A greedy algorithm for $B_{h}[g]$ sequences

Javier Cilleruelo
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas
Universidad Autónoma de Madrid
28049 Madrid, Spain

Abstract

For any positive integers $h \geq 2$ and $g \geq 1$, we present a greedy algorithm that

 provides an infinite $B_{h}[g]$ sequence with $a_{n} \leq 2 g n^{h+(h-1) / g}$.Keywords: Sidon sets, greedy algorithm 2000 MSC: Primary 11B83.

1. Introduction

Given positive integers $h \geq 2$ and $g \geq 1$, we say that a sequence of integers A is a $B_{h}[g]$ sequence if the number of representations of any integer n in the form

$$
n=a_{1}+\cdots+a_{h}, \quad a_{1} \leq \cdots \leq a_{h}, \quad a_{i} \in A
$$

is bounded by g. The $B_{h}[1]$ sequences are simply called B_{h} sequences.
A trivial counting argument shows that if $A=\left\{a_{n}\right\}$ is a $B_{h}[g]$ sequence then $a_{n} \gg n^{h}$. On the other hand, the greedy algorithm introduced by Erdős ${ }^{1}$ provides an infinite B_{h} sequence with $a_{n} \leq 2 n^{2 h-1}$.

Classic greedy algorithm: Let $a_{1}=1$ and for $n \geq 2$, define a_{n} as the smallest positive integer, greater than a_{n-1}, such that a_{1}, \ldots, a_{n} is a $B_{h}[g]$ sequence.

When $g=1$, the greedy algorithm defines $a_{1}=1, a_{2}=2$ and for $n \geq 3$, defines a_{n} as the smallest positive integer that is not of the form

$$
\frac{1}{k}\left(a_{i_{1}}+\cdots+a_{i_{h}}-\left(a_{i_{1}^{\prime}} \cdots+a_{i_{h-k}^{\prime}}\right)\right)
$$

[^0]for any $1 \leq i_{1}, \ldots, i_{h}, i_{1}^{\prime}, \ldots, i_{h-k}^{\prime} \leq n-1$ and $1 \leq k \leq h-1$. Since there are at most $(n-1)^{2 h-1}+\cdots+(n-1)^{h+1} \leq(n-1)^{2 h} /(n-2)$ forbidden elements for a_{n}, then $a_{n} \leq 1+(n-1)^{2 h} /(n-2) \leq 2 n^{2 h-1}$.

It is possible that the classic greedy algorithm may provide a denser sequence when $g>1$, but it is not clear how to prove it. For this reason other methods have been used to obtain dense infinite $B_{h}[g]$ sequences:
Theorem A. Given $h \geq 2$ and $g \geq 1$, there exists an infinite $B_{h}[g]$ sequence with $a_{n} \ll n^{h+\delta}$ with $\delta=\delta_{h}(g) \rightarrow 0$ when $g \rightarrow \infty$.

Erdős and Renyi [8] proved Theorem A for $h=2$ using the probabilistic method. Ruzsa gave the first proof for any $h \geq 3$ (a sketch of that proof, which consists in an explicit construction, appeared in [7] and a detailed proof in [5]).

The aim of this paper is to describe a distinct greedy algorithm that provides a $B_{h}[g]$ sequence that grows slower than all previous known constructions for $g>1$. More specifically, Theorem 2.1 gives an easy proof of Theorem A with $\delta_{h}(g)=(h-1) / g$.

In the table below we resume all previous results on this problem for $g>1$ expressed in form $a_{n} \ll n^{h+\delta_{h}(g)}$ and the method used in each case. The probabilistic method, which we denote by PM, has been used in most of the constructions.

$\delta_{2}(g)$	$\leq 2 / g+o_{n}(1)$	PM [8]
$\delta_{2}(g)$	$\leq 1 / g+o_{n}(1)$	PM + alteration method [2]
$\delta_{3}(g)$	$\leq 2 / g+\epsilon, \quad \epsilon>0$	PM+ combinatorial ingredients [5]
$\delta_{h}(g)$	$\ll{ }_{h} 1 /(\log g \log \log g)$	Explicit construction, Ruzsa [7],[5]
$\delta_{h}(g)$	$\ll{ }_{h} 1 / g^{1 /(h-1)}$	PM+ Kim-Vu method [9]
$\delta_{h}(g)$	$\ll 2^{h} h(h!)^{2} / g$	PM + Sunflower Lemma [5]
$\delta_{h}(g)$	$\leq(h-1) / g$	New greedy algorithm, Theorem 2.1

For $g=1$ there are special constructions of B_{h} sequences with slower growth.

| $\delta_{h}(1) \leq h-1$ | Classic greedy algorithm |
| :--- | :--- | :---: |
| $\delta_{2}(1) \leq 1-\epsilon_{n}, \quad \epsilon_{n}=\log \log n / \log n$ | PM + graph tools [1] |
| $\delta_{2}(1) \leq \sqrt{2}-1+o_{n}(1)$ | Real log method + PM [10] |
| $\delta_{2}(1) \leq \sqrt{2}-1+o_{n}(1)$ | Explicit construction [3] |
| $\delta_{h}(1) \leq \sqrt{(h-1)^{2}+1}-1+o_{n}(1), h=3,4$ | Gaussian arg method + PM [4] |
| $\delta_{h}(1) \leq \sqrt{(h-1)^{2}+1}-1+o_{n}(1), h \geq 3$ | Discrete log method + PM [3] |

2. A new greedy algorithm

We need to introduce the notion of strong $B_{h}[g]$ set.
Definition 1. We say that $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ is a strong $B_{h}[g]$ set if the following conditions are satisfied:
i) A_{n} is a $B_{h}[g]$ set.
ii) $\left|\left\{x: r_{A_{n}}(x) \geq s\right\}\right| \leq n^{h+(1-s)(h-1) / g}$, for $s=1, \ldots, g$, where

$$
r_{A_{n}}(x)=\left|\left\{\left(a_{i_{1}}, \ldots a_{i_{h}}\right): \quad 1 \leq i_{1} \leq \cdots \leq i_{h} \leq n, \quad x=a_{i_{1}}+\cdots+a_{i_{h}}\right\}\right|
$$

Theorem 2.1. Let $a_{1}=1$ and for $n \geq 1$ define a_{n+1} as the smallest positive integer, distinct to a_{1}, \ldots, a_{n}, such that a_{1}, \ldots, a_{n+1} is a strong $B_{h}[g]$ set. The infinite sequence $A=\left\{a_{n}\right\}$ given by this greedy algorithm is a $B_{h}[g]$ sequence with $a_{n} \leq 2 g n^{h+(h-1) / g}$.

Proof. Let $a_{1}=1, a_{2}=2$ and suppose that $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ is the strong $B_{h}[g]$ set given by this algorithm for some $n \geq 2$. We will find an upper bound for the number of forbiden positive integers for a_{n+1}. We use the notation $R_{s}\left(A_{n}\right)=$ $\left|\left\{x: r_{A_{n}}(x) \geq s\right\}\right|$ to classify the forbidden elements m in the following sets:
i) $F_{n}=\left\{m: m \in A_{n}\right\}$.
ii) $F_{0, n}=\left\{m: A_{n} \cup m\right.$ is not a $B_{h}[g]$ set $\}$
iii) $F_{s, n}=\left\{m: R_{s}\left(A_{n} \cup m\right)>(n+1)^{h+(1-s)(h-1) / g}\right\}, \quad s=1, \ldots, g$.

Hence a_{n+1} is the smallest positive integer not belonging to $\left(\bigcup_{s=0}^{g} F_{s, n}\right) \cup F_{n}$ and then the proof of Theorem 2.1 will be completed if we prove that

$$
\begin{equation*}
\left|\left(\bigcup_{s=0}^{g} F_{s, n}\right) \cup F_{n}\right| \leq 2 g(n+1)^{h+(h-1) / g}-1 \tag{2.1}
\end{equation*}
$$

It is clear that $\left|F_{n}\right|=n$. Next, we find an upper bound for the cardinality of $F_{s, n}, s=0, \ldots, g$.

The elements of $F_{0, n}$ are the positive integers of the form $\frac{1}{k}\left(x-\left(a_{i_{1}}+\cdots+a_{i_{h-k}}\right)\right)$ for some $1 \leq i_{1}, \ldots, i_{h-k} \leq n, 1 \leq k \leq h-1$ and for some x with $r_{A_{n}}(x)=g$. Thus,

$$
\begin{aligned}
\left|F_{0, n}\right| & \leq\left(n^{h-1}+\cdots+n+1\right)\left|\left\{x: r_{A_{n}}(x)=g\right\}\right| \\
& \leq n^{h} /(n-1) R_{g}\left(A_{n}\right) \\
& \leq 2 n^{h-1} n^{1+(h-1) / g}=2 n^{h+(h-1) / g}
\end{aligned}
$$

For $s=1$, note that $R_{1}\left(A_{n} \cup m\right) \leq(n+1)^{h}$ for any m, so $\left|F_{1, n}\right|=0$.
For $s=2, \ldots, g$, and for any m we have

$$
\begin{equation*}
R_{s}\left(A_{n} \cup m\right) \leq R_{s}\left(A_{n}\right)+T_{s, n}(m) \tag{2.2}
\end{equation*}
$$

where
$T_{s, n}(m)=\mid\left\{x: r_{A_{n}}(x) \geq s-1, x \in k m+A_{n}+\stackrel{h-k}{\cdots}+A_{n}\right.$ for some $\left.1 \leq k \leq h\right\} \mid$.

In the case $k=h$, the expression $x \in k m+A_{n}+\stackrel{h-k}{\sim}+A_{n}$ means $x=h m$.
We observe that if $T_{s, n}(m) \leq n^{h-1+(1-s)(h-1) / g}$, using (2.2) and that A_{n} is a strong $B_{h}[g]$ set, we have

$$
\begin{aligned}
R_{s}\left(A_{n} \cup m\right) & \leq n^{h+(1-s)(h-1) / g}+n^{h-1+(1-s)(h-1) / g} \\
& \leq(n+1)^{h+(1-s)(h-1) / g}
\end{aligned}
$$

and then $m \notin F_{s, n}$. Thus,

$$
\begin{equation*}
\sum_{m} T_{s, n}(m) \geq \sum_{m \in F_{s, n}} T_{s, n}(m)>n^{h-1+(1-s)(h-1) / g}\left|F_{s, n}\right| . \tag{2.3}
\end{equation*}
$$

On the other hand, when we sum $T_{s, n}(m)$ over all m, each x with $r_{A_{n}}(x) \geq$ $s-1$ is counted no more than $\left|A_{n}+\cdots+A_{n}\right|+\cdots+\left|A_{n}\right|+1 \leq n^{h-1}+\cdots+n+1$ times. Then

$$
\begin{align*}
\sum_{m} T_{s, n}(m) & \leq\left(1+n+\cdots+n^{h-1}\right) R_{s-1}\left(A_{n}\right) \tag{2.4}\\
& \leq \frac{n^{h}-1}{n-1} n^{h+(2-s)(h-1) / g} .
\end{align*}
$$

Inequalities (2.3) and (2.4) imply

$$
\begin{equation*}
\left|F_{s, n}\right| \leq \frac{n^{h}-1}{n-1} n^{1+(h-1) / g} \leq 2 n^{h+(h-1) / g} . \tag{2.5}
\end{equation*}
$$

Taking into account (2.2), the inequalities (2.5) for $s=2, \ldots, g$ and the estimate $\left|F_{n}\right|=n$, we get

$$
\begin{aligned}
\left|\left(\bigcup_{s=0}^{g} F_{s, n}\right) \cup F_{n}\right| & \leq 2 n^{h+(h-1) / g}+2(g-1) n^{h+(h-1) / g}+n \\
& =2 g n^{h+(h-1) / g}+n \leq 2 g(n+1)^{h+(h-1) / g}-1,
\end{aligned}
$$

which, according to (2.1), finishes the proof.
[1] M. Ajtai, J. Komlós, and E. Szemerédi, A dense infinite Sidon sequence, European J. Combin. 2 (1981), 1-11.
[2] J. Cilleruelo, Probabilistic constructions of $B_{2}[g]$ sequences, Acta Mathematica Sinica 26 (2010), no. 7, 1309-1314.
[3] J. Cilleruelo, Infinite Sidon sequences, Advances in Mathematics 255 (2014), 474-486.
[4] J. Cilleruelo and R. Tesoro, Dense infinite B_{h} sequences, Publicacions Matematiques, vol 59, n1 (2015).
[5] J. Cilleruelo, S. Kiss, I. Ruzsa and C. Vinuesa, Generalization of a theorem of Erdos and Renyi on Sidon sets, Random Structures and Algorithms, vol 37, n4 (2010)
[6] P. Erdős, Solved and unsolved problems in combinatorics and combinatorial number theory Congressus Numeratium, Vol . 32 (1981), pp . 49-62.
[7] P. Erdős and R. Freud, On Sidon sequences and related problems, Mat. Lapok 1 (1991), 1-44.
[8] P. Erdős and A.Renyi, Additive properties of random sequences of positive integers. Acta Arithmetica. 6 (1960) 83-110.
[9] J.H. Kim and V. Vu, Concentration of multivariante Polynomials and its applications Combinatorica 20 (3) (2000) 417-434.
[10] I. Ruzsa, An infinite Sidon sequence. J. Number Theory 68 (1998), no. 1, 63-71.

[^0]: Email address: franciscojavier.cilleruelo@uam.es (Javier Cilleruelo)
 URL: http://www.uam.es/personal_pdi/ciencias/cillerue/ (Javier Cilleruelo)
 ${ }^{1}$ This algorithm has been atributed to Mian and Chowla, but it seems (see [6]) that was Erdős who first used this algorithm.

