices. Obviously the graph G is C4-free. If 2k+1 ≤ n < 2k+2

then n ∈ G(k + 1), so

|En| ≥ |E(G(k))| � 2
3k
2 � n3/2.
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It should be noted that, however, the graph above does not satisfies that
δn(Gn) � n1/2 (indeed δ(Gn) � 1). This is the reason for which extremal prob-
lems on infinite C4-free graphs are more difficult and interesting for the quantity
δ(Gn) than for |En|.

Peng and Timmons [10] have constructed an infinite C4-free graph with |En| ≥
0.23n3/2(1 + o(1)) and have proved that lim infn→∞ |En|n−3/2 ≤ 0.41 for any infi-
nite C4-free graph, improving the trivial upper bound 1/2 coming from the finite
cases. Indeed, it implies that lim infn→∞ δ(Gn)/

√
n ≤ 0.82, which is an improving

on the trivial upper bound, but is far from Conjecture 1.

2. It is a well known fact that Sidon sets can be used to construct C4-free
graphs. If A ⊂ G is a Sidon set, the graph G(V, E) with V = G and

E =
{
{x, y} : x 6= y, x+ y ∈ A

}
is a C4-free graph with minimum degree δ(G) ≥ |A| − 1. To see this we observe
that if (x, y, u, v) is a C4 then x + y = a1, y + u = a2, u + v = a3, v + x = a4
for some a1, a2, a3, a4 ∈ A. Since (x + y) + (u + v) = (y + u) + (v + x) then
a1 + a3 = a2 + a4. Thus a1 = a2 or a1 = a4 and then x = u or y = v. On the
other hand it is clear that deg(x) = |A|−1 if 2x ∈ A and deg(x) = |A| otherwise.

3. There are several constructions of C4-free graphs G of order n with δ(G) =
(1 + o(1))n1/2 for special sequences of values of n. We have not found in the
literature a proof that works for all n but the following probabilistic construction
was communicated to us by Alon [2]. Just choose a prime p so that p2 + p+ 1 is
at least n and at most n+ o(n) and take the induced subgraph on a random set
of n vertices in the usual example on p2 + p + 1 vertices (polarity graph of pro-
jective plane): an easy probabilistic argument shows that with high probability
all degrees will stay (1 + o(1))

√
n.

We present also an explicit construction.

Proposition 2.1. Let θ be a real number having the property that for any x large
enough, the interval [x, x+ xθ] contains a prime number. Then

n1/2 +O(nθ/2) ≤ δ(n;C4) ≤ n1/2 + 1/2,

where δ(n,C4) = max{δ(G) : G has order n and does not contain any C4}. It is
known that we can take θ = 0.525.

Proof. It is known [9] that if G(V, E) is C4-free of order n then |E| ≤ 1
2
n3/2 + n

4
.

Thus, δ(n;C4) ≤ δ(G) ≤ 2
n
ex(n,C4) ≤ n1/2 + 1/2.

For the lower bound, assume that n is large enough and let p be a prime
p ∈ [
√
n,
√
n+ nθ/2]. We consider the Sidon set A = {(x, x2) : x ∈ Fp} ⊂ F2

p and

the C4-free graph G(V ; E) induced by A with V = F2
p and

E =
{
{(x1, y1), (x2, y2)} : (x1, x2) + (y1, y2) ∈ A, (x1, y1) 6= (x2, y2)

}
.
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Define r, s by p2−n = rp+s, 0 ≤ s ≤ p−1, 0 ≤ r and remove the set of vertices

V ∗ = {(a, b) : 0 ≤ a ≤ r − 1, 0 ≤ b ≤ p− 1} ∪ {(r, b) : 0 ≤ b ≤ s− 1}.
Let G0(V0, E0) be the graph induced by the vertices V0 = V \V ∗. First we observe
that |V0| = |V | − |V ∗| = p2 − (rp + s) = n. Consider a vertex (x, y) ∈ V0. It is

easy to check that degG(x, y) =

{
|A| − 1 if y = 2x2

|A| otherwise.
Thus

degG0(x, y) = degG(x, y)− |{(u, v) ∈ V ∗ : (x, y) + (u, v) ∈ A}|
≥ |A| − 1− |{(u, v) : 0 ≤ u ≤ r, y + v = (x+ u)2}|
≥ p− 1− (r + 1) ≥ p− 1− (p− n/p+ 1) = n/p− 2

≥ n√
n+ nθ/2

− 2 =
√
n+O

(
nθ/2

)
.

�

4. The following construction can be considered the finite version of the infinite
C4-free graph in Theorem 1.2.

Theorem 2.1. Let Fq be the finite field of q elements. The graph G(V, E) where
V = F∗q and E = {{x, y} : xy ≡ p (mod q) for some prime p ≤ √q} is a C4-free

graph with δ(G) ∼
√
q

log
√
q
.

Proof. First we prove that G is C4-free. If (x, y, u, v) is a C4 in G then there
exist primes p1, p2, p3, p4 ≤

√
q such that xy ≡ p1, yu ≡ p2, uv ≡ p3, vx ≡ p4

(mod q). It implies that p1p3 ≡ p2p4 (mod q). Since 1 < p1p3, p2p4 ≤ q we have
the equality p1p3 = p2p4 and then p1 = p2 or p1 = p4, so x = u or y = v.

For the degree condition it is clear that δ(G) ≥ π(
√
q)− 1 ∼

√
q

log
√
q
. �

The construction above uses an algebraic part (the finite field Fq) and a non
algebraic part, the sequence of the prime numbers, which is common for any
q. This construction is not so good as other algebraic constructions with δ(G) ≥√
q(1+o(1)). We loose a logarithm factor but we gain the possibility of combining

these constructions for distinct Fq. Roughly, the strategy to construct the graph
G in Theorem 1.2 is to paste the graphs described in Theorem 2.1 for infinite Fqi
using the Chinese remainder theorem. The construction of the graph in Theorem
2.1 for distinct Fqi and how to paste them are some of the key ideas in the
construction of the graph G in Theorem 1.2.

5. We finish this section with some classic and well known estimates on the
distribution of primes that we will use in the proof of Theorem 1.2.

Proposition 2.2. Let π(x) the number of prime numbers less or equal than x and
for any positive integers m, a with (m, a) = 1 let π(x;m, a) denotes the number
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of primes p ≤ x such that p ≡ a (mod q). Let also qk the k-th odd prime and

Qk =
∏k

j=1 qj. We have

i) π(x) ∼ x
log x

ii) π(x;m, a) ∼ x
φ(m) log x

uniformly for any m� log x.

iii) qk ∼ k log k
iv) logQk ∼ k log k.

3. B−2 [g] sequences and infinite K2,g+1-free graphs.

Theorem 3.1. Given g ≥ 1 and an infinite B−2 [g] sequence A, there exits an
infinite K2,g+1-free graph with

δ(Gn) ≥ min
x≤n

A(n+ x)− A(x)− 1.

Proof. Consider the graph G(V, E) where V = N and

E =
{
{i, j} : i 6= j, i+ j ∈ A

}
.

We claim that this graph is free of K2,g+1. Suppose the contrary and consider a
K2,g+1 subgraph of G formed by a bipartite graph of a set V1 of 2 elements, say
a, b and a set V2 of g+ 1 elements, say c1, . . . , cg+1. Then the integer a− b has at
least g + 1 representations as a difference of two elements of A:

a− b = (a+ c1)− (b+ c1) = · · · = (a+ cg+1)− (b+ cg+1),

which is not allowed because A is a B−2 [g] sequence.

Concerning to the other condition of the Theorem, let j, 1 ≤ j ≤ n a vertex of
Gn. The neighbours of j are all the integers i 6= j, 1 ≤ i ≤ n such that i+ j ∈ A.

deg j = |{i : 1 ≤ i ≤ n, i 6= j, i ∈ A− j}|
= |{a ∈ A : j < a ≤ n+ j, a 6= 2j}| ≥ A(n+ j)− A(j)− 1.

�

In view of Theorem 3.1, it is interesting to get B−2 [g] sequences with counting
function as large as possible, but with some control on the lower bound. We adapt
the method used in [5] to construct a B−2 [g] sequence with A(x)� x1/2−1/(4g−2).

Firstly we have to introduce the notion of strong B−2 [g] sequence. We say that
a set An = {a1, . . . , an} is a strong B−2 [g] set if:

i) 6gn2+1/g ≤ an ≤ 8gn2+1/g.
ii) dAn(x) ≤ g for all integer x 6= 0.

iii) |{x 6= 0 : dAn(x) ≥ s}| ≤ 2n2−(s−1)/g, s = 1, . . . , g.

For short we use the notation Ds(An) = |{x 6= 0 : dAn(x) ≥ s}|.
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Theorem 3.2. Let a1 = 6g and for n ≥ 1 define an+1 as the smallest positive
integer, distinct to a1, . . . , an, such that a1, . . . , an+1 is a strong B−2 [g] set. The
infinite sequence A = {an} given by the greedy algorithm is a B−2 [g] sequence with
6gn2+1/g ≤ an ≤ 8gn2+1/g.

Proof. Let a1 = 6g and for some n ≥ 2, let An = {a1, . . . , an} the strong B−2 [g]
set given by this greedy algorithm. We will find an upper bound for the number
of forbiden positive integers for an+1. We classify the forbidden elements m in
the following sets:

i) Fn = {m : m ∈ An}.
ii) F0,n = {m : An ∪m is not a B−2 [g] set}

iii) Fs,n = {m : Ds(An ∪m) > (n+ 1)2−(s−1)/g}, s = 1, . . . , g.

Hence an+1 is the smallest positive integer in the interval

In+1 = [6g(n+ 1)2+1/g, 8g(n+ 1)2+1/g]]

not belonging to (
⋃g
s=0 Fs,n) ∪ Fn and then the proof of Theorem 1.1 will be

completed if we prove that

(3.1)

∣∣∣∣∣
(

g⋃
s=0

Fs,n

)
∪ Fn

∣∣∣∣∣ ≤ 2g(n+ 1)2+1/g − 2

because at least one integer in In+1 is not forbidden.

It is clear that |Fn| = n. Next, we find an upper bound for the cardinality of
Fs,n, s = 0, . . . , g.

The elements of F0,n are the positive integers of the form ai + x or ai − x for
some 1 ≤ i ≤ n and for some x 6= 0 with dAn(x) = g. Thus,

|F0,n| ≤ 2n|{x : dAn(x) = g}| = 2nDg(An) ≤ 2n · n1+1/g = 2n2+1/g.

For s = 1, note that D1(An ∪m) ≤ 2(n+ 1)2 for any m, so |F1,n| = 0.

For s = 2, . . . , g, and for any m we have

(3.2) Ds(An ∪m) ≤ Ds(An) + T 1
s,n(m) + T 2

s,n(m),

where

T 1
s,n(m) = |

{
x : dAn(x) ≥ s− 1, x ∈ m− An

}
|

T 2
s,n(m) = |

{
x : dAn(x) ≥ s− 1, x ∈ An −m

}
|

We observe that if T 1
s,n(m) + T 2

s,n(m) ≤ 2n1−(s−1)/g, using (3.2) and that An is

a strong B−2 [g] set, we have

Ds(An ∪m) ≤ 2n2−(s−1)/g + 2n1−(s−1)/g ≤ 2(n+ 1)2−(s−1)/g



8 JAVIER CILLERUELO

and then m 6∈ Fs,n. Thus,∑
m

T 1
s,n(m) + T 2

s,n(m) ≥
∑

m∈Fs,n

(
T 1
s,n(m) + T 2

s,n(m)
)

(3.3)

> 2n1−(s−1)/g|Fs,n|.

On the other hand, when we sum T 1
s,n(m) over all m (the same happens with

T 2
sm(m)), each x with dAn(x) ≥ s− 1 is counted n times. Then∑

m

(
T 1
s,n(m) + T 2

s,n(m)
)
≤ 2nDs−1(An) ≤ n · 4n2+(2−s)/g.(3.4)

Inequalities (3.3) and (3.4) imply

(3.5) |Fs,n| ≤ 2n2+1/g.

Taking into account (3.2), the inequalities (3.5) for s = 2, . . . , g and the esti-
mate |Fn| = n, we get∣∣∣∣∣

(
g⋃
s=0

Fs,n

)
∪ Fn

∣∣∣∣∣ ≤ 2n2+1/g + 2(g − 1)n2+1/g + n

= 2gn2+1/g + n ≤ 2g(n+ 1)2+1/g − 2,

which, according to (3.1), finishes the proof. �

Proof of Theorem 1.1. We use Theorem 1.3 and the sequences of Theorem 3.1.
Firstly, we need a lower and an upper bound for the counting function of those
sequences.

Given x, define n such that 8gn2+1/g ≤ x < 8g(n + 1)2+1/g. It implies that
A(x) ≥ n > (x/(8g))1/(2+1/g) − 1. Define also m such that 6gm2+1/g ≤ x <
6g(m+ 1)2+1/g. Thus, A(x) ≤ m ≤ (x/(6g))1/(2+1/g).

Theorem 1.3 implies that δ(Gn) = A(n+ x0)− A(x0)− 1 for some x0 ≤ n.

If x0 ≤ n/2 we have

δ(Gn) ≥ A(n)− A(n/2)− 1

≥ (n/(8g))1/(2+1/g) − 1− (n/(12g))1/(2+1/g) − 1

� n1/(2+1/g).

If n/2 < x0 ≤ n we have

δ(Gn) ≥ A(3n/2)− A(n)− 1

≥ (3n/(16g))1/(2+1/g) − 1− (n/(6g))1/(2+1/g) − 1

� n1/(2+1/g).

In any case we have that δ(Gn)� n1/(2+1/g) = n1/2−1/(4g+2). �
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We finish this section with a remarkable Sidon sequence found by Pollington
and Vanden [11] that we will use later. In the original Theorem, the condition of
being multiple of 4 is missing, but it is clear that we can assume that taking C
equal to four times the original constant.

Theorem 3.3 (Pollignton-Vanden [11]). For some C > 0 there is an infinite
Sidon sequence A whose terms are all multiple of 4, with one element in each
interval [C(m− 1)3, Cm3), m ≥ 1.

4. A dense infinite C4-free graph

Let (qk) the sequence formed by the odd prime numbers and Qk =
∏k

j=1 qj.

Let c =
√

2− 1 and for any k ≥ 1 define

Pk =

{
p primes :

Qc
k

k
≤ p <

Qc
k+1

k + 1

}
.

4.1. The construction of G(V, E).

• The vertices. For any k ≥ 1 we define

Vk = F∗q1 × · · · × F∗qk and V =
∞⋃
k=1

Vk.

We denote by x = (x1, . . . , xk) a typical element of Vk.

V=
V1

V2

Vk

We order the vertices with the lexicographic order.

• The edges. Let A the Sidon sequence given by Theorem 3.3.
Let x, y ∈ V and suppose that x ∈ Vk and y ∈ Vj with j ≤ k. Then

x ∼ y if and only if both conditions a) and b) hold:

a) i) k = j + 1
or

ii) k ≥ j + 4 and k + j ∈ A.
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j + k ∈ A

Vj k ≥ j + 4
Vk

b) There exists a prime p ∈ Pk such that

xiyi ≡ p (mod qi), i = 1, . . . , j

xi ≡ p (mod qi), i = j + 1, . . . k.

We will write x
p∼ y to emphasize the role of the prime p.

4.2. Properties of G(V, E).

Proposition 4.1. If G contains a C4, say x ∼ y ∼ u ∼ v ∼ x, then there is a Vk
containing the vertices x, u (but not y or v) or the vertices y, v (but not x or u).

Proof. Suppose that x, y, u, v belong to distinct Vk, say x ∈ Vk1 , y ∈ Vk2 , u ∈
Vk3 , v ∈ Vk4 . We distinguish several cases:

i) There are not consecutive indices.
It implies that k1 + k2, k2 + k3, k3 + k4, k4 + k1 ∈ A. Thus, (k1 + k2) +

(k3 + k4) = (k2 + k3) + (k4 + k1), which is not possible because A is a
Sidon sequence.

ii) There are only two consecutives Vk.
For example k2 = k1 + 1. Then (k1 + 1) + k3, k3 + k4, k4 + k1 ∈ A.

These elements are multiple of 4 but the sum of them is an odd number.
iii) There are two pairs of consecutives Vk, but not three consecutives Vk.

For example k2 = k1+1, k4 = k3+1. Then (k1+1)+k3, k3+(k4−1) ∈ A,
but it is not possible because both numbers cannot be multiple of 4.

iv) There are three consecutives Vk.
For example k2 = k1 + 1, k3 = k1 + 2. Then (k1 + 2) + k4, k4 + k1 ∈ A.

Again it is impossible because all the elements of A must be multiple of
4.

v) There are four consecutives Vk.
For example k2 = k1 + 1, k3 = k1 + 2, k4 = k1 + 3. It is impossible

because |k4 − k1| < 4 and then v 6∼ x.

�

Proposition 4.1 implies that at most three distinct Vk are involved in a C4 in
G, say Vk1 , Vk2 , Vk3 , k1 ≤ k2 ≤ k3. We say that the cycle is of type [k1, k2, k3].

Proposition 4.2. Let (x, y, u, v) be a C4 in G(V, E) of type [k1, k2, k3], k1 ≤ k2 ≤
k3 (excluding the case k1 = k2 = k3) and suppose that x

p2∼ y
p′2∼ u

p′3∼ v
p3∼ x. Then
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p2, p
′
2 ∈ Pk2 , p2 6= p′2, p3, p

′
3 ∈ Pk3 , p3 6= p′3 and

p2p
′
3 ≡ p′2p3 (mod Qk2)

p′3 ≡ p3 (mod Qk3/Qk2).

Furthemore we have Qc
k2
Qc
k3
≥ Qc

k2
, Qc

k3
≥ Qk3/Qk2 and Qk2 < Q

c
1−c

k3
.

Proof. According Proposition 4.1 we have to consider three cases:

First case: y ∈ Vk1 , v ∈ Vk2 , x, u ∈ Vk3 , k1 ≤ k2 < k3.

•

•

•

•

•

•

•

•Vk1 Vk2 Vk3

y v

x

uVk1 Vk2 Vk3

p2

p′2

p3
p′3

We will prove that this case is not possible. Suppose that there exist p2, p
′
2, p3, p

′
3 ∈

Pk3 such that

yixi ≡ p2 (mod qi), i ≤ k1 yiui ≡ p′2 (mod qi), i ≤ k1

xi ≡ p2 (mod qi), k1 < i ≤ k3 ui ≡ p′2 (mod qi), k1 < i ≤ k3

vixi ≡ p3 (mod qi), i ≤ k2 viui ≡ p′3 (mod qi), i ≤ k2

xi ≡ p3 (mod qi), k2 < i ≤ k3 ui ≡ p′3 (mod qi), k2 < i ≤ k3.

Combining the equalities above we have

yixiviui ≡ p2p
′
3 ≡ p′2p3 (mod qi), i ≤ k1

xiviui ≡ p2p
′
3 ≡ p′2p3 (mod qi), k1 < i ≤ k2

xiui ≡ p2p
′
3 ≡ p′2p3 (mod qi), k2 < i ≤ k3

The Chinese remainder theorem implies

p2p
′
3 ≡ p′2p3 (mod q1 · · · qk3).

Note that if p2 = p′2 then xi ≡ ui ≡ p2u
−1
i (mod qi), 1 ≤ i ≤ k1 and xi ≡ ui ≡

p2 (mod qi), k1 < i ≤ k3 and then x = u. Thus p2 6= p′2. On the other hand
p2 6= p3 because Pk2 ∩ Pk3 = ∅, hence p2p

′
3 6= p′2p3 and we have

Qc
k2
Qc
k3
≥ |p2p′3 − p′2p3| ≥ Qk3 ,

which is not possible because Qk2 < Qk3 and c < 1/2.

Second case: x, u ∈ Vk1 , y ∈ Vk2 , v ∈ Vk3 , k1 < k2 ≤ k3.
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•
•

•
•

•
•

•
•

x

u

y v

Vk1 Vk2 Vk3

p2
p′2

p3

p′3

In this case there exist p2, p
′
2 ∈ Pk2 and p3, p

′
3 ∈ Pk3 such that

xiyi = p2 (mod qi), i ≤ k1 uiyi ≡ p′2 (mod qi), i ≤ k1

yi ≡ p2 (mod qi), k1 < i ≤ k2 yi ≡ p′2 (mod qi), k1 < i ≤ k2

xivi ≡ p3 (mod qi), i ≤ k1 uivi ≡ p′3 (mod qi), i ≤ k1

vi ≡ p3 (mod qi), k1 < i ≤ k3 vi ≡ p′3 (mod qi), k1 < i ≤ k3.

Combining the equalities above we have

xiyiuivi = p2p
′
3 ≡ p′2p3 (mod qi), i ≤ k1

yivi ≡ p2p
′
3 ≡ p′2p3 (mod qi), k1 < i ≤ k2

vi ≡ p3 ≡ p′3 (mod qi), k1 < i ≤ k3.

The Chinese remainder theorem implies

p2p
′
3 ≡ p′2p3 (mod q1 · · · qk2)
p′3 ≡ p3 (mod qk2+1 · · · qk3).

Third case: y ∈ Vk1 , x, u ∈ Vk2 , v ∈ Vk3 , k1 < k2 < k3.

•

•

•

•

•

•

•

•

Vk1 Vk2 Vk3

y

x

u

v

Vk1 Vk2 Vk3

p2

p′2

p3

p′3

In this case there exist p2, p
′
2 ∈ Pk2 and p3, p

′
3 ∈ Pk3 such that

yixi ≡ p2 (mod qi), i ≤ k1 yiui ≡ p′2 (mod qi), i ≤ k1

xi ≡ p2 (mod qi), k1 < i ≤ k2 ui ≡ p′2 (mod qi), k1 < i ≤ k2

xivi ≡ p3 (mod qi), i ≤ k2 uivi ≡ p′3 (mod qi), i ≤ k2

vi ≡ p3 (mod qi), k2 < i ≤ k3 vi ≡ p′3 (mod qi), k2 < i ≤ k3.
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Combining the equalities above we have

xiyiuivi ≡ p2p
′
3 ≡ p′2p3 (mod qi), i ≤ k1

xiuivi ≡ p2p
′
3 ≡ p′2p3 (mod qi), k1 < i ≤ k2

vi ≡ p3 ≡ p3 (mod qi), k2 < i ≤ k3

The Chinese remainder theorem implies

p2p
′
3 ≡ p′2p3 (mod q1 · · · qk2)
p′3 ≡ p3 (mod qk2+1 · · · qk3).

�

4.3. Bad primes. For each k ≥ 1 we define Bad(Pk) as the set formed by

the primes p ∈ Pk such that there exists some j with Qj < Q
c

1−c

k and primes
p′ ∈ Pk, r, r′ ∈ Pj, pr 6= p′r′ satisfying the congruences

(4.1)

{
pr ≡ p′r′ (mod Qj)

p ≡ p′ (mod Qk/Qj).

Define P ∗k = Pk \Bad(Pk) and let G∗(V, E∗) the graph constructed as the graph
G(V, E) but now E∗ is the set of edges constructed using P ∗k instead Pk.

Corollary 4.1. The graph G∗(V, E∗) is C4-free.

Proof. The possible C4 cycles in the graph satisfy the conditions of Proposition
4.1 but they have been destroyed when we have removed the Bad primes. �

Proposition 4.3. We have

|Pk| ∼
Qc
k

ck2 log k
and |Bad(Pk)| �

Q
3c−1
1−c

k

k4
.

Proof. We use
Qc

k−1

k−1 = o
(
Qc

k

k

)
and Lemma 2.2 to obtain

|Pk| = π

(
Qc
k

k

)
− π

(
Qc
k−1

k − 1

)
∼ π

(
Qc
k

k

)
∼ Qc

k

k log(Qc
k/k)

∼ Qc
k

ck2 log k
.

The upper bound for |Bad(Pk)| is more involved. If p1 ∈ Bad(Pk) then, by

construction, there exits j with Qj < Q
c

1−c

k and primes p′1 ∈ Pk, p2, p
′
2 ∈ Pj

satisfying the congruences (4.1). We can write

p1(p2 − p′2) = p1p2 − p′1p′2 + (p′1 − p1)p′2

=
p1p2 − p′1p′2

Qj

Qj +
(p′1 − p1)p′2
Qk/Qj

Qk/Qj.
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The congruences (4.1) imply that s1 =
p1p2−p′1p′2

Qj
and s2 =

(p′1−p1)p′2
Qk/Qj

are nonzero

integers satisfying

|s1| =
|p1p2 − p′1p′2|

Q1

≤
Qc
jQ

c
k

jkQj

, |s2| =
|(p′1 − p1)p′2|
Qk/Qj

≤
Qc
jQ

c
k

jkQk/Qj

.

Thus, if p1 ∈ Bad(Pk) then p1 must be a divisor prime of some integer s 6= 0 of
some set

Sj,k =

{
s = s1Qj + s2Qk/Qj : 1 ≤ |s1| ≤

Qc
jQ

c
k

jkQj

, 1 ≤ |s2| ≤
Qc
jQ

c
k

jkQk/Qj

}
with Qj < Q

c
1−c

k . If we write ωk(s) to denote the number of primes p1 ∈ Pk
dividing s we have that

|Bad(Pk)| ≤
∑
j

Qj<Q
c/(1−c)
k

∑
s∈Sj,k

ωk(s).

We claim that ωk(s) ≤ 1 for k large enough. We observe that if some s ∈ Sj,k
has two distinct primes divisors p, p′ ∈ Pk then we would have that

Q2c
k−1 < pp′ ≤ |s| ≤ 2 ·Qc

jQ
c
k

and then that Q2c
k−1 < 2Q

c2

1−c

k Qc
k = 2Q

c
1−c

k−1q
c

1−c

k , which implies that Q
c(1−2c)

1−c

k−1 ≤ 2q
c

1−c

k

and it is not possible for k large because c < 1/2 and qk = o(Qk−1).

Then we have that

|Bad(Pk)| ≤
∑
j

Qj<Q
c/(1−c)
k

|Sj,k| �
∑
j

Qj<Q
c/(1−c)
k

Q2c
j Q

2c
k

j2k2Qk

� Q
3c−1
1−c

k

k4
.

�

4.4. The minimun degree fo Gn.

Proposition 4.4. If a vertex in Vk is labeled with n then

φ(Q1) + · · ·+ φ(Qk−1) < n ≤ φ(Q1) + · · ·+ φ(Qk)

where φ is the Euler totient function. In particular we have that k ∼ log n/ log log n
and Qk = n1+o(1).

Proof. If a vertex is labeled with n ∈ Vk then

|V1|+ · · ·+ |Vk−1| < n ≤ |V1|+ · · ·+ |Vk|
and clearly |Vj| =

∏j
i=1 |F∗qi | =

∏j
i=1(qi − 1) = φ(Qj). Thus we have

φ(Qk)

qk − 1
= φ(Qk−1) ≤ φ(Q1) + · · ·+ φ(Qk−1) ≤ n ≤ φ(Q1) + · · ·+ φ(Qk) ≤ kQk
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The well known estimate φ(m) = m1+o(1) implies that n = Q
1+o(1)
k and Proposi-

tion 2.2 imply the last part of the Proposition. �

Proposition 4.5. δ(Gn) ≥ n
√
2−1+o(1).

Proof. We have to prove that for n large enough then degGn
(y) = n

√
2−1+o(1) for

any vertex y labeled with m ≤ n. Suppose that n ∈ Vk and that y ∈ Vj for some
j ≤ k. Let m the integer such that Cm3 ≤ j+k−1 < C(m+1)3. We distinguish
two cases:

Case 2j + 4 > C(m− 1)3. In this case we will use that

(4.2) degGn(y) ≥ degGn(y;Vj−1) = |{x ∈ Vj−1 : {x, y} ∈ E}|.

Suppose that

y = (y1, . . . , yj) ∈ Vj.

First we observe that for any prime p ∈ Pj such that p ≡ yj (mod qj) the
vertex

x = (x1, . . . , xj−1) = (y−11 p, . . . , y−1j−1p) ∈ Vj−1
is a neighbor of y. Indeed we have that

xiyi ≡ p (mod qi) for any i ≤ j − 1

yj = p (mod qj).

Observe that each prime p provides a distinct neighbor x of y. If x
p∼ y and

x
p′∼ y then p ≡ p′ (mod Qj) and Qc

j/j ≥ |p− p′| ≥ Qj, which is not possible.

We have

degGn
(y, Vj−1) ≥ |Pj(qj, yj)| − |Bad(Pj)|(4.3)

where

Pj(m, l) = {p ∈ Pj : p ≡ l (mod m)}.

Thus we have that

|Pj(qj, yj)| = π(Qc
j/j; qj, yj)− π(Qc

j−1/(j − 1); qj, yj)

Since qj � log(Qc
j/j) we can apply Lemma 2.2 to get

|Pj(qj, yj)| = (1 + o(1))
Qj/j

(qj − 1) log(Qc
j/j))

− (1 + o(1))
Qj−1/(j − 1)

(qj−1 − 1) log(Qc
j−1/(j − 1))

.

Taking into account that Qj−1 = o(Qj) and using Lemma 2.2 we have

(4.4) |Pj(qj, yj)| ∼
Qc
j/j

(qj − 1) log(Qc
j/j)

∼
Qc
j

cj3 log2 j
.
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Since 3c−1
1−c = c for c =

√
2− 1, Proposition 4.3 implies that

(4.5) |Bad(Pj)| � Qc
j/j

4 = o (|Pj(qj, yj)|) .

Easily (4.2), (4.3) and (4.5) imply

degGn
(y) ≥ (1 + o(1))

Qc
j

cj3 log2 j
.

Since Qk = n1+o(1) (see Proposition 4.4) we have

degGn
(y) ≥ n1+o(1)

cj3 log2 j(Qk/Qj)c
.

Note that the condition Cm3 ≤ j + k − 1 < C(m+ 1)3 imply that

k − j = j + k − 1− (2j − 1) < C(m+ 1)3 − (2j − 1)

< C(m+ 1)3 − (2C(m− 1)3 − 5)� m2 � k2/3.

We observe that (Qk/Qj) ≤ qk−jk . Using that k ∼ log n/ log log n we have that

log(cj3 log2 j(Qk/Qj)
c)� log k + (k − j) log qk � k2/3 log k = o(log n).

Thus cj3 log2 j(Qk/Qj)
c ≤ no(1) and then degGn(y)� nc+o(1).

Case 2j + 4 ≤ C(m − 1)3. In this case we consider the element a ∈ A in the
interval [C(m− 1)3, Cm3) and we take l = a− j. Note that |l − j| = |a− 2j| ≥
C(m− 1)3 − 2j ≥ 4 and that l < Cm3 − j ≤ k − 1. Hence we have

degGn
(y) ≥ degGn

(y, Vl).

Note that for any p ∈ Pl, the element x = (x1, . . . , xl) ∈ Vl with

xi ≡ y−1i p (mod qi), 1 ≤ i ≤ j

xi ≡ p (mod qi), j < i ≤ l

is a neighbor of y. Since distinct primes give distinct neighbors of y we have

degGn
(y, Vl) ≥ |P ∗l | = |Pl| − |Bad(Pl)|.

The Prime Number Theorem implies that

|Pl| ∼
Qc
l

cl2 log l
.

Since 3c−1
1−c = c for c =

√
2 − 1, Proposition 4.3 implies that |Bad(Pl)| � Qc

l/l
4

and we conclude that

degGn
(y) ≥ Qc

l

cl2 log l
(1 + o(1)).
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Since Qk = n1+o(1) (see Proposition 4.4) we have

degGn
(y) ≥ nc+o(1)

cl2 log l(Qk/Ql)c
.

We observe that (Qk/Ql) ≤ qk−lk and note that

k − l = k − (a− j) = k + k − a ≤ k + j − C(m− 1)3

< C(m+ 1)3 + 1− C(m− 1)3 � m2 � k2/3.

Using also that k ∼ log n/ log log n we have that

log(cl2 log l(Qk/Ql)
c)� log k + (k − l) log qk � k2/3 log k = o(log n),

which implies that
degGn

(y) ≥ nc+o(1).

�

Theorem 1.2 is consequence of Corollary 4.1 and Proposition 4.5.
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Instituto de Ciencias Matemáticas (ICMAT) and Departamento de Matemáticas,
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