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1 Introduction

Let A be a Dedekind domain in which we can define a notion of distance. We
are interested in the number of divisors that an element α ∈ A can have in a
small interval.

Of course, we can not talk about divisors if our domain is not a UFD. Hence,
the convinient object to deal with will be the ideals of A.

We are able to prove a general theorem about the minimal length that an
interval can have containing k divisors of a fixed M in terms of the size of these
divisors.

Let ϕ be a real-valued function over the ideals in A such that

ϕ(α) ≥ 0(i)

ϕ(αβ) = ϕ(α) + ϕ(β),(ii)

and let us write (α, β) for the greatest common divisor of α and β. We prove

Theorem 1.1. Let α1, · · ·αk be ideals in A with least common multiple
M = [α1, · · · , αk] and such that ϕ (αi) ≥ γϕ(N ) for some multiple N of M.
If L ∈ R is such that ϕ((αj , αi)) ≤ L for all 1 ≤ j, i ≤ k, then

L ≥ Ek(γ)ϕ(N )

where

Ek(γ) =
[kγ](2kγ − [kγ]− 1)

k(k − 1)
.

Notice that Ek(γ) > γ2 − γ
(

1−γ
k−1

)
and that it is increasing as a function of

either γ or k.
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This result came out when studying lattice points on conics, and this is in
fact our principal application of the theorem.

By means of the identity N = (x+y
√

d)(x−y
√

d), valid for any lattice point,
(x, y), on the conic, and introducing the quadratic field Q

(√
d
)
, all the problems

about lattice points can be translated in terms of divisors (x + y
√

d) = α ∈ A
of N , where A is the ring of integers of Q

(√
d
)
.

So, one first problem that appears is trying to deal with ”divisors” when we
are not in a unique factorization domain. This can be avoided by introducing
the ideals in A, which guarantee unique factorization. The difficulty will now
be how to translate the information from ideals to the elements.

In [2] and [3], this is only possible for principal ideals. We will get information
from all the ideals, by means of Theorem 1.1 and noting that in fact one ideal
is, in some sense, a divisor of its elements.

In this way, we give a new proof of Theorem 1 of [1], and give improvements
on the principal results of [2] and [3].

Theorem 1.2. Let d 6= 0, 1 be a fixed squarefree integer. On the conic,
x2 − dy2 = N , an arc of length Nα with α ≤ 1/4 − 1/ (8 [k/2] + 4) contains
at most k lattice points.

In this theorem we have avoided the case d = 1, considered in [4]. However,
in this case we are able to prove the analogous result, but this time we will cover
all the ranges of the hyperbola. Meanwhile as we have seen, Theorem 1.2 only
includes γ = 1/2 of Theorem 1.1.

The key point for the improvement in this particular case is that any lattice
point on x2 − y2 = N , gives us another one on the hyperbola XY = N , with
coordinates X = x− y, Y = x + y. So, looking at the latter curve, we see that
each lattice point corresponds to an integral divisor X ∈ Z of N . We can prove

Theorem 1.3. On the hyperbola xy = N there are at most k lattice points
(x1, y1), · · · , (xk, yk) such that Nγ ≤ x1 < · · · < xk and xk − x1 ≤ NEk(γ).

Finally, in order to show the more general character of Theorem 1.1, we will
include an application concerning polynomials.

Theorem 1.4. Let F1(x), · · · , Fk(x) be polynomials in Z[x] with least common
multiple M(x) and such that deg(Fi(x)) ≥ γ deg(M(x)). Then, there exist i < j

such that
deg(Fj(x)− Fi(x)) ≥ deg(M(x))Ek(γ).
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2 Proofs of theorems

Proof of theorem 1.1.

For any ideal β ∈ A and some prime ideal π, we define vπ (β) = t to be the
greatest power of π dividing β.

vπ is well defined since, in a Dedekind domain, we have unique factorization
of ideals. Further, we know every ideal α has an inverse α−1 which is a fractional
ideal. Hence, we can extend the definition of vπ and ϕ to the inverses of ideals
in such a way that vπ

(
α−1

)
= −vπ (α), and ϕ

(
α−1

)
= −ϕ (α).

Now, let us order the ideals α1, · · · , αk such that vπ (αi) = ti increases with
i. Then

vπ

(∏
(αj , αi)

)
=

∑

1≤i<j≤k

ti =
k−1∑

i=1

ti

k∑

j=i+1

1 =
k∑

i=1

ti(k − i),

and on the other hand
vπ

(∏
αi

)
=

∑

1≤i≤k

ti.

Hence, grouping all the local information of each prime, we can write

∏
(αj , αi) =

∏

π|M
π

∑
1≤i≤k ti(k−i)

∏
αi =

∏

π|M
π

∑
1≤i≤k ti ,

and so, for any integer m we have

(2.1)
∏

(αj , αi) =
(∏

αi

)m ∏

π|M
π

∑
1≤i≤k ti(k−i−m).

Now, since k − i−m ≥ 0 when i ≤ k −m, we have

∑

1≤i≤k

ti(k − i−m) ≥−
∑

k−m≤i≤k

ti(i− (k −m)) ≥ −tk
∑

k−m≤i≤k

(i− (k −m))

=− tk

(
m + 1

2

)
,



4 J. Cilleruelo and J. Jiménez-Urroz

where we have used ti ≤ tk. Hence, by properties (i) and (ii) of ϕ and looking
at the identity M =

∏
π|M πtk , we deduce by substitution in (2.1) that

(
k

2

)
L ≥

∑
ϕ ((αj , αi)) ≥ m

∑
ϕ (αi)−

(
m + 1

2

)
ϕ (M) ,

and so, from the hypothesis in the theorem ϕ (αi) ≥ γϕ (N ), and
ϕ (M) ≤ ϕ (N ), (since M|N ), we get

(
k

2

)
L ≥ ϕ (N )

(
kγm−

(
m + 1

2

))
.

The proof is now concluded by choosing m = [kγ], which maximizes the previous
quantity.

Proof of Theorem 1.4.

Let us first prove Theorem 1.4, and see how Theorem 1.1 works in that
context. So, consider A = Z[x]. This is a principal ideal domain and the
function ϕ (F) = deg F (x), which has properties (i) and (ii), is well defined,
where F (x) is the generator of the ideal F . The conclusion of the theorem is
now clear since deg(Fj(x)− Fi(x)) ≥ deg(Fj(x), Fi(x)).

Proof of Theorem 1.2.

Suppose we now have k lattice points (a1, b1), · · · , (ak, bk) on the conic
x2− dy2 = N , with d 6= 0, 1. Let A be the ring of integers of the quadratic field
Q(
√

d), αi =< ai + bi

√
d > the ideal generated by ai + bi

√
d and consider, for

any α ideal in A, the function ϕ (α) = log (N(α)), where N(α) is the norm of
the ideal. This function again has the properties of Theorem 1.2.

Now, since a2
i − db2

i = N , we have N(αi) = N , and we find < N > to be a
multiple of the least common multiple of αi. Now, ϕ (< N >) = 2 log N , and
hence ϕ (αi) = 1/2ϕ (< N >), so by Theorem 1.1

(2.2) ϕ ((αj , αi)) ≥ 2Ek (1/2) log N.

On the other hand, for any 1 ≤ i < j ≤ k we have clearly |ξj−ξi| ≥
√

N(ξj − ξi),
where ξi = ai + bi

√
d, and |ξ| is the euclidean distance from ξ to the origin

O = 0 + 0
√

d, and so

log |ξj − ξi| ≥ 1
2

log (|N(ξj − ξi)|) =
1
2
ϕ (< ξj − ξi >) .
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Finally, we have < ξj − ξi >⊂< αj −αi >, and we know, [5], that < αj −αi >=
(αj , αi), so (αj , αi)| < ξj − ξi >, and by the properties of ϕ and (2.2),

2 log |ξj − ξi| ≥ ϕ (< ξj − ξi >) ≥ ϕ ((αj , αi)) ≥ 2Ek (1/2) log N,

which ends the proof.

proof of Theorem 1.3.

To prove the case d = 1, or more concretely Theorem 1.3, we will apply
Theorem 1.1 to A = Z, and ϕ(x) = log |x|, where x is an ideal or the element
generating the ideal. So, Theorem 1.1 together with

ϕ (xj − xi) ≥ ϕ ((xj , xi)) ,

gives the result.
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