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and
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Abstract

We give a non trivial upper bound for the number of elliptic curves
Er,s : Y 2 = X3 + rX + s with (r, s) ∈ [R + 1, R + M ]× [S + 1, S + M ]
that are isomorphic to a given curve. We also give an almost optimal
lower bound for the number of distinct isomorphic classes represented
by elliptic curves Er,s with the coefficients r, s lying in a small box.
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1 Background

For a prime p we consider the family of elliptic curves Ea,b given by a Weier-
strass equation

Ea,b : Y 2 = X3 + aX + b

over the finite field Fp of p elements, where

(a, b) ∈ F2
p, 4a3 + 27b2 6= 0. (1)

Two curves Er,s and Eu,v are isomorphic if for some t ∈ F∗p we have

rt4 ≡ u (mod p) and st6 ≡ v (mod p). (2)

There are several works which count the number of curves Er,s isomorphic
to a given curve Ea,b with coefficients in r, s is a given box (r, s) ∈ [R+1, R+
K]× [S + 1, S + L], see [2, 8]. In particular, for

KL ≥ p3/2+ε and min{K,L} ≥ p1/2+ε (3)

with some fixed ε > 0, using the exponential sum technique, Fouvry and
Murty [8] have obtained an asymptotic formula for every pair (a, b) with (1).
In [2], using bounds of multiplicative character sum, for almost all (a, b)
with (1), this condition (3) has been relaxed as

KL ≥ p1+ε and min{K,L} ≥ p1/4+ε.

Furthermore, it is shown in [2], that for

KL ≥ p1+ε and min{K, L} ≥ p1/4e1/2+ε

one can get a lower bound on the right order of magnitude (again for almost
all (a, b) with (1)). On average over p, such results are established for even
smaller boxes, see [2].

Here we consider much smaller boxes and obtain a lower bound on the
number I(R,S; M) of nonisomorphic curves Er,s with coefficients in r, s is a
given box (r, s) ∈ [R + 1, R + M ]× [S + 1, S + M ].

Clearly, the congruences (2) imply that

r3v2 ≡ u3s2 (mod p) (4)
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So, given integers R, S and M ≥ 1, we denote by T (R, S; M) the number
of solutions to (4) with

(r, s), (u, v) ∈ [R + 1, R + M ]× [S + 1, S + M ].

Furthermore, for λ ∈ Fp, we denote by Nλ(R, S; M) the number of solutions
to the congruence

r3 ≡ λs2 (mod p), (r, s) ∈ [R + 1, R + M ]× [S + 1, S + M ].

We use the method of [5], that in turn is based on the ideas of [4] (see
also [12]), to obtain an upper bound on Nλ(R,S; M), which, in particular,
implies an upper bound for the number of elliptic curves Er,s with coefficients
(r, s) ∈ [R + 1, R + M ] × [S + 1, S + M ] that fall in the same isomorphism
class.

We use the bounds of character sums to obtain an upper bound on
T (R,S; M) from which we derive an almost optimal lower bound I(R, S; M).

Throughout the paper, any implied constants in the symbols O, ¿ and
À are absolute otherwise. We recall that the notations U = O(V ), U ¿ V
and V À U are all equivalent to the statement that the inequality |U | ≤ cV
holds with some constant c > 0.

2 Character Sums

Let X be the set of all multiplicative characters modulo p and let X ∗ = X \
{χ0} be the set of nonprincipal characters. Garaev and Garćıa [9], improving
a result of Ayyad, Cochrane and Zheng [1] (see also [6]), have shown that for
any integers W and Z

∑
χ∈X0

∣∣∣∣∣
W+Z∑

z=W+1

χ(z)

∣∣∣∣∣

4

¿ pZ2
(
log p +

(
log(Z2/p)

)2
)

. (5)

Note that for any fixed ε > 0, if Z ≥ pε the right hand side of (5) is of the
form pZ2+o(1). However for small values of Z, namely for Z ¿ (log p)1/2,
the bound (5) is trivial. We now combine (5) with a result of [4] to get the
bound pZ2+o(1) for any Z.
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Lemma 1. For arbitrary integers W and Z, with 0 ≤ W < W + Z < p, the
bound

∑
χ∈X0

∣∣∣∣∣
W+Z∑

z=W+1

χ(z)

∣∣∣∣∣

4

¿ pZ2+o(1)

holds.

Proof. We can assume that Z ≤ p1/4 since otherwise, as we have noticed, the
bound (5) implies the desired result. Now, using that for z with gcd(z, p) = 1,
for the complex conjugated character χ we have

χ(z) = χ(z−1),

we derive,

∑
χ∈X0

∣∣∣∣∣
W+Z∑

z=W+1

χ(z)

∣∣∣∣∣

4

≤
∑
χ∈X

∣∣∣∣∣
W+Z∑

z=W+1

χ(z)

∣∣∣∣∣

4

=
W+Z∑

z1,z2,z3,z4=W+1

∑
χ∈X

χ(z1z2z
−1
3 z−1

4 )

Thus, using the orthogonality of characters we obtain

∑
χ∈X0

∣∣∣∣∣
W+Z∑

z=W+1

χ(z)

∣∣∣∣∣

4

≤ pJ

where J is number of solutions to the congruence

z1z2 ≡ z3z4 (mod p), z1, z2, z3, z4 ∈ [W + 1,W + Z]

By [4, Theorem 1], for any λ 6≡ 0 (mod p) the congruence

z1z2 ≡ λ (mod p), z1, z2 ∈ [W + 1,W + Z]

has Zo(1) solutions, provided that Z ≤ p1/4. Therefore J ≤ Z2+o(1) and the
result follows. ut

3 Small Points on Some Hypersurfaces

For the number of points in very small boxes we can get a better bound
by using the following estimate of Bombieri and Pila [3] on the number of
integral points on polynomial curves.
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Lemma 2. Let C be an absolutely irreducible curve of degree d ≥ 2 and
H ≥ exp(d6). Then the number of integral points on C and inside of a square
[0, H]× [0, H] does not exceed H1/d exp(12

√
d log H log log H).

For an integer a we used ‖a‖p to denote the smallest by absolute value
residue of a modulo p, that is

‖a‖p = min
k∈Z

|a− kp|.

By the Dirichlet pigeon-hole principle we easily obtain the following result.

Lemma 3. For any real numbers T1, . . . , Ts with

p > T1, . . . , Ts ≥ 1 and T1 · · ·Ts > ps−1

and any integers a1, . . . , as there exists an integer t with gcd(t, p) = 1 and
such that

‖ait‖p ¿ Ti, i = 1, . . . , s.

4 Bound on Nλ(R,S; M)

It is easy to see that for λ ∈ F∗p the given curve is absolutely irreducible. So
general bounds on the number of points on a curve in a given box (see, for
example, [11]) immediately imply that

Nλ(R, S; M) =
M2

p
+ O

(
p1/2(log p)2

)
. (6)

We are now ready to derive an upper bound on Nλ(R, S; M) for smaller
values of M .

Lemma 4. For any integers p1/9 ≥ M ≥ 1, R ≥ 0, S ≥ 0 with R + M, S +
M < p and λ ∈ F∗p we have

Nλ(R,S; M) ≤ M1/3+o(1)

as M →∞.
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Proof. We have to estimate the number of solutions of the congruence

(R + x)3 ≡ λ(S + y)2 (mod p)

with 1 ≤ x, y ≤ M which is equivalent to the congruence

x3 + 3Rx2 + 3R2x− λy2 − 2λSy ≡ λS2 −R3 (mod p). (7)

By Lemma 3, for any T ≤ p1/4/M1/2 there exits |t| ≤ T 4M2 such that

‖3Rt‖p ≤ p/(TM), ‖λt‖p ≤ p/(TM), ‖3R2t‖p ≤ p/T, ‖2λSt‖p ≤ p/T.

We now multiply both sides of the congruence (7) by t, replace the congruence
with the following equation over Z:

A1x
3 + A2x

2 + A3x + A4y
2 + A5y + A6 = pz, (8)

where

|A1| ≤ T 4M2, |A2|, |A4| ≤ p/(TM), |A3|, |A5| ≤ p/T, |A6| ≤ p/2.

Since for 0 ≤ x, y ≤ M the left hand side of the equation (8) is bounded
by T 4M5 + 4pM/T + p/2, we see that

|z| ¿ T 4M5

p
+

4M

T
+ 1.

We choose T ∼ p1/5/M4/5 which leads to the bound |z| ¿ M9/5p−1/5 + 1.
We note that the polynomial A1X

3 + A2X
2 + A3X + A4Y

2 + A5Y + A6

on left hand side of (8) is absolutely irreducible. Indeed, it is obtained
from X3 − λY 2 (which, as it is easy to see, is absolutely irreducible) by a
nontrivial modulo p affine transformation. Therefore, for every integers z,
the polynomial A1X

3+A2X
2+A3X+A4Y

2+A5Y +A6−pz is also absolutely
irreducible (as its reduction modulo p is is absolutely irreducible modulo p).

Now, for each z, we have an absolutely irreducible curve of degree 3
corresponding to the equation (8) and we apply Lemma 2 to derive that the
number of points in [0,M ]2 is ¿ M1/3+o(1).

Thus, the number of solutions in the original equation is bounded by(
M9/5p−1/5 + 1

)
M1/3+o(1). Recalling that M ≤ p1/9, thus M9/5p−1/5 +1 ¿ 1

we conclude the proof. ut
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The example of the curves Er,s with (r, s) = (m2,m3), 1 ≤ m ≤ M1/3,
shows that the exponent 1/3 in the bound of Lemma 4 cannot be improved.

Clearly the argument used in the proof of Lemma 4 works for large values
of M . In particular, for M > p1/9 it leads to the bound Nλ(R, S; M) ¿
M32/15+o(1)p−1/5 which is nontrivial for M ≤ p3/17.

However, using a modification of this argument we can obtain a stronger
bound which is nontrivial for p1/9 < M ≤ p1/5:

Lemma 5. For any integers p1/5 ≥ M ≥ p1/9, R ≥ 0, S ≥ 0 with R+M,S+
M < p and λ ∈ F∗p we have

Nλ(R, S; M) ≤ M11/6+o(1)p−1/6

as M →∞.

Proof. Let K =
⌊
p1/6/M1/2

⌋
and observe that 1 ≤ K ≤ M when p1/9 < M .

Next, we cover the square [R + 1, R + M ]× [S + 1, S + M ] by J = O(M/K)
rectangles of the form [Rj + 1, Rj + K]× [S + 1, S + M ], j = 1, . . . , J . Then,
the equation in each rectangle can be written as

x3 + 3Rjx
2 + 3R2

jx− λy2 − 2λSy ≡ λS2 −R3
j (mod p). (9)

with 1 ≤ x ≤ K and 1 ≤ y ≤ M .
To estimate the number of solutions of (9), we set

T1 = p1/2M3/2, T2 = p2/3M, T3 = p5/6M1/2, T4 = p/M2, T5 = p/M.

and apply again Lemma 3. Hence, as in the proof of Lemma 4, we obtain an
equivalent equation over Z:

A1x
3 + A2x

2 + A3x + A4y
2 + A5y + A6 = pz, (10)

with |Ai| ≤ Ti for i = 1, . . . , 5 and |A6| ≤ p/2. The left hand side of (10) is
bounded by

|A1K
3 + A2K

2 + A3K + A4M
2 + A5M + A6|

≤ p1/2M3/2

(
p1/6

M1/2

)3

+ p2/3M

(
p1/6

M1/2

)2

+ p5/6M1/2 p1/6

M1/2

+
p

M2
M2 +

p

M2
M + p/2

= 5.5p.
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Thus, z can take at most 11 values. As we have seen in the proof of Lemma 4,
the polynomial on the left hand side of (10) is absolutely irreducible. There-
fore, Lemma 2 implies that for each value of z, the equation (10) has at most
M1/3+o(1) solutions. Summing up all the solutions we have finally that the
original congruence has

(M/N)M1/3+o(1) = M11/6+o(1)p−1/6

solutions. ut
Combining the bounds (6) with Lemmas 4 and 5, we obtain:

Theorem 6. For any integers M ≥ 1, R ≥ 0, S ≥ 0 with R+M,S+M < p,
we have,

Nλ(R, S; M) ¿ M o(1)





M1/3, if M < p1/9,
M11/6p−1/6, if p1/9 ≤ M < p1/5,
p1/2, if p1/2 ≤ M < p3/4,
M2p−1, if p3/4 ≤ M < p,

as M →∞
We note that unfortunately in the range p1/5 ≤ M < p1/2 we do not have

any nontrivial estimates.

5 Bound on T (R,S; M)

In fact we consider a more general quantity. Given positive integers i, j let
Ti,j(R,S; M) denote the number of solutions of the equation

rivj ≡ uisj (mod p) (11)

with
(r, s), (u, v) ∈ [R + 1, R + M ]× [S + 1, S + M ].

Thus, T (R, S; M) = T3,2(R,S; M).

Theorem 7. For any integers M ≥ 1, R ≥ 0, S ≥ 0 with R+M,S+M < p,
we have,

Ti,j(R, S; M) ¿ M4

p
+ M2+o(1)

as M →∞.
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Proof. Using the orthogonality of characters, we write the the number of
solutions to (11) with

(r, s), (u, v) ∈ [R + 1, R + M ]× [S + 1, S + M ].

as

Ti,j(R,S; M) =
R+M∑

r,u=R+1

R+M∑
s,v=S+1

1

p− 1

∑
χ∈X

χ
(
(r/u)i(v/s)j

)

=
1

p− 1

∑
χ∈X

∣∣∣∣∣
R+M∑

r=R+1

χi(r)

∣∣∣∣∣

2 ∣∣∣∣∣
S+M∑

s=S+1

χj(s)

∣∣∣∣∣

2

.

Thus by the Cauchy inequality

Ti,j(R, S; M)2 ≤ 1

(p− 1)2

∑
χ∈X

∣∣∣∣∣
R+M∑

r=R+1

χi(r)

∣∣∣∣∣

4

×
∑
χ∈X

∣∣∣∣∣
S+M∑

s=S+1

χj(s)

∣∣∣∣∣

4

. (12)

We estimate the contribution to the first sums from at most i characters
χ with χi = χ0 trivially as iM4 getting

∑
χ∈X

∣∣∣∣∣
R+M∑

r=R+1

χi(r)

∣∣∣∣∣

4

≤ iM4 +
∑
χ∈X

χi 6=χ0

∣∣∣∣∣
R+M∑

r=R+1

χi(r)

∣∣∣∣∣

4

≤ iM4 + i
∑
χ∈X ∗

∣∣∣∣∣
R+M∑

r=R+1

χ(r)

∣∣∣∣∣

4

.

Substituting the above bounds in the inequality (12) (similarly for j) and
then using Lemma 1 we conclude the proof. ut
Corollary 8. For any integers M ≥ 1, R ≥ 0, S ≥ 0 with R+M,S+M < p,
we have,

I(R, S; M) À min
{
p,M2−o(1)

}

as M →∞
Proof. Let

Γ = {r3/s2 : r ∈ [R + 1, R + M ], s ∈ [S + 1, S + M ]}
and let

f(λ) = |{(r, s) ∈ [R + 1, R + M ]× [S + 1, S + M ] : r3/s2 = λ}|.
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Using the Cauchy inequality we derive

M4 =

(∑

λ∈Γ

f(λ)

)2

≤ |Γ|
∑

λ

f 2(λ) ≤ I(R, S; M)T3,2(R, S; M).

Using Theorem 7 we conclude the proof. ut
Clearly the bound of Corollary 8 is quite tight as we have the trivial upper

bound
I(R, S; M) ≤ min

{
p,M2

}
.

6 Comments and Open Problems

Note that Theorem 7 can be easily extended to coefficients (r, s) that belong
to rectangles [R+1, R+K]×[S+1, S+L] rather than squares (the bound (6)
also holds for such rectangles).

As we have mentioned the exponent 1/3 in the bound of Lemma 4 cannot
be improved, however the range M ≤ p1/9 can possibly be extended. As the
first step towards this, the following question has to be answered:

Problem 1. Let E be an elliptic curve over Z such that all the coefficients
are MO(1). Is it true that the number of integer points (x, y) ∈ [0,M ]× [0,M ]
on E is M o(1)?

We refer to [7, 10] for some bounds on the number of points on elliptic
curves in boxes.

As we have noticed in Section 4 we do not have any nontrivial bounds on
Nλ(R, S; M) for p1/5 ≤ M < p1/2. It is certainly interesting to close this gap.

Problem 2. Is it true that Nλ(R, S; M) = o(M) for all M = o(p)?

Finally, it is also natural to expect that the term M o(1) can be removed
from the bound of Corollary 8.

Problem 3. Is it true that I(R, S; M) À min {p,M2}?
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