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Abstract

For any positive integers h ≥ 2 and g ≥ 1, we present a greedy algorithm that
provides an infinite Bh[g] sequence with an ≤ 2gnh+(h−1)/g.
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1. Introduction

Given positive integers h ≥ 2 and g ≥ 1, we say that a sequence of integers
A is a Bh[g] sequence if the number of representations of any integer n in the
form

n = a1 + · · ·+ ah, a1 ≤ · · · ≤ ah, ai ∈ A

is bounded by g. The Bh[1] sequences are simply called Bh sequences.

A trivial counting argument shows that if A = {an} is a Bh[g] sequence
then an � nh. On the other hand, the greedy algorithm introduced by Erdős 1

provides an infinite Bh sequence with an ≤ 2n2h−1.

Classic greedy algorithm: Let a1 = 1 and for n ≥ 2, define an as the
smallest positive integer, greater than an−1, such that a1, . . . , an is a Bh[g] se-
quence.

When g = 1, the greedy algorithm defines a1 = 1, a2 = 2 and for n ≥ 3,
defines an as the smallest positive integer that is not of the form

1

k

(
ai1 + · · ·+ aih − (ai′1 · · ·+ ai′h−k

)
)
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1This algorithm has been atributed to Mian and Chowla, but it seems (see [6]) that was
Erdős who first used this algorithm.
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for any 1 ≤ i1, . . . , ih, i
′
1, . . . , i

′
h−k ≤ n − 1 and 1 ≤ k ≤ h − 1. Since there are

at most (n− 1)2h−1 + · · ·+ (n− 1)h+1 ≤ (n− 1)2h/(n− 2) forbidden elements
for an, then an ≤ 1 + (n− 1)2h/(n− 2) ≤ 2n2h−1.

It is possible that the classic greedy algorithm may provide a denser sequence
when g > 1, but it is not clear how to prove it. For this reason other methods
have been used to obtain dense infinite Bh[g] sequences:

Theorem A. Given h ≥ 2 and g ≥ 1, there exists an infinite Bh[g] sequence
with an � nh+δ with δ = δh(g)→ 0 when g →∞.

Erdős and Renyi [8] proved Theorem A for h = 2 using the probabilistic
method. Ruzsa gave the first proof for any h ≥ 3 (a sketch of that proof, which
consists in an explicit construction, appeared in [7] and a detailed proof in [5]).

The aim of this paper is to describe a distinct greedy algorithm that provides
a Bh[g] sequence that grows slower than all previous known constructions for
g > 1. More specifically, Theorem 2.1 gives an easy proof of Theorem A with
δh(g) = (h− 1)/g.

In the table below we resume all previous results on this problem for g > 1
expressed in form an � nh+δh(g) and the method used in each case. The
probabilistic method, which we denote by PM, has been used in most of the
constructions.

δ2(g) ≤ 2/g + on(1) PM [8]
δ2(g) ≤ 1/g + on(1) PM + alteration method [2]
δ3(g) ≤ 2/g + ε, ε > 0 PM+ combinatorial ingredients [5]
δh(g) �h 1/(log g log log g) Explicit construction, Ruzsa [7],[5]

δh(g) �h 1/g1/(h−1) PM+ Kim-Vu method [9]
δh(g) � 2hh(h!)2/g PM + Sunflower Lemma [5]
δh(g) ≤ (h− 1)/g New greedy algorithm, Theorem 2.1

For g = 1 there are special constructions of Bh sequences with slower growth.

δh(1) ≤ h− 1 Classic greedy algorithm
δ2(1) ≤ 1− εn, εn = log log n/ log n PM + graph tools [1]

δ2(1) ≤
√

2− 1 + on(1) Real log method + PM [10]

δ2(1) ≤
√

2− 1 + on(1) Explicit construction [3]

δh(1) ≤
√

(h− 1)2 + 1− 1 + on(1), h = 3, 4 Gaussian arg method + PM [4]

δh(1) ≤
√

(h− 1)2 + 1− 1 + on(1), h ≥ 3 Discrete log method + PM [3]

2. A new greedy algorithm

We need to introduce the notion of strong Bh[g] set.

Definition 1. We say that An = {a1, . . . , an} is a strong Bh[g] set if the
following conditions are satisfied:
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i) An is a Bh[g] set.

ii) |{x : rAn(x) ≥ s}| ≤ nh+(1−s)(h−1)/g, for s = 1, . . . , g, where

rAn
(x) = |{(ai1 , . . . aih) : 1 ≤ i1 ≤ · · · ≤ ih ≤ n, x = ai1 + · · ·+ aih}|.

Theorem 2.1. Let a1 = 1 and for n ≥ 1 define an+1 as the smallest positive
integer, distinct to a1, . . . , an, such that a1, . . . , an+1 is a strong Bh[g] set. The
infinite sequence A = {an} given by this greedy algorithm is a Bh[g] sequence
with an ≤ 2gnh+(h−1)/g.

Proof. Let a1 = 1, a2 = 2 and suppose that An = {a1, . . . , an} is the strong
Bh[g] set given by this algorithm for some n ≥ 2. We will find an upper bound for
the number of forbiden positive integers for an+1. We use the notation Rs(An) =
|{x : rAn

(x) ≥ s}| to classify the forbidden elements m in the following sets:

i) Fn = {m : m ∈ An}.

ii) F0,n = {m : An ∪m is not a Bh[g] set}

iii) Fs,n = {m : Rs(An ∪m) > (n+ 1)h+(1−s)(h−1)/g}, s = 1, . . . , g.

Hence an+1 is the smallest positive integer not belonging to (
⋃g
s=0 Fs,n)∪Fn

and then the proof of Theorem 2.1 will be completed if we prove that∣∣∣∣∣
(

g⋃
s=0

Fs,n

)
∪ Fn

∣∣∣∣∣ ≤ 2g(n+ 1)h+(h−1)/g − 1. (2.1)

It is clear that |Fn| = n. Next, we find an upper bound for the cardinality
of Fs,n, s = 0, . . . , g.

The elements of F0,n are the positive integers of the form 1
k

(
x− (ai1 + · · ·+ aih−k

)
)

for some 1 ≤ i1, . . . , ih−k ≤ n, 1 ≤ k ≤ h− 1 and for some x with rAn
(x) = g.

Thus,

|F0,n| ≤ (nh−1 + · · ·+ n+ 1)|{x : rAn
(x) = g}|

≤ nh/(n− 1) Rg(An)

≤ 2nh−1n1+(h−1)/g = 2nh+(h−1)/g.

For s = 1, note that R1(An ∪m) ≤ (n+ 1)h for any m, so |F1,n| = 0.

For s = 2, . . . , g, and for any m we have

Rs(An ∪m) ≤ Rs(An) + Ts,n(m), (2.2)

where

Ts,n(m) = |
{
x : rAn

(x) ≥ s−1, x ∈ km+An+
h−k· · · +An for some 1 ≤ k ≤ h

}
|.
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In the case k = h, the expression x ∈ km+An+
h−k· · · +An means x = hm.

We observe that if Ts,n(m) ≤ nh−1+(1−s)(h−1)/g, using (2.2) and that An is
a strong Bh[g] set, we have

Rs(An ∪m) ≤ nh+(1−s)(h−1)/g + nh−1+(1−s)(h−1)/g

≤ (n+ 1)h+(1−s)(h−1)/g

and then m 6∈ Fs,n. Thus,∑
m

Ts,n(m) ≥
∑

m∈Fs,n

Ts,n(m) > nh−1+(1−s)(h−1)/g|Fs,n|. (2.3)

On the other hand, when we sum Ts,n(m) over all m, each x with rAn
(x) ≥

s−1 is counted no more than |An+
h−1· · · +An|+ · · ·+ |An|+1 ≤ nh−1+ · · ·+n+1

times. Then ∑
m

Ts,n(m) ≤ (1 + n+ · · ·+ nh−1)Rs−1(An) (2.4)

≤ nh − 1

n− 1
nh+(2−s)(h−1)/g.

Inequalities (2.3) and (2.4) imply

|Fs,n| ≤
nh − 1

n− 1
n1+(h−1)/g ≤ 2nh+(h−1)/g. (2.5)

Taking into account (2.2), the inequalities (2.5) for s = 2, . . . , g and the
estimate |Fn| = n, we get∣∣∣∣∣

(
g⋃
s=0

Fs,n

)
∪ Fn

∣∣∣∣∣ ≤ 2nh+(h−1)/g + 2(g − 1)nh+(h−1)/g + n

= 2gnh+(h−1)/g + n ≤ 2g(n+ 1)h+(h−1)/g − 1,

which, according to (2.1), finishes the proof.
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