A greedy algorithm for Bj[g] sequences

Javier Cilleruelo

Instituto de Ciencias Matemdticas (CSIC-UAM-UCSM-UCM) and
Departamento de Matemdticas
Universidad Auténoma de Madrid
28049 Madrid, Spain

Abstract

For any positive integers h > 2 and g > 1, we present a greedy algorithm that
provides an infinite By,[g] sequence with a,, < 2gn"*(=1/9,
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1. Introduction

Given positive integers h > 2 and g > 1, we say that a sequence of integers
A is a By[g] sequence if the number of representations of any integer n in the
form
n=a+---+ap a<---<ap €A

is bounded by g. The Bj[1] sequences are simply called B, sequences.

A trivial counting argument shows that if A = {a,} is a By[g] sequence
then a,, > n". On the other hand, the greedy algorithm introduced by Erdds !
provides an infinite B;, sequence with a,, < 2n2"~1.

Classic greedy algorithm: Let a; = 1 and for n > 2, define a,, as the
smallest positive integer, greater than a,_1, such that ay,...,a, is a Bylg] se-
quence.

When g = 1, the greedy algorithm defines a; = 1, as = 2 and for n > 3,
defines a,, as the smallest positive integer that is not of the form
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7 (a4 tan = (ay - +ay )
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IThis algorithm has been atributed to Mian and Chowla, but it seems (see [6]) that was
Erdés who first used this algorithm.
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for any 1 <'y,...,44,7,...,0,_, <n—1and 1 <k < h—1. Since there are
at most (n — 1)2""1 4+ ... 4+ (n — 1) < (n — 1)2"/(n — 2) forbidden elements
for a,, then a, <1+ (n —1)2"/(n —2) < 2n?~1

It is possible that the classic greedy algorithm may provide a denser sequence
when g > 1, but it is not clear how to prove it. For this reason other methods
have been used to obtain dense infinite By, [g] sequences:

Theorem A. Given h > 2 and g > 1, there exists an infinite By[g] sequence
with a, < n"*° with § = 6,(g) — 0 when g — .

Erd6s and Renyi [8] proved Theorem A for h = 2 using the probabilistic
method. Ruzsa gave the first proof for any h > 3 (a sketch of that proof, which
consists in an explicit construction, appeared in [7] and a detailed proof in [5]).

The aim of this paper is to describe a distinct greedy algorithm that provides
a By[g] sequence that grows slower than all previous known constructions for
g > 1. More specifically, Theorem 2.1 gives an easy proof of Theorem A with
n(g) = (h—1)/g.

In the table below we resume all previous results on this problem for g > 1
expressed in form a, < n"T%@) and the method used in each case. The
probabilistic method, which we denote by PM, has been used in most of the
constructions.

02(9) <2/g+o0,(1) PM [§]

02(g9) <1/g+o0,(1) PM + alteration method [2]
d35(9) <2/g+e €>0 PM+ combinatorial ingredients [5]
dn(g) <n 1/(loggloglogg) | Explicit construction, Ruzsa [7],[5]
onlg) <p 1/g/=1 PM+ Kim-Vu method [9]
Sn(g) < 2"h(h)?/g PM + Sunflower Lemma [5]
on(g) <(h—-1)/g New greedy algorithm, Theorem 2.1

For g = 1 there are special constructions of By, sequences with slower growth.

on(l) <h-1 Classic greedy algorithm
02(1) <1-—¢€,, €,=Iloglogn/logn PM + graph tools [1]
S2(1) <V2-1+o0a(1) Real log method + PM [10]
52(1) <V2—140,(1) Explicit construction [3]
Sn(1) < /(h—1)2+1-1+0,(1), h=3,4 | Gaussian arg method + PM [4]
6n(1) </(h—1)2+1—1+0,(1), h>3 Discrete log method + PM [3]

2. A new greedy algorithm

We need to introduce the notion of strong By[g] set.

Definition 1. We say that A, = {ai,...,a,} is a strong Bplg] set if the
following conditions are satisfied:



i) Ap is a Bylg] set.

i) [{x :ra,(x) > s} < phtA=s)(h=1/9  for s =1,...,q, where

ra, (@) ={(ai,.-.a;,): 1<i3 < <ip<n, xz=a;+- +a}

Theorem 2.1. Let a3 = 1 and for n > 1 define a,y1 as the smallest positive
integer, distinct to ai,...,an, such that ay,...,ant1 8 a strong Bplg] set. The
infinite sequence A = {an} given by this greedy algorithm is a Bplg] sequence
with a, < 2gn"t(h=1/9,

Proof. Let a; = 1, as = 2 and suppose that A, = {a1,...,a,} is the strong
By,[g] set given by this algorithm for some n > 2. We will find an upper bound for
the number of forbiden positive integers for a, 1. We use the notation Rs(A4,) =
[{x : 74, (z) > s}| to classify the forbidden elements m in the following sets:

i) Fr,={m: meA,}.
ii) Fo, ={m: A, Umis not a By[g] set}

iii) Fyn={m: Rs(A,Um)> (n+ )htA=)0t=D/gy =1 . g

Hence a1 is the smallest positive integer not belonging to (Ui:o Fsn)UF,
and then the proof of Theorem 2.1 will be completed if we prove that

(0)-

s=0

< 2g(n+1)hHth=1/9 _ 1, (2.1)

It is clear that |F,| = n. Next, we find an upper bound for the cardinality
of Fsr, s=0,...,g.

The elements of Iy ,, are the positive integers of the form ¢ (z — (a;, + -+ + a;,_,))

for some 1 < iy,...,ip— <n, 1 <k < h—1and for some z with 74, (z) = g.
Thus,
Foul < (0" '+ tn+D){z: ra,(2) =g}
< n"/(n—1) Ry(An)
< 2nh—1n1+(h—1)/g — 2nh+(h—1)/g.

For s = 1, note that Ry (A, Um) < (n+ 1) for any m, so |Fy | = 0.

For s = 2,...,g, and for any m we have
Rs(A,Um) < Rs(Ay) + Ts n(m), (2.2)
where

Ton(m)=[{z: ra,(z) >s—1, x € km+A,+ o +A, for some 1 < k < h}|.



. h—k
In the case k = h, the expression z € km + A,+ --- +A, means x = hm.

We observe that if T, ,,(m) < n=1+0=)(=1)/9 ysing (2.2) and that A, is
a strong Bplg] set, we have

R(A,Um) < nht=9)(=1/g  ph=1+(1=s)(h=1)/g
< (n+41D)hTA=s)(=D/g
and then m ¢ F§ ,,. Thus,
S Tonlm) > > Ton(m)>nh 090D/ p (2.3)
m meEFs n

On the other hand, when we sum T ,,(m) over all m, each x with r4, () >

s—1 is counted no more than |A,,+ ! AL+ A AT <P
times. Then

ZTsyn(m) < (A+n+---+n""HR, 1 (A,) (2.4)

h
=1 hees) -1/
n—1

Inequalities (2.3) and (2.4) imply

" =1 ey, ht(h—1)/
|[Fonl < ——n 9 < 2n 9, (2.5)
o

Taking into account (2.2), the inequalities (2.5) for s = 2,...,g and the
estimate |F,| = n, we get

9
’(U Fs n) UFn S 2nh+(h_1)/g +2(g— ].)’I’Lh+(h_1)/g—|—n
s=0
= 29nh+(h71)/9 +n< 2g(n + 1)h+(h71)/g _ ]_7
which, according to (2.1), finishes the proof. O
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