A greedy algorithm for $B_h[g]$ sequences

Javier Cilleruelo

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain

Abstract

For any positive integers $h \ge 2$ and $g \ge 1$, we present a greedy algorithm that provides an infinite $B_h[g]$ sequence with $a_n \le 2gn^{h+(h-1)/g}$.

Keywords: Sidon sets, greedy algorithm 2000 MSC: Primary 11B83.

1. Introduction

Given positive integers $h \ge 2$ and $g \ge 1$, we say that a sequence of integers A is a $B_h[g]$ sequence if the number of representations of any integer n in the form

$$n = a_1 + \dots + a_h, \quad a_1 \le \dots \le a_h, \quad a_i \in A$$

is bounded by g. The $B_h[1]$ sequences are simply called B_h sequences.

A trivial counting argument shows that if $A = \{a_n\}$ is a $B_h[g]$ sequence then $a_n \gg n^h$. On the other hand, the greedy algorithm introduced by Erdős¹ provides an infinite B_h sequence with $a_n \leq 2n^{2h-1}$.

Classic greedy algorithm: Let $a_1 = 1$ and for $n \ge 2$, define a_n as the smallest positive integer, greater than a_{n-1} , such that a_1, \ldots, a_n is a $B_h[g]$ sequence.

When g = 1, the greedy algorithm defines $a_1 = 1$, $a_2 = 2$ and for $n \ge 3$, defines a_n as the smallest positive integer that is not of the form

$$\frac{1}{k} (a_{i_1} + \dots + a_{i_h} - (a_{i'_1} + \dots + a_{i'_{h-k}}))$$

Preprint submitted to Elsevier

Email address: franciscojavier.cilleruelo@uam.es (Javier Cilleruelo)

URL: http://www.uam.es/personal_pdi/ciencias/cillerue/ (Javier Cilleruelo)

 $^{^1\}mathrm{This}$ algorithm has been atributed to Mian and Chowla, but it seems (see [6]) that was Erdős who first used this algorithm.

for any $1 \le i_1, \ldots, i_h, i'_1, \ldots, i'_{h-k} \le n-1$ and $1 \le k \le h-1$. Since there are at most $(n-1)^{2h-1} + \cdots + (n-1)^{h+1} \le (n-1)^{2h}/(n-2)$ forbidden elements for a_n , then $a_n \le 1 + (n-1)^{2h}/(n-2) \le 2n^{2h-1}$.

It is possible that the classic greedy algorithm may provide a denser sequence when g > 1, but it is not clear how to prove it. For this reason other methods have been used to obtain dense infinite $B_h[g]$ sequences:

Theorem A. Given $h \ge 2$ and $g \ge 1$, there exists an infinite $B_h[g]$ sequence with $a_n \ll n^{h+\delta}$ with $\delta = \delta_h(g) \to 0$ when $g \to \infty$.

Erdős and Renyi [8] proved Theorem A for h = 2 using the probabilistic method. Ruzsa gave the first proof for any $h \ge 3$ (a sketch of that proof, which consists in an explicit construction, appeared in [7] and a detailed proof in [5]).

The aim of this paper is to describe a distinct greedy algorithm that provides a $B_h[g]$ sequence that grows slower than all previous known constructions for g > 1. More specifically, Theorem 2.1 gives an easy proof of Theorem A with $\delta_h(g) = (h-1)/g$.

In the table below we resume all previous results on this problem for g > 1 expressed in form $a_n \ll n^{h+\delta_h(g)}$ and the method used in each case. The probabilistic method, which we denote by PM, has been used in most of the constructions.

$\delta_2(g) \le 2/g + o_n(1)$	PM [8]
$\delta_2(g) \leq 1/g + o_n(1)$	PM + alteration method [2]
$\delta_3(g) \leq 2/g + \epsilon, \epsilon > 0$	PM+ combinatorial ingredients [5]
$\delta_h(g) \ll_h 1/(\log g \log \log g)$	Explicit construction, Ruzsa [7],[5]
$\delta_h(g) \ll_h 1/g^{1/(h-1)}$	PM+ Kim-Vu method [9]
$\delta_h(g) \ll 2^h h(h!)^2/g$	PM + Sunflower Lemma [5]
$\delta_h(g) \leq (h-1)/g$	New greedy algorithm, Theorem 2.1

For g = 1 there are special constructions of B_h sequences with slower growth.

$\delta_h(1) \leq h - 1$	Classic greedy algorithm
$\delta_2(1) \leq 1 - \epsilon_n, \ \epsilon_n = \log \log n / \log n$	PM + graph tools [1]
$\delta_2(1) \leq \sqrt{2} - 1 + o_n(1)$	Real log method $+ PM [10]$
$\delta_2(1) \leq \sqrt{2} - 1 + o_n(1)$	Explicit construction [3]
$\delta_h(1) \leq \sqrt{(h-1)^2 + 1} - 1 + o_n(1), \ h = 3,4$	Gaussian arg method $+ PM [4]$
$\delta_h(1) \leq \sqrt{(h-1)^2 + 1} - 1 + o_n(1), \ h \geq 3$	Discrete log method + PM $[3]$

2. A new greedy algorithm

We need to introduce the notion of strong $B_h[g]$ set.

Definition 1. We say that $A_n = \{a_1, \ldots, a_n\}$ is a strong $B_h[g]$ set if the following conditions are satisfied:

- i) A_n is a $B_h[g]$ set.
- *ii)* $|\{x: r_{A_n}(x) \ge s\}| \le n^{h+(1-s)(h-1)/g}$, for s = 1, ..., g, where

$$r_{A_n}(x) = |\{(a_{i_1}, \dots, a_{i_h}): 1 \le i_1 \le \dots \le i_h \le n, x = a_{i_1} + \dots + a_{i_h}\}|.$$

Theorem 2.1. Let $a_1 = 1$ and for $n \ge 1$ define a_{n+1} as the smallest positive integer, distinct to a_1, \ldots, a_n , such that a_1, \ldots, a_{n+1} is a strong $B_h[g]$ set. The infinite sequence $A = \{a_n\}$ given by this greedy algorithm is a $B_h[g]$ sequence with $a_n \le 2gn^{h+(h-1)/g}$.

Proof. Let $a_1 = 1$, $a_2 = 2$ and suppose that $A_n = \{a_1, \ldots, a_n\}$ is the strong $B_h[g]$ set given by this algorithm for some $n \ge 2$. We will find an upper bound for the number of forbiden positive integers for a_{n+1} . We use the notation $R_s(A_n) = |\{x : r_{A_n}(x) \ge s\}|$ to classify the forbidden elements m in the following sets:

- i) $F_n = \{m : m \in A_n\}.$
- ii) $F_{0,n} = \{m : A_n \cup m \text{ is not a } B_h[g] \text{ set}\}$

iii)
$$F_{s,n} = \{m: R_s(A_n \cup m) > (n+1)^{h+(1-s)(h-1)/g}\}, s = 1, \dots, g.$$

Hence a_{n+1} is the smallest positive integer not belonging to $(\bigcup_{s=0}^{g} F_{s,n}) \cup F_n$ and then the proof of Theorem 2.1 will be completed if we prove that

$$\left| \left(\bigcup_{s=0}^{g} F_{s,n} \right) \cup F_{n} \right| \le 2g(n+1)^{h+(h-1)/g} - 1.$$
(2.1)

It is clear that $|F_n| = n$. Next, we find an upper bound for the cardinality of $F_{s,n}$, $s = 0, \ldots, g$.

The elements of $F_{0,n}$ are the positive integers of the form $\frac{1}{k} \left(x - (a_{i_1} + \dots + a_{i_{h-k}}) \right)$ for some $1 \leq i_1, \dots, i_{h-k} \leq n, \ 1 \leq k \leq h-1$ and for some x with $r_{A_n}(x) = g$. Thus,

$$|F_{0,n}| \leq (n^{h-1} + \dots + n + 1)|\{x : r_{A_n}(x) = g\}|$$

$$\leq n^h/(n-1) R_g(A_n)$$

$$\leq 2n^{h-1}n^{1+(h-1)/g} = 2n^{h+(h-1)/g}.$$

For s = 1, note that $R_1(A_n \cup m) \leq (n+1)^h$ for any m, so $|F_{1,n}| = 0$. For $s = 2, \ldots, g$, and for any m we have

$$R_s(A_n \cup m) \le R_s(A_n) + T_{s,n}(m), \tag{2.2}$$

where

$$T_{s,n}(m) = |\{x: \ r_{A_n}(x) \ge s - 1, \ x \in km + A_n + \frac{h-k}{\cdots} + A_n \text{ for some } 1 \le k \le h\}|.$$

In the case k = h, the expression $x \in km + A_n + \frac{h-k}{\cdots} + A_n$ means x = hm.

We observe that if $T_{s,n}(m) \leq n^{h-1+(1-s)(h-1)/g}$, using (2.2) and that A_n is a strong $B_h[g]$ set, we have

$$\begin{array}{rcl} R_s(A_n \cup m) & \leq & n^{h+(1-s)(h-1)/g} + n^{h-1+(1-s)(h-1)/g} \\ & < & (n+1)^{h+(1-s)(h-1)/g} \end{array}$$

and then $m \notin F_{s,n}$. Thus,

$$\sum_{m} T_{s,n}(m) \geq \sum_{m \in F_{s,n}} T_{s,n}(m) > n^{h-1+(1-s)(h-1)/g} |F_{s,n}|.$$
(2.3)

On the other hand, when we sum $T_{s,n}(m)$ over all m, each x with $r_{A_n}(x) \ge s-1$ is counted no more than $|A_n + \cdots + A_n| + \cdots + |A_n| + 1 \le n^{h-1} + \cdots + n + 1$ times. Then

$$\sum_{m} T_{s,n}(m) \leq (1+n+\dots+n^{h-1})R_{s-1}(A_n)$$

$$\leq \frac{n^h-1}{n-1}n^{h+(2-s)(h-1)/g}.$$
(2.4)

Inequalities (2.3) and (2.4) imply

$$|F_{s,n}| \le \frac{n^h - 1}{n - 1} n^{1 + (h-1)/g} \le 2n^{h + (h-1)/g}.$$
(2.5)

Taking into account (2.2), the inequalities (2.5) for s = 2, ..., g and the estimate $|F_n| = n$, we get

$$\left| \left(\bigcup_{s=0}^{g} F_{s,n} \right) \cup F_{n} \right| \leq 2n^{h+(h-1)/g} + 2(g-1)n^{h+(h-1)/g} + n$$
$$= 2gn^{h+(h-1)/g} + n \leq 2g(n+1)^{h+(h-1)/g} - 1,$$

which, according to (2.1), finishes the proof.

- M. Ajtai, J. Komlós, and E. Szemerédi, A dense infinite Sidon sequence, European J. Combin. 2 (1981), 1–11.
- [2] J. Cilleruelo, Probabilistic constructions of B₂[g] sequences, Acta Mathematica Sinica 26 (2010), no. 7, 1309–1314.
- [3] J. Cilleruelo, Infinite Sidon sequences, Advances in Mathematics 255 (2014), 474–486.
- [4] J. Cilleruelo and R. Tesoro, *Dense infinite* B_h sequences, Publicacions Matematiques, vol 59, n1 (2015).

- [5] J. Cilleruelo, S. Kiss, I. Ruzsa and C. Vinuesa, Generalization of a theorem of Erdos and Renyi on Sidon sets, Random Structures and Algorithms, vol 37, n4 (2010)
- [6] P. Erdős, Solved and unsolved problems in combinatorics and combinatorial number theory Congressus Numeratium, Vol. 32 (1981), pp. 49–62.
- [7] P. Erdős and R. Freud, On Sidon sequences and related problems, Mat. Lapok 1 (1991), 1–44.
- [8] P. Erdős and A.Renyi, Additive properties of random sequences of positive integers. Acta Arithmetica. 6 (1960) 83–110.
- [9] J.H. Kim and V. Vu, Concentration of multivariante Polynomials and its applications Combinatorica 20 (3) (2000) 417–434.
- [10] I. Ruzsa, An infinite Sidon sequence. J. Number Theory 68 (1998), no. 1, 63–71.