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Abstract

We give a non trivial upper bound for the number of elliptic curves
Ers:Y?=X34+7rX +swith (r,5) € [R+1,R+ M| x [S+1,5+ M|
that are isomorphic to a given curve. We also give an almost optimal
lower bound for the number of distinct isomorphic classes represented
by elliptic curves E, ¢ with the coefficients r, s lying in a small box.



1 Background

For a prime p we consider the family of elliptic curves £, given by a Weier-
strass equation
E.p: Y?=X’+aX+b

over the finite field IF, of p elements, where
(a,b) € F2,  4a® 4 270" # 0. (1)
Two curves F, ; and £, , are isomorphic if for some ¢ € ) we have
rt* =u  (mod p) and st =v  (mod p). (2)

There are several works which count the number of curves E, ; isomorphic
to a given curve E,; with coefficients in r, s is a given box (r,s) € [R+1, R+
K] x [S+1,S + L], see [2, 8]. In particular, for

KL > p*?te and min{ K, L} > p'/?** (3)

with some fixed ¢ > 0, using the exponential sum technique, Fouvry and
Murty [8] have obtained an asymptotic formula for every pair (a,b) with (1).
In [2], using bounds of multiplicative character sum, for almost all (a,b)
with (1), this condition (3) has been relaxed as

KL>p'** and  min{K, L} > p"/**=
Furthermore, it is shown in [2], that for
KL > p'*e and min{ K, L} > pl/Aet? e

one can get a lower bound on the right order of magnitude (again for almost
all (a,b) with (1)). On average over p, such results are established for even
smaller boxes, see [2].

Here we consider much smaller boxes and obtain a lower bound on the
number I (R, S; M) of nonisomorphic curves E, ; with coefficients in r, s is a
given box (r,s) € [R+1,R+ M] x [S+ 1,5 + M].

Clearly, the congruences (2) imply that

r3v? = uPs*  (mod p) (4)



So, given integers R, S and M > 1, we denote by T'(R, S; M) the number
of solutions to (4) with

(r.5), (w,0) € [R+ 1, R+ M] x [S+ 1,5+ M].

Furthermore, for A € F,, we denote by Ny (R, S; M) the number of solutions
to the congruence

3= As*  (mod p), (r,s) € [R+1,R+ M] x [S+1,5+ M].

We use the method of [5], that in turn is based on the ideas of [4] (see
also [12]), to obtain an upper bound on N, (R, S; M), which, in particular,
implies an upper bound for the number of elliptic curves E, ; with coefficients
(r,s) € [R+1,R+ M] x [S+ 1,5 + M] that fall in the same isomorphism
class.

We use the bounds of character sums to obtain an upper bound on
T(R,S; M) from which we derive an almost optimal lower bound I(R, S; M).

Throughout the paper, any implied constants in the symbols O, < and
> are absolute otherwise. We recall that the notations U = O(V), U < V
and V > U are all equivalent to the statement that the inequality |U| < ¢V
holds with some constant ¢ > 0.

2 Character Sums

Let X be the set of all multiplicative characters modulo p and let X* = X'\
{x0} be the set of nonprincipal characters. Garaev and Garcia [9], improving
a result of Ayyad, Cochrane and Zheng [1] (see also [6]), have shown that for
any integers W and Z

2.

XEXo

< pZ? <logp+ (log(ZQ/p))2> ) (5)

W+Z

> x(2)

z=W+1

Note that for any fixed € > 0, if Z > p° the right hand side of (5) is of the
form pZ?°(). However for small values of Z, namely for Z < (logp)'/?,
the bound (5) is trivial. We now combine (5) with a result of [4] to get the
bound pZ%*t°M for any Z.



Lemma 1. For arbitrary integers W and Z, with 0O < W < W + Z < p, the

bound
4

W+Z
|55 o <z
XEXy |z=W+1

holds.

Proof. We can assume that Z < p'/* since otherwise, as we have noticed, the
bound (5) implies the desired result. Now, using that for z with ged(z, p) = 1,
for the complex conjugated character Y we have

X(2) = x(z7),
we derive,
W+Z 4 W+Z 4 W+Z
DU @] <D D x| = DD xmmn'ah)
XEXy |z=W+1 XEX |z=W+1 21,22,23,24=W+1 xeX

Thus, using the orthogonality of characters we obtain

4

wW+2z
> | 2 =) =p
XEX0 |z=W+1

where J is number of solutions to the congruence
2129 = 2324 (mod p), 21,29, 23,24 € (W + 1, W + Z]
By [4, Theorem 1], for any A # 0 (mod p) the congruence
2122 =X (mod p), 21,20 €W+ 1, W+ 7]

has Z°M) solutions, provided that Z < p'/%. Therefore J < Z%t°() and the
result follows. O

3 Small Points on Some Hypersurfaces
For the number of points in very small boxes we can get a better bound

by using the following estimate of Bombieri and Pila [3] on the number of
integral points on polynomial curves.



Lemma 2. Let C be an absolutely irreducible curve of degree d > 2 and
H > exp(d®). Then the number of integral points on C and inside of a square
[0, H] x [0, H] does not exceed H'/® exp(12+/dlog H loglog H).

For an integer a we used ||al|, to denote the smallest by absolute value
residue of a modulo p, that is

Jall, = iz |o — kpl.
By the Dirichlet pigeon-hole principle we easily obtain the following result.
Lemma 3. For any real numbers Ty, ..., T, with
p>Ty,...,Ts > 1 and Ty---T,>p*!

and any integers ay,...,as there exists an integer t with ged(t,p) = 1 and
such that
l|lat|, < T, i=1,...,s.

4 Bound on N,)(R,S; M)

It is easy to see that for A € Fy the given curve is absolutely irreducible. So
general bounds on the number of points on a curve in a given box (see, for
example, [11]) immediately imply that

NA(R,S; M) = MTQ +0 (p'*(logp)?) . (6)

We are now ready to derive an upper bound on N, (R, S; M) for smaller
values of M.

Lemma 4. For any integers p'/* > M >1, R >0, S >0 with R+ M,S +
M <p and X € F, we have

NA(R, S; M) < MV3+)

as M — oo.



Proof. We have to estimate the number of solutions of the congruence
(R+2)*=XS+y)?* (mod p)
with 1 <,y < M which is equivalent to the congruence
23+ 3R2* + 3R*x — My —2ASy = A\S* — R* (mod p). (7)
By Lemma 3, for any T < p'/4/M*'/? there exits [t| < T*M? such that
I8Rtll, < p/(TM), |7l < p/(TM), [3B, <p/T. [2ASt], < p/T.

We now multiply both sides of the congruence (7) by ¢, replace the congruence
with the following equation over Z:

A+ Agx® + Asx + Agy® + Asy + Ag = pz, (8)
where
|Ay| S T*M?,  |As],|Ad| < p/(TM), |As],|As| < p/T, |46 < p/2.

Since for 0 < z,y < M the left hand side of the equation (8) is bounded
by T*M?5 + 4pM /T + p/2, we see that

T'M5  AM
+—+1.

|z| < v

We choose T' ~ p'/®> /M*/> which leads to the bound |z| < M*/°p~1/5 + 1.

We note that the polynomial A; X3 + A X? + A3 X + AY? + AsY + Ag
on left hand side of (8) is absolutely irreducible. Indeed, it is obtained
from X3 — A\Y? (which, as it is easy to see, is absolutely irreducible) by a
nontrivial modulo p affine transformation. Therefore, for every integers z,
the polynomial A; X3+ A X2+ A3 X + A, Y2+ AsY + Ag—pz is also absolutely
irreducible (as its reduction modulo p is is absolutely irreducible modulo p).

Now, for each z, we have an absolutely irreducible curve of degree 3
corresponding to the equation (8) and we apply Lemma 2 to derive that the
number of points in [0, M]? is < M/3+oL).

Thus, the number of solutions in the original equation is bounded by
(MOPp=1/5 4 1) M/3+eM) Recalling that M < p'/?, thus M*Pp~1/5+1 <« 1
we conclude the proof. a



The example of the curves E,, with (r,5) = (m?,m?), 1 <m < M3
shows that the exponent 1/3 in the bound of Lemma 4 cannot be improved.

Clearly the argument used in the proof of Lemma 4 works for large values
of M. In particular, for M > p'/? it leads to the bound Ny(R,S; M) <
M32/15+0()p=1/5 wwhich is nontrivial for M < p3/17.

However, using a modification of this argument we can obtain a stronger
bound which is nontrivial for p!/? < M < p'/5:

Lemma 5. For any integers p/> > M > p'/?, R >0, S > 0 with R+ M, S+
M < p and A\ € F, we have

N)\(R, S, M) < M11/6+0(1)p71/6

as M — oo.

Proof. Let K = [p1/6/M1/2J and observe that 1 < K < M when p'/? < M.
Next, we cover the square [R+ 1, R+ M| x [S+1,S+ M| by J =O(M/K)
rectangles of the form [R; +1,R; + K| x [S+1,S+ M], j=1,...,J. Then,
the equation in each rectangle can be written as

2® 4+ 3Rz + 3Rz — Ay® — 2ASy = A\S* — R} (mod p). 9)

withl <z < Kand1<y< M.
To estimate the number of solutions of (9), we set

Tl = p1/2M3/27 T2 = p2/3Ma T3 = p5/6M1/27 T4 = p/MQa T5 - p/M

and apply again Lemma 3. Hence, as in the proof of Lemma 4, we obtain an
equivalent equation over Z:

Az’ + Aa® + Asz + Agy® + Asy + Ag = pz, (10)

with |A4;] <T; for i = 1,...,5 and |Ag| < p/2. The left hand side of (10) is
bounded by

|ALK? + AyK? + AsK + Ay M? + AsM + Ag

1/6 \ ° 1/6 \ 2 1/6
1/2103/2 (P 2/3 p 5/6 3 51/2 P
<p""M (M1/z) +p M<M1/2> +p "M M2
p 2 p

= 5.9p.



Thus, z can take at most 11 values. As we have seen in the proof of Lemma 4,
the polynomial on the left hand side of (10) is absolutely irreducible. There-
fore, Lemma 2 implies that for each value of z, the equation (10) has at most
M1/3+e(1) solutions. Summing up all the solutions we have finally that the
original congruence has

(M/N)M1/3+O(1) — M11/6+0(1)p—1/6
solutions. O

Combining the bounds (6) with Lemmas 4 and 5, we obtain:

Theorem 6. For any integers M > 1, R >0, .S > 0 with R+M,S+ M < p,
we have,

M3, if M < p'/?,
N11/6,,-1/6 if pM° < M < p'/®
. o(1) p 3 b = b )
NA(R, S, M) <M pl/g7 ifpl/z <M <p3/47
M?p~, if pP* < M < p,

as M — oo

We note that unfortunately in the range p'/> < M < p'/? we do not have
any nontrivial estimates.

5 Bound on T(R,S; M)

In fact we consider a more general quantity. Given positive integers i, j let
T; ;(R,S; M) denote the number of solutions of the equation

r'v/ = u's’  (mod p) (11)

with
(rys), (u,v) € [R+1,R+ M] x [S+ 1,5+ M].
ThllS7 T(R,S, M) = Tg}g(R, S; M)

Theorem 7. For any integers M > 1, R >0, .S > 0 with R+ M, S+ M < p,
we have,

M4
T,;(R, S; M) < — + M0
p

as M — oo.



Proof. Using the orthogonality of characters, we write the the number of
solutions to (11) with

(r,s), (u,v) € [R+1,R+M] x [S+1,5+ M].

as

R+M R+M

T, ;(R,S; M) = Z Z —ZX ((r/uw)(v/s)’)

rau=R+1 s,v= S+1 XEX
R+M 2| s+M 2
S0 0D SRUCHD TR
XEX |[r=R+1 s=S+1
Thus by the Cauchy inequality
R+M S+M 4
nrsiant < o3 |5 v+ 3| 35w o
p XEX |r=R+1 XEX |s=S+1

We estimate the contribution to the first sums from at most ¢ characters
x with x* = xq trivially as iM* getting

R+M R+M R+M
X'(r)| <iM*+ r)] <iM*+i
> |2 X0 D2 «x D DR
XEX |r=R+1 X;X r=R+1 XEX* |r=R+1
X"#X0

Substituting the above bounds in the inequality (12) (similarly for j) and
then using Lemma 1 we conclude the proof. ad

Corollary 8. For any integers M > 1, R >0, S > 0 with R+ M,S+M < p,
we have,
I(R,S; M) > min {p, MQ*"(D}

as M — oo

Proof. Let
D= {r’/s’: re[R+1,R+M], s [S+1,5+ M|}
and let

fO) ={(r,s) E[R+1,R+M] x [S+1,S+M]: /s> =N}

9



Using the Cauchy inequality we derive

M* = (Z f<A>> <|r| 2}%) < I(R, S; M)Tys(R, S; M).

Ael
Using Theorem 7 we conclude the proof. ]

Clearly the bound of Corollary 8 is quite tight as we have the trivial upper
bound
I(R,S; M) < min {p, M} .

6 Comments and Open Problems

Note that Theorem 7 can be easily extended to coefficients (r, s) that belong
to rectangles [R+1, R+ K| x [S+1, S+ L] rather than squares (the bound (6)
also holds for such rectangles).

As we have mentioned the exponent 1/3 in the bound of Lemma 4 cannot
be improved, however the range M < p'/? can possibly be extended. As the
first step towards this, the following question has to be answered:

Problem 1. Let E be an elliptic curve over Z such that all the coefficients
are MOW . Is it true that the number of integer points (z,y) € [0, M] x [0, M]
on E is M°M ¢

We refer to [7, 10] for some bounds on the number of points on elliptic
curves in boxes.

As we have noticed in Section 4 we do not have any nontrivial bounds on
Ny(R, S; M) for p'/> < M < p'/2. Tt is certainly interesting to close this gap.

Problem 2. Is it true that Nyx(R,S; M) = o(M) for all M = o(p)?

Finally, it is also natural to expect that the term M°") can be removed
from the bound of Corollary 8.

Problem 3. Is it true that [(R,S; M) > min {p, M?}?

10
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