Isomorphism Classes of Elliptic Curves Over a Finite Field in Some Thin Families

Javier Cilleruelo
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and
Departamento de Matemáticas, Universidad Autónoma de Madrid Madrid, 28049, España
franciscojavier.cilleruelo@uam.es
Igor E. Shparlinski
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
igor.shparlinski@mq.edu.au
Ana Zumalacárregui
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)
and
Departamento de Matemáticas, Universidad Autónoma de Madrid
Madrid, 28049, España
ana.zumalacarregui@uam.es

Abstract

We give a non trivial upper bound for the number of elliptic curves $E_{r, s}: Y^{2}=X^{3}+r X+s$ with $(r, s) \in[R+1, R+M] \times[S+1, S+M]$ that are isomorphic to a given curve. We also give an almost optimal lower bound for the number of distinct isomorphic classes represented by elliptic curves $E_{r, s}$ with the coefficients r, s lying in a small box.

1 Background

For a prime p we consider the family of elliptic curves $E_{a, b}$ given by a Weierstrass equation

$$
E_{a, b}: \quad Y^{2}=X^{3}+a X+b
$$

over the finite field \mathbb{F}_{p} of p elements, where

$$
\begin{equation*}
(a, b) \in \mathbb{F}_{p}^{2}, \quad 4 a^{3}+27 b^{2} \neq 0 \tag{1}
\end{equation*}
$$

Two curves $E_{r, s}$ and $E_{u, v}$ are isomorphic if for some $t \in \mathbb{F}_{p}^{*}$ we have

$$
\begin{equation*}
r t^{4} \equiv u \quad(\bmod p) \quad \text { and } \quad s t^{6} \equiv v \quad(\bmod p) \tag{2}
\end{equation*}
$$

There are several works which count the number of curves $E_{r, s}$ isomorphic to a given curve $E_{a, b}$ with coefficients in r, s is a given box $(r, s) \in[R+1, R+$ $K] \times[S+1, S+L]$, see [2, 8]. In particular, for

$$
\begin{equation*}
K L \geq p^{3 / 2+\varepsilon} \quad \text { and } \quad \min \{K, L\} \geq p^{1 / 2+\varepsilon} \tag{3}
\end{equation*}
$$

with some fixed $\varepsilon>0$, using the exponential sum technique, Fouvry and Murty [8] have obtained an asymptotic formula for every pair (a, b) with (1). In [2], using bounds of multiplicative character sum, for almost all (a, b) with (1), this condition (3) has been relaxed as

$$
K L \geq p^{1+\varepsilon} \quad \text { and } \quad \min \{K, L\} \geq p^{1 / 4+\varepsilon} .
$$

Furthermore, it is shown in [2], that for

$$
K L \geq p^{1+\varepsilon} \quad \text { and } \quad \min \{K, L\} \geq p^{1 / 4 e^{1 / 2}+\varepsilon}
$$

one can get a lower bound on the right order of magnitude (again for almost all (a, b) with (1)). On average over p, such results are established for even smaller boxes, see [2].

Here we consider much smaller boxes and obtain a lower bound on the number $I(R, S ; M)$ of nonisomorphic curves $E_{r, s}$ with coefficients in r, s is a given box $(r, s) \in[R+1, R+M] \times[S+1, S+M]$.

Clearly, the congruences (2) imply that

$$
\begin{equation*}
r^{3} v^{2} \equiv u^{3} s^{2} \quad(\bmod p) \tag{4}
\end{equation*}
$$

So, given integers R, S and $M \geq 1$, we denote by $T(R, S ; M)$ the number of solutions to (4) with

$$
(r, s),(u, v) \in[R+1, R+M] \times[S+1, S+M] .
$$

Furthermore, for $\lambda \in \mathbb{F}_{p}$, we denote by $N_{\lambda}(R, S ; M)$ the number of solutions to the congruence

$$
r^{3} \equiv \lambda s^{2} \quad(\bmod p), \quad(r, s) \in[R+1, R+M] \times[S+1, S+M] .
$$

We use the method of [5], that in turn is based on the ideas of [4] (see also [12]), to obtain an upper bound on $N_{\lambda}(R, S ; M)$, which, in particular, implies an upper bound for the number of elliptic curves $E_{r, s}$ with coefficients $(r, s) \in[R+1, R+M] \times[S+1, S+M]$ that fall in the same isomorphism class.

We use the bounds of character sums to obtain an upper bound on $T(R, S ; M)$ from which we derive an almost optimal lower bound $I(R, S ; M)$.

Throughout the paper, any implied constants in the symbols O, \lll and \gg are absolute otherwise. We recall that the notations $U=O(V), U \ll V$ and $V \gg U$ are all equivalent to the statement that the inequality $|U| \leq c V$ holds with some constant $c>0$.

2 Character Sums

Let \mathcal{X} be the set of all multiplicative characters modulo p and let $\mathcal{X}^{*}=\mathcal{X} \backslash$ $\left\{\chi_{0}\right\}$ be the set of nonprincipal characters. Garaev and García [9], improving a result of Ayyad, Cochrane and Zheng [1] (see also [6]), have shown that for any integers W and Z

$$
\begin{equation*}
\sum_{\chi \in \mathcal{X}_{0}}\left|\sum_{z=W+1}^{W+Z} \chi(z)\right|^{4} \ll p Z^{2}\left(\log p+\left(\log \left(Z^{2} / p\right)\right)^{2}\right) \tag{5}
\end{equation*}
$$

Note that for any fixed $\varepsilon>0$, if $Z \geq p^{\varepsilon}$ the right hand side of (5) is of the form $p Z^{2+o(1)}$. However for small values of Z, namely for $Z \ll(\log p)^{1 / 2}$, the bound (5) is trivial. We now combine (5) with a result of [4] to get the bound $p Z^{2+o(1)}$ for any Z.

Lemma 1. For arbitrary integers W and Z, with $0 \leq W<W+Z<p$, the bound

$$
\sum_{\chi \in \mathcal{X}_{0}}\left|\sum_{z=W+1}^{W+Z} \chi(z)\right|^{4} \ll p Z^{2+o(1)}
$$

holds.
Proof. We can assume that $Z \leq p^{1 / 4}$ since otherwise, as we have noticed, the bound (5) implies the desired result. Now, using that for z with $\operatorname{gcd}(z, p)=1$, for the complex conjugated character $\bar{\chi}$ we have

$$
\bar{\chi}(z)=\chi\left(z^{-1}\right),
$$

we derive,

$$
\sum_{\chi \in \mathcal{X}_{0}}\left|\sum_{z=W+1}^{W+Z} \chi(z)\right|^{4} \leq \sum_{\chi \in \mathcal{X}}\left|\sum_{z=W+1}^{W+Z} \chi(z)\right|^{4}=\sum_{z_{1}, z_{2}, z_{3}, z_{4}=W+1}^{W+Z} \sum_{\chi \in \mathcal{X}} \chi\left(z_{1} z_{2} z_{3}^{-1} z_{4}^{-1}\right)
$$

Thus, using the orthogonality of characters we obtain

$$
\sum_{\chi \in \mathcal{X}_{0}}\left|\sum_{z=W+1}^{W+Z} \chi(z)\right|^{4} \leq p J
$$

where J is number of solutions to the congruence

$$
z_{1} z_{2} \equiv z_{3} z_{4} \quad(\bmod p), \quad z_{1}, z_{2}, z_{3}, z_{4} \in[W+1, W+Z]
$$

By $[4$, Theorem 1$]$, for any $\lambda \not \equiv 0(\bmod p)$ the congruence

$$
z_{1} z_{2} \equiv \lambda \quad(\bmod p), \quad z_{1}, z_{2} \in[W+1, W+Z]
$$

has $Z^{o(1)}$ solutions, provided that $Z \leq p^{1 / 4}$. Therefore $J \leq Z^{2+o(1)}$ and the result follows.

3 Small Points on Some Hypersurfaces

For the number of points in very small boxes we can get a better bound by using the following estimate of Bombieri and Pila [3] on the number of integral points on polynomial curves.

Lemma 2. Let \mathcal{C} be an absolutely irreducible curve of degree $d \geq 2$ and $H \geq \exp \left(d^{6}\right)$. Then the number of integral points on \mathcal{C} and inside of a square $[0, H] \times[0, H]$ does not exceed $H^{1 / d} \exp (12 \sqrt{d \log H \log \log H})$.

For an integer a we used $\|a\|_{p}$ to denote the smallest by absolute value residue of a modulo p, that is

$$
\|a\|_{p}=\min _{k \in \mathbb{Z}}|a-k p|
$$

By the Dirichlet pigeon-hole principle we easily obtain the following result.
Lemma 3. For any real numbers T_{1}, \ldots, T_{s} with

$$
p>T_{1}, \ldots, T_{s} \geq 1 \quad \text { and } \quad T_{1} \cdots T_{s}>p^{s-1}
$$

and any integers $a_{1}, \ldots, a_{\text {s }}$ there exists an integer t with $\operatorname{gcd}(t, p)=1$ and such that

$$
\left\|a_{i} t\right\|_{p} \ll T_{i}, \quad i=1, \ldots, s
$$

4 Bound on $N_{\lambda}(R, S ; M)$

It is easy to see that for $\lambda \in \mathbb{F}_{p}^{*}$ the given curve is absolutely irreducible. So general bounds on the number of points on a curve in a given box (see, for example, [11]) immediately imply that

$$
\begin{equation*}
N_{\lambda}(R, S ; M)=\frac{M^{2}}{p}+O\left(p^{1 / 2}(\log p)^{2}\right) \tag{6}
\end{equation*}
$$

We are now ready to derive an upper bound on $N_{\lambda}(R, S ; M)$ for smaller values of M.

Lemma 4. For any integers $p^{1 / 9} \geq M \geq 1, R \geq 0, S \geq 0$ with $R+M, S+$ $M<p$ and $\lambda \in \mathbb{F}_{p}^{*}$ we have

$$
N_{\lambda}(R, S ; M) \leq M^{1 / 3+o(1)}
$$

as $M \rightarrow \infty$.

Proof. We have to estimate the number of solutions of the congruence

$$
(R+x)^{3} \equiv \lambda(S+y)^{2} \quad(\bmod p)
$$

with $1 \leq x, y \leq M$ which is equivalent to the congruence

$$
\begin{equation*}
x^{3}+3 R x^{2}+3 R^{2} x-\lambda y^{2}-2 \lambda S y \equiv \lambda S^{2}-R^{3} \quad(\bmod p) . \tag{7}
\end{equation*}
$$

By Lemma 3, for any $T \leq p^{1 / 4} / M^{1 / 2}$ there exits $|t| \leq T^{4} M^{2}$ such that
$\|3 R t\|_{p} \leq p /(T M), \quad\|\lambda t\|_{p} \leq p /(T M), \quad\left\|3 R^{2} t\right\|_{p} \leq p / T, \quad\|2 \lambda S t\|_{p} \leq p / T$.
We now multiply both sides of the congruence (7) by t, replace the congruence with the following equation over \mathbb{Z} :

$$
\begin{equation*}
A_{1} x^{3}+A_{2} x^{2}+A_{3} x+A_{4} y^{2}+A_{5} y+A_{6}=p z \tag{8}
\end{equation*}
$$

where

$$
\left|A_{1}\right| \leq T^{4} M^{2}, \quad\left|A_{2}\right|,\left|A_{4}\right| \leq p /(T M), \quad\left|A_{3}\right|,\left|A_{5}\right| \leq p / T, \quad\left|A_{6}\right| \leq p / 2
$$

Since for $0 \leq x, y \leq M$ the left hand side of the equation (8) is bounded by $T^{4} M^{5}+4 p M / T+p / 2$, we see that

$$
|z| \ll \frac{T^{4} M^{5}}{p}+\frac{4 M}{T}+1
$$

We choose $T \sim p^{1 / 5} / M^{4 / 5}$ which leads to the bound $|z| \ll M^{9 / 5} p^{-1 / 5}+1$.
We note that the polynomial $A_{1} X^{3}+A_{2} X^{2}+A_{3} X+A_{4} Y^{2}+A_{5} Y+A_{6}$ on left hand side of (8) is absolutely irreducible. Indeed, it is obtained from $X^{3}-\lambda Y^{2}$ (which, as it is easy to see, is absolutely irreducible) by a nontrivial modulo p affine transformation. Therefore, for every integers z, the polynomial $A_{1} X^{3}+A_{2} X^{2}+A_{3} X+A_{4} Y^{2}+A_{5} Y+A_{6}-p z$ is also absolutely irreducible (as its reduction modulo p is is absolutely irreducible modulo p).

Now, for each z, we have an absolutely irreducible curve of degree 3 corresponding to the equation (8) and we apply Lemma 2 to derive that the number of points in $[0, M]^{2}$ is $\ll M^{1 / 3+o(1)}$.

Thus, the number of solutions in the original equation is bounded by $\left(M^{9 / 5} p^{-1 / 5}+1\right) M^{1 / 3+o(1)}$. Recalling that $M \leq p^{1 / 9}$, thus $M^{9 / 5} p^{-1 / 5}+1 \ll 1$ we conclude the proof.

The example of the curves $E_{r, s}$ with $(r, s)=\left(m^{2}, m^{3}\right), 1 \leq m \leq M^{1 / 3}$, shows that the exponent $1 / 3$ in the bound of Lemma 4 cannot be improved.

Clearly the argument used in the proof of Lemma 4 works for large values of M. In particular, for $M>p^{1 / 9}$ it leads to the bound $N_{\lambda}(R, S ; M) \ll$ $M^{32 / 15+o(1)} p^{-1 / 5}$ which is nontrivial for $M \leq p^{3 / 17}$.

However, using a modification of this argument we can obtain a stronger bound which is nontrivial for $p^{1 / 9}<M \leq p^{1 / 5}$:

Lemma 5. For any integers $p^{1 / 5} \geq M \geq p^{1 / 9}, R \geq 0, S \geq 0$ with $R+M, S+$ $M<p$ and $\lambda \in \mathbb{F}_{p}^{*}$ we have

$$
N_{\lambda}(R, S ; M) \leq M^{11 / 6+o(1)} p^{-1 / 6}
$$

as $M \rightarrow \infty$.
Proof. Let $K=\left\lfloor p^{1 / 6} / M^{1 / 2}\right\rfloor$ and observe that $1 \leq K \leq M$ when $p^{1 / 9}<M$. Next, we cover the square $[R+1, R+M] \times[S+1, S+M]$ by $J=O(M / K)$ rectangles of the form $\left[R_{j}+1, R_{j}+K\right] \times[S+1, S+M], j=1, \ldots, J$. Then, the equation in each rectangle can be written as

$$
\begin{equation*}
x^{3}+3 R_{j} x^{2}+3 R_{j}^{2} x-\lambda y^{2}-2 \lambda S y \equiv \lambda S^{2}-R_{j}^{3} \quad(\bmod p) . \tag{9}
\end{equation*}
$$

with $1 \leq x \leq K$ and $1 \leq y \leq M$.
To estimate the number of solutions of (9), we set

$$
T_{1}=p^{1 / 2} M^{3 / 2}, \quad T_{2}=p^{2 / 3} M, \quad T_{3}=p^{5 / 6} M^{1 / 2}, \quad T_{4}=p / M^{2}, \quad T_{5}=p / M
$$

and apply again Lemma 3. Hence, as in the proof of Lemma 4, we obtain an equivalent equation over \mathbb{Z} :

$$
\begin{equation*}
A_{1} x^{3}+A_{2} x^{2}+A_{3} x+A_{4} y^{2}+A_{5} y+A_{6}=p z \tag{10}
\end{equation*}
$$

with $\left|A_{i}\right| \leq T_{i}$ for $i=1, \ldots, 5$ and $\left|A_{6}\right| \leq p / 2$. The left hand side of (10) is bounded by

$$
\begin{aligned}
& \left|A_{1} K^{3}+A_{2} K^{2}+A_{3} K+A_{4} M^{2}+A_{5} M+A_{6}\right| \\
& \leq p^{1 / 2} M^{3 / 2}\left(\frac{p^{1 / 6}}{M^{1 / 2}}\right)^{3}+p^{2 / 3} M\left(\frac{p^{1 / 6}}{M^{1 / 2}}\right)^{2}+p^{5 / 6} M^{1 / 2} \frac{p^{1 / 6}}{M^{1 / 2}} \\
& \\
& \quad+\frac{p}{M^{2}} M^{2}+\frac{p}{M^{2}} M+p / 2
\end{aligned}
$$

$$
=5.5 p
$$

Thus, z can take at most 11 values. As we have seen in the proof of Lemma 4, the polynomial on the left hand side of (10) is absolutely irreducible. Therefore, Lemma 2 implies that for each value of z, the equation (10) has at most $M^{1 / 3+o(1)}$ solutions. Summing up all the solutions we have finally that the original congruence has

$$
(M / N) M^{1 / 3+o(1)}=M^{11 / 6+o(1)} p^{-1 / 6}
$$

solutions.
Combining the bounds (6) with Lemmas 4 and 5, we obtain:
Theorem 6. For any integers $M \geq 1, R \geq 0, S \geq 0$ with $R+M, S+M<p$, we have,

$$
N_{\lambda}(R, S ; M) \ll M^{o(1)} \begin{cases}M^{1 / 3}, & \text { if } M<p^{1 / 9} \\ M^{11 / 6} p^{-1 / 6}, & \text { if } p^{1 / 9} \leq M<p^{1 / 5} \\ p^{1 / 2}, & \text { if } p^{1 / 2} \leq M<p^{3 / 4} \\ M^{2} p^{-1}, & \text { if } p^{3 / 4} \leq M<p\end{cases}
$$

as $M \rightarrow \infty$
We note that unfortunately in the range $p^{1 / 5} \leq M<p^{1 / 2}$ we do not have any nontrivial estimates.

5 Bound on $T(R, S ; M)$

In fact we consider a more general quantity. Given positive integers i, j let $T_{i, j}(R, S ; M)$ denote the number of solutions of the equation

$$
\begin{equation*}
r^{i} v^{j} \equiv u^{i} s^{j} \quad(\bmod p) \tag{11}
\end{equation*}
$$

with

$$
(r, s),(u, v) \in[R+1, R+M] \times[S+1, S+M]
$$

Thus, $T(R, S ; M)=T_{3,2}(R, S ; M)$.
Theorem 7. For any integers $M \geq 1, R \geq 0, S \geq 0$ with $R+M, S+M<p$, we have,

$$
T_{i, j}(R, S ; M) \ll \frac{M^{4}}{p}+M^{2+o(1)}
$$

as $M \rightarrow \infty$.

Proof. Using the orthogonality of characters, we write the the number of solutions to (11) with

$$
(r, s),(u, v) \in[R+1, R+M] \times[S+1, S+M] .
$$

as

$$
\begin{aligned}
T_{i, j}(R, S ; M) & =\sum_{r, u=R+1}^{R+M} \sum_{s, v=S+1}^{R+M} \frac{1}{p-1} \sum_{\chi \in \mathcal{X}} \chi\left((r / u)^{i}(v / s)^{j}\right) \\
& =\frac{1}{p-1} \sum_{\chi \in \mathcal{X}}\left|\sum_{r=R+1}^{R+M} \chi^{i}(r)\right|^{2}\left|\sum_{s=S+1}^{S+M} \chi^{j}(s)\right|^{2}
\end{aligned}
$$

Thus by the Cauchy inequality

$$
\begin{equation*}
T_{i, j}(R, S ; M)^{2} \leq \frac{1}{(p-1)^{2}} \sum_{\chi \in \mathcal{X}}\left|\sum_{r=R+1}^{R+M} \chi^{i}(r)\right|^{4} \times \sum_{\chi \in \mathcal{X}}\left|\sum_{s=S+1}^{S+M} \chi^{j}(s)\right|^{4} \tag{12}
\end{equation*}
$$

We estimate the contribution to the first sums from at most i characters χ with $\chi^{i}=\chi_{0}$ trivially as $i M^{4}$ getting

$$
\sum_{\chi \in \mathcal{X}}\left|\sum_{r=R+1}^{R+M} \chi^{i}(r)\right|^{4} \leq i M^{4}+\sum_{\substack{\chi \in \mathcal{X} \\ \chi^{i} \neq \chi_{0}}}\left|\sum_{r=R+1}^{R+M} \chi^{i}(r)\right|^{4} \leq i M^{4}+i \sum_{\chi \in \mathcal{X}^{*}}\left|\sum_{r=R+1}^{R+M} \chi(r)\right|^{4}
$$

Substituting the above bounds in the inequality (12) (similarly for j) and then using Lemma 1 we conclude the proof.

Corollary 8. For any integers $M \geq 1, R \geq 0, S \geq 0$ with $R+M, S+M<p$, we have,

$$
I(R, S ; M) \gg \min \left\{p, M^{2-o(1)}\right\}
$$

as $M \rightarrow \infty$
Proof. Let

$$
\Gamma=\left\{r^{3} / s^{2}: r \in[R+1, R+M], s \in[S+1, S+M]\right\}
$$

and let

$$
f(\lambda)=\left|\left\{(r, s) \in[R+1, R+M] \times[S+1, S+M]: r^{3} / s^{2}=\lambda\right\}\right|
$$

Using the Cauchy inequality we derive

$$
M^{4}=\left(\sum_{\lambda \in \Gamma} f(\lambda)\right)^{2} \leq|\Gamma| \sum_{\lambda} f^{2}(\lambda) \leq I(R, S ; M) T_{3,2}(R, S ; M) .
$$

Using Theorem 7 we conclude the proof.
Clearly the bound of Corollary 8 is quite tight as we have the trivial upper bound

$$
I(R, S ; M) \leq \min \left\{p, M^{2}\right\}
$$

6 Comments and Open Problems

Note that Theorem 7 can be easily extended to coefficients (r, s) that belong to rectangles $[R+1, R+K] \times[S+1, S+L]$ rather than squares (the bound (6) also holds for such rectangles).

As we have mentioned the exponent $1 / 3$ in the bound of Lemma 4 cannot be improved, however the range $M \leq p^{1 / 9}$ can possibly be extended. As the first step towards this, the following question has to be answered:

Problem 1. Let E be an elliptic curve over \mathbb{Z} such that all the coefficients are $M^{O(1)}$. Is it true that the number of integer points $(x, y) \in[0, M] \times[0, M]$ on E is $M^{o(1)}$?

We refer to $[7,10]$ for some bounds on the number of points on elliptic curves in boxes.

As we have noticed in Section 4 we do not have any nontrivial bounds on $N_{\lambda}(R, S ; M)$ for $p^{1 / 5} \leq M<p^{1 / 2}$. It is certainly interesting to close this gap.

Problem 2. Is it true that $N_{\lambda}(R, S ; M)=o(M)$ for all $M=o(p)$?
Finally, it is also natural to expect that the term $M^{o(1)}$ can be removed from the bound of Corollary 8 .

Problem 3. Is it true that $I(R, S ; M) \gg \min \left\{p, M^{2}\right\}$?

Acknowledgement

The authors are grateful to Moubariz Garaev and Joe Silverman for their comments.

This work started during a very pleasant visit by I. S. to the Universidad Autónoma de Madrid; the support and hospitality of this institution are gratefully acknowledged.

During the preparation of this paper, J.C was supported by Grant MTM 2008-03880 of MICINN (Spain), I. S. was supported in part by ARC grant DP1092835 (Australia) and and by NRF Grant CRP2-2007-03 (Singapore), and A. Z. was supported by Departamento de Matemáticas, UAM (Spain).

References

[1] A. Ayyad, T. Cochrane and Z. Zheng, 'The congruence $x_{1} x_{2} \equiv x_{3} x_{4}$ $(\bmod p)$, the equation $x_{1} x_{2}=x_{3} x_{4}$ and the mean value of character sums', J. Number Theory, 59 (1996), 398-413.
[2] W. D. Banks and I. E. Shparlinski, 'Sato-Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height', Israel J. Math., 173 (2009), 253-277.
[3] E. Bombieri and J. Pila, 'The number of integral points on arcs and ovals', Duke Math. J., 59 (1989), 337-357.
[4] J. Cilleruelo and M. Z. Garaev, 'Concentration of points on two and three dimensional modular hyperbolas and applications', Geom. and Func. Anal. (to appear).
[5] J. Cilleruelo, M. Z. Garaev, A. Ostafe and I. E. Shparlinski, 'On the concentration of points of polynomial maps and applications', Preprint, 2011, 1-18.
[6] T. Cochrane and S. Sih, 'The congruence $x_{1} x_{2} \equiv x_{3} x_{4}(\bmod p)$ and mean values of character sums', J. Number Theory, 130 (2010), 767785.
[7] J. S. Ellenberg and A. Venkatesh, 'Reflection principles and bounds for class group torsion', Int. Math. Res. Notices 2007 (2007), Article ID rnm002, 1-18.
[8] É. Fouvry and M. R. Murty, 'On the distribution of supersingular primes', Canad. J. Math., 48 (1996), 81-104.
[9] M. Z. Garaev and V. Garcia, 'The equation $x_{1} x_{2}=x_{3} x_{4}+\lambda$ in fields of prime order and applications', J. Number Theory, 128 (2008), 25202537.
[10] H. A. Helfgott and A. Venkatesh, 'Integral points on elliptic curves and 3-torsion in class groups', J. Amer. Math. Soc. 19 (2006), 527-550.
[11] M. Vâjâitu and A. Zaharescu, 'Distribution of values of rational maps on the \mathbb{F}_{p}-points on an affine curve', Monatsh. Math., 136 (2002), 81-86.
[12] A. Zumalacárregui, 'Concentration of points on modular quadratic forms', Inter. J. Number Theory, (to appear).

