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Abstract. Let A be a set of integers and let h ≥ 2. For every integer n, let rA,h(n)
denote the number of representations of n in the form n = a1 + · · · + ah, where
ai ∈ A for 1 ≤ i ≤ h, and a1 ≤ · · · ≤ ah. The function rA,h : Z → N, where
N = N ∪ {0,∞}, is the representation function of order h for A.

We prove that, given a positive integer g, every function f : Z → N satisfying
lim inf|n|→∞ f(n) ≥ g is the representation function of order h of a sequence A
of integers “almost” as dense as any given Bh[g] sequence. In particular we prove
that, given an integer h ≥ 2 and ε > 0, there exists g = g(h, ε) such that for any
function f : Z → N satisfying lim inf|n|→∞ f(n) ≥ g there exists a sequence A
satisfying rA,h = f and |A ∩ [1, x]| À x(1/h)−ε.

Roughly speaking we prove that the problem of finding a dense set of integers
with a prescribed representation function f of order h and
lim inf|n|→∞ f(n) ≥ g is “equivalent” to the classical problem of finding dense

Bh[g] sequences of positive integers.

1. Introduction

Let A be a set of integers and let h ≥ 2. For every integer n, let rA,h(n) denote the
number of representations of n in the form

n = a1 + · · ·+ ah

where a1 ≤ · · · ≤ ah and ai ∈ A for 1 ≤ i ≤ h. The function rA,h : Z → N is the
representation function of order h for A, where N = N ∪ {0,∞}.

Nathanson proved [8] that any function f : Z → N satisfying lim inf |n|→∞ f(n) ≥ 1 is
the representation function of order h of a set of integers A such that

(1) A(x) À x1/(2h−1),

where A(x) counts the number of positive elements a ∈ A no greater than x and f(x) À
g(x) means that there exists a constant C > 0 such that f(x) ≥ Cg(x) for x large enough.

It is an open problem to determine how dense these sets A can be. In this paper
we study the connection between this problem and the problem of finding dense Bh[g]
sequences. We recall that a set B of nonnegative integers is called a Bh[g] sequence if

rB,h(n) ≤ g

for every nonnegative integer n. It is usual to write Bh to denote Bh[1] sequences.

Luczak and Schoen [7] proved that any Bh sequence satisfying an additional kind of
Sidon property (see [7] for the definition of this property, which they call the Sh prop-
erty) can be enlarged to obtain a sequence with any prescribed representation function
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f satisfying lim inf |x|→∞ f(x) ≥ 1. In particular, since they prove that there exists a Bh

sequence A satisfying the Sh property with A(x) À x1/(2h−1), they recover Nathanson’s
result.

1.1. Main result. In this paper we prove that any Bh[g] sequence, without any additional
property, can be modified to have any prescribed representation function f of order h
satisfying lim inf |x|→∞ f(x) ≥ g. Our main theorem is the following.

Theorem 1.1. Let f : Z → N be any function such that lim inf |n|→∞ f(n) ≥ g and let
B be any Bh[g] sequence. Then, for any decreasing function ε(x) → 0 as x → ∞, there
exists a sequence A of integers such that

rA,h(n) = f(n) for all n ∈ Z and A(x) À B(xε(x)).

Roughly speaking, theorem above says that the problem of finding dense sets of integers
with prescribed representation functions with lim inf |n|→∞ f(n) ≥ g is “equivalent” to the
classical problem of finding dense Bh[g] sequences of positive integers.

It is a difficult problem to construct dense Bh[g] sequences. A trivial counting argument

gives B(x) ¿ x1/h for these sequences. On the other hand, the greedy algorithm shows
that there exists a Bh sequence B such that

(2) B(x) À x1/(2h−1).

For B2 sequences, also called Sidon sets, Ruzsa proved [10] that there exists a Sidon set
B such that

(3) B(x) À x
√

2−1+o(1).

This result and Theorem 1.1 give the following corollary.

Corollary 1. Let f : Z → N any function such that lim inf |n|→∞ f(n) ≥ 1. Then there
exists a sequence of integers A such that

rA,2(n) = f(n) for all n ∈ Z and A(x) À x
√

2−1+o(1).

This result gives an affirmative answer to the third open problem in [1], which was also
posed previously in [9]. Unfortunately, nothing better than (4) is known for Bh sequences
when h ≥ 3.

Erdős and Renyi [4] proved however that, for any ε > 0, there exists a positive integer

g and a B2[g] sequence B such that B(x) À x1/2−ε. They claimed that the probabilistic
method they used could be extended to Bh[g] sequences, but a serious problem with non-
independent events appears when h ≥ 3. As an application of a more general theory,
Vu [12] overcame this problem. He proved that for any integer h ≥ 2 and for any ε > 0,
there exists an integer g = g(h, ε) ¿h ε1−h and a Bh[g] sequence B such that

B(x) À x1/h−ε.

See also [2] for a different proof of this result which improves the upper bound to
g = g(h, ε) ¿h ε−1. Vu’s result and Theorem 1.1 imply the next corollary.

Corollary 2. Given h ≥ 2, for any ε > 0, there exists g = g(h, ε) such that, for any
function f : Z→ N satisfying lim inf |n|→∞ f(n) ≥ g, there exists a sequence A of integers
such that

rA,h(n) = f(n) for all n ∈ Z and A(x) À x
1
h
−ε.

The construction in [8] for the set A satisfying the growth condition (1) was based on
the greedy algorithm. In this paper we construct the set A by adjoining a very sparse
sequence {uk} to a suitable Bh[g] sequence B. This idea was used in [3], but in a simpler
way, to construct dense perfect difference sets, which are sets such that every nonzero



PRESCRIBED REPRESENTATION FUNCTIONS 3

integer has a unique representation as a difference of two elements of A. The proof of the
main theorem in [3] can be adapted easily to our problem in the simplest case h = 2.

Theorem 1.2. Let f : Z → N be a function such that lim inf |n|→∞ f(n) ≥ g, and let B
be a B2[g] sequence. Then there exists a sequence of integers A such that

rA,2(n) = f(n) for all n ∈ Z and A(x) À B(x/3).

We omit the proof because it is very close to the proof of the main theorem in [3].
Unfortunately, that proof cannot be adapted to the case h ≥ 3. We need another definition
of a “suitable” Bh[g] set. In section §2 we shall show how to modify a Bh[g] sequence B so
that it becomes “suitable.” We do this by applying the “Inserting Zeros Transformation”
to an arbitrary Bh[g] set. This is the main ingredient in the proof of Theorem 1.1.

1.2. Related results. Chen [1] has proved that for any ε > 0 there exists a unique-
representation basis A (that is, a set A with rA,2(k) = 1 for all k ∈ Z) such that

lim supx→∞A(x)/x1/2−ε > 1. J. Lee [6] has improved this result by proving that for
any increasing function ω tending to infinity there exists a unique-representation basis A
such that lim supx→∞A(x)ω(x)/

√
x > 0.

Theorem 1.2 and the classical constructions of Erdős [11] and Krückeberg [5] of infinite
Sidon sets B such that lim supx→∞ B(x)/

√
x > 0 provide a unique-representation basis A

such that lim supx→∞A(x)/
√

x > 0. Indeed, we can easily adapt the proof of Theorem 1.3
in [3] to the case of the additive representation function r(n) (instead of the subtractive
representation function d(n) = #{n = a− a′, a, a′ ∈ A}).
Theorem 1.3. There exists a unique-representation basis A such that

lim sup
x→∞

A(x)√
x
≥ 1√

2
.

Again we omit the proof because it is very close to the proof of Theorem 1.3 in [3].

Theorem 1.3 answers affirmatively the first open problem in [1]. Note also that if A is
an infinite Sidon set of integers, then the set

A′ = {4a : a ≥ 0} ∪ {−4a + 1 : a < 0}
is also a Sidon set and, in this case, lim inf |A ∩ (−x, x)|/√x = lim inf A′(4x)/

√
x. A well

known result of Erdős states that lim inf B(x)/
√

x = 0 for any Sidon set B. Then the
above limit is zero, so it answers negatively the second open problem in [1].

To obtain a similar result for h ≥ 3, although weaker, we can use that if B1,B2 are Bh

sequences and B1 ⊂ [1, n) then the set B1 ∪ (hn ∗ B2) is also a Bh sequence. Here we use
the notation t ∗ B = {tb, b ∈ B}.

Using this fact it is easy to prove that for any function ω tending to infinity there exists
a Bh sequence A such that

(4) lim sup
x→∞

A(x)ω(x)

x1/h
> 1.

We can construct the sequence A as follows: Let s1, . . . , sk, . . . be an infinite sequence of
positive integers such that ω(sk) > (hsk−1)

1/h and consider, for each k, a Bh sequence

Bk ⊂ [1, sk/(hsk−1)) with |Bk| À (sk/(hsk−1))
1/h. Easily we can check that the set

A = ∪k(hxk−1) ∗ Bk is a Bh sequence and satisfies A(sk) À (sk)1/h/ω(sk).

The construction above and Theorem 1.1 yield the following corollary, which extends
the main theorem in [1] in several ways.
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Corollary 3. Let f : Z → N any function such that lim inf |n|→∞ f(n) ≥ 1. For any
increasing function ω tending to infinity there exists a set A such that rA,h(n) = f(n) for
all integers n, and

lim sup
x→∞

A(x)ω(x)

x1/h
> 0.

2. Proof of Theorem 1.1

The main ideas of the proof are the following:

1) We start with a Bh set of integers A0 such that binary expansion of its elements
have blocks of zeros at fixed places. We can obtain a sequence of this form by applying
the Insert Zeros Transformation described below to a Bh sequence given.

2) We consider also a special sequence (uk) such that the sequence (zk), defined by
zk = (h− 1)u2k−1 + u2k, takes all the integer values infinitely often.

3) For k ≥ 1, we defineAk = Ak−1 if rAk−1,h(zk) = f(zk) andAk = Ak−1∪{u2k−1, u2k}
if rAk−1,h(zk) < f(zk). Then rAk,h(zk) ≥ rAk−1,h(zk) + 1 and, since the sequence (zk)
takes all the integre values infinitely often, the sequence A = ∪∞k=0Ak satisfies rA,h(n) ≥
f(n) for any integer n.

4) The difficult part of the proof is to prove that when we add {u2k−1, u2k} to Ak−1 to
obtain a new representation of zk, we don’t obtain a new representation of other integer
m for which we had rAk−1,h(m) = f(m). To avoid this problem we have chosen the
sequence uk with the additional property that the one’s digits of the binary expansion of
its elements lie just on the places where the the elements of A0 have blocks of zeros.

Roughly speaking, the Insert Zeros Transformation allow us to work with integers as
they were vectors where the distinct components are separated by blocks of zeros at fixed
places.

5) When we apply the Insert Zeros Transformation to the elements of a sequence we
obtain a less dense sequence. But if the places where the blocks are located are very sparse
we don’t lose too much density. To concrete this we will choose the sequence l0 < l1 < · · ·
associated to the Insert Zeros Transformation according to the function ε(x).

2.1. The Inserting Zeros Transformation. Given any infinite increasing sequence of
nonnegative integers 0 = l0 < l1 < · · · < lk < · · · we can write any positive number n in
an unique way the form

(5) n = n02
l0 + n12

l1 + n22
l2 + · · ·+ nk2lk + · · ·

with 0 ≤ ni < 2li+1−li .

Definition 2.1. For any positive integer r we define the Inserting Zeros Transformation
of order r associated to an increasing sequence of non negative integers 0 = l0 < l1 < · · ·
as the function

(6) tr(n) = n02
l0+2r + n12

l1+4r + n22
l2+6r + · · ·+ nk2lk+2(k+1)r + · · ·

where the ni as defined as in (5).

We observe that tr(n) is the result of inserting strings of zeros of length 2r in the binary
expression of n at places li, i ≥ 0.

For short we will write

(7) mk = 2lk+2(k+1)r.

With this notation (6) can be written as

(8) tr(n) = n0m0 + n1m1 + n2m2 + · · ·+ nkmk + · · ·
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The following seminorm will be useful to prove some lemmas.

Definition 2.2. For all integers m ≥ 2 and x ∈ Z we define

‖x‖m = min{|y|, x ≡ y (mod m)}.

Note that ‖x1 + x2‖m ≤ ‖x1‖m + ‖x2‖m for all integers x1 and x2. Through the proof
we will prove that some equalities a = b can not hold by proving that ‖a‖m 6= ‖b‖m for
some m.

The Inserting Zeros Transformation of order r has some important properties which
we resume in Lemma 2.1 and Lemma 2.2.

Lemma 2.1. For any n ≥ 1 and k ≥ 1 we have ‖tr(n)‖mk < mk2−2r.

Proof. As a consequence of (8) and since mk | mj for all j > k, we have

tr(n) ≡ c (mod mk)

where

c = n0m0 + n1m1 + n2m2 + · · ·+ nk−1mk−1

for some ni, 0 ≤ ni ≤ 2li+1−li − 1. Thus we have

0 ≤ c ≤ (2l1−l0 − 1)m0 + (2l2−l1 − 1)m1 + · · ·+ (2lk−lk−1 − 1)mk−1

= 2l1−l0m0 + 2l2−l1m1 + · · · 2lk−lk−1mk−1 − (m0 + m1 + · · ·+ mk−1)

= (m1 + m2 + · · ·+ mk)2−2r − (m0 + m1 + · · ·+ mk−1)

< mk2−2r.

¤

Lemma 2.2. Let B a Bh[g] sequence and h ≤ 22r. Then the set tr(B) = {tr(b) : b ∈ B}
is also a Bh[g] sequence.

Proof. It is enough to prove that if tr(b1) + · · · + tr(bh) = tr(b
′
1) + · · · + tr(b

′
h) then

b1 + · · ·+ bh = b′1 + · · ·+ b′h.

Let bi = n0i2
l0 + · · ·+ nki2

lk + · · · with nki < 2lk−lk−1 . By (8) we have

tr(bi) = n0im0 + · · ·+ nkimk + · · ·
The assumption tr(b1) + · · ·+ tr(bh) = tr(b

′
1) + · · ·+ tr(b

′
h) implies

(n01 + · · ·+ n0h)m0 + · · · (nk1 + · · ·nkh)mk + · · ·
= (n′01 + · · ·+ n′0h)m0 + · · · (n′k1 + · · ·n′kh)mk + · · ·

The inequality h ≤ 22r gives

nk1 + · · ·+ nkh < h2lk+1−lk ≤ 2lk+1−lk+2r = mk+1/mk.

Since there is only a way to write an integer as

x0m0 + · · ·+ xkmk + · · ·
with xk < mk+1/mk we conclude that

nk1 + · · ·+ nkh = n′k1 + · · ·+ n′kh

for all k. Thus

b1 + · · ·+ bh = (n01 + · · ·+ n0h)2l0 + · · · (nk1 + · · ·+ nkh)2lk + · · ·
= (n′01 + · · ·+ n′0h)2l0 + · · · (n′k1 + · · ·+ n′kh)2lk + · · · = b′1 + · · ·+ b′h.

¤
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2.2. Construction of the sequence A. The condition on f in Theorem 1.1 implies that
there exists n0 such that f(n) ≥ g, for any n ≥ n0.

Let B be a Bh[g] sequence and fix r satisfying

(9) h2 < 2r−1 and n0 ≤ 2r.

The starting point will be the sequence A0 = tr(B) which is also a Bh[g] sequence by
Lemma 2.2.

Consider the sequence (zj)
∞
j=1 defined by

(10) zj = j − [
√

j]([
√

j] + 1).

This sequence takes of all the integers values infinitely many times each integer.

Also we consider the sequence (ui)
∞
i=1 defined by

(11)

{
u2k−1 = −mk2−r

u2k = zk + (h− 1)mk2−r.

where

(12) mk = 2lk+2(k+1)r

and 0 = l0 < l1 < · · · is a given sequence of non negative integers.

For k ≥ 1, we define

(13) Ak =

{ Ak−1 ∪ {u2k−1, u2k} if rAk−1,h(zk) < f(zk)
Ak−1 otherwise.

We shall prove that the set

(14) A =

∞⋃

k=0

Ak

satisfies rA,h(n) = f(n) for all integers n as consequence of Propositions 2.3 and 2.4 below.

Proposition 2.3. The sequence A defined in (14) satisfies rA,h(n) ≥ f(n) for all integers
n.

Proof. Since
u2k−1 + · · ·+ u2k−1︸ ︷︷ ︸

h−1

+u2k = zk

it follows that if rAk−1,h(zk) < f(zk), then Ak = Ak−1 ∪ {u2k−1, u2k} and

rAk,h(zk) ≥ rAk−1,h(zk) + 1.

Since the sequence (zk) takes all the integers infinitely many times, then rAk,h(n) ≥ f(n)
for some k (if f(n) < ∞) or limk→∞ rAk,h(n) = ∞ (if f(n) = ∞). ¤

2.3. Technical lemmas.

Lemma 2.3. For k ≥ 1 and r, zk, mk, Ak defined as in (9), (10), (12) and (13) we
have

i) |zj | ≤ mk2−2r for any j ≤ k.
ii) ‖ai‖mk < mk2−2r for all ai ∈ Ak−1.

Proof. i) |zj | = |j − [
√

j]([
√

j] + 1)| ≤ √
j + 1 ≤ 2j ≤ 2lj ≤ 2lk = mk2−2(k+1)r ≤ mk2−2r.

ii) It is clear when ai ∈ A0 due to Lemma 2.1. If ai 6∈ A0 we have that ai = uj for
some j ≤ 2k−2. Thus, ai = −mj2

−r or ai = zj +(h−1)mj2
−r for some j ≤ k−1. Using

part i) of this lemma, the first condition in (9) and the inequality mk−1 ≤ mk2−2r we get

‖ai‖mk ≤ |ai| ≤ |zj |+ (h− 1)mj−12
−r ≤ hmk−12

−r ≤ hmk2−3r < mk2−2r.
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¤

Let k ≥ 1: For any s, t non negative integers with s + t ≤ h we define

(15) A(s,t)
k = (h− s− t)Ak−1 + su2k−1 + tu2k,

where we have used the notation rS = {s1 + · · ·+ sr : si ∈ S}.
Lemma 2.4. The sets A(s,t)

k are pairwise disjoint, except possibly the sets A(0,0)
k and

A(h−1,1)
k .

Proof. Suppose that

a1 + · · ·+ ah−s−t + su2k−1 + tu2k = a′1 + · · ·+ a′h−s′−t′ + s′u2k−1 + t′u2k

with

(16) (s, t) 6= (s′, t′) and {(s, t), (s′, t′)} 6= {(0, 0), (h− 1, 1)}.
Using that u2k = zk + (h− 1)u2k−1 and that u2k−1 = −mk2−r we have

(17) a1 + · · ·+ah−s−t− (a′1 + · · ·+a′h−s′−t′)+(t− t′)zk = ((t′− t)(h−1)+s−s′)mk2−r.

We will prove that equality (17) can not hold by proving that the two sides have distinct
seminorm ‖·‖mk .

The conditions (16) and the inequality s + t ≤ h imply that

1 ≤ |(t′ − t)(h− 1) + s− s′| ≤ h2.

Thus,

|((t′ − t)(h− 1) + s− s′)mk2−r| ≤ h22−rmk < mk/2.

Now, we observe that if |x| < m/2 then ‖x‖m = |x|. Therefore,

(18) ‖((t′ − t)(h− 1) + s− s′)mk2−r‖mk = |((t′ − t)(h− 1) + s− s′)mk2−r| ≥ mk2−r.

On the other hand, for the left side of (17), we use Lemma 2.3 to obtain

‖a1 + · · ·+ ah−s−t−(a′1 + · · ·+ a′h−s′−t′) + (t− t′)zk‖mk(19)

≤
h−s−t∑

i=1

‖ai‖mk +

h−s′−t′∑
i=1

‖a′i‖mk + |t− t′||zk|

≤ (2h− s− s′ − t− t′)mk2−2r + |t− t′|mk2−2r

≤ 2hmk2−2r

< mk2−r.

¤

Lemma 2.5. If n ∈ A(s,t)
k for some k ≥ 1 and (s, t) 6∈ {(0, 0), (h− 1, 1)}, then |n| > n0.

Proof. If n ∈ A(s,t)
k then

n = a1 + · · ·+ ah−s−t + su2k−1 + tu2k

= a1 + · · ·+ ah−s−t + (t(h− 1)− s)mk2−r + tzk.

Thus,

|n| ≥ ‖n‖mk

= ‖a1 + · · ·+ ah−s−t + (t(h− 1)− s)mk2−r + tzk‖mk

≥ ‖(t(h− 1)− s)mk2−r‖mk − ‖a1 + · · ·+ ah−s−t + tzk‖mk .
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The conditions on (s, t) imply that 1 ≤ |t(h− 1)− s| ≤ h2 ≤ 2r−1. Thus

(20) ‖(t(h− 1)− s)mk2−r‖mk = |(t(h− 1)− s)mk2−r|mk ≥ mk2−r.

On the other hand, Lemma 2.3 implies that

(21) ‖a1 + · · ·+ah−s−t + tzk‖mk ≤ (h−s− t)mk2−2r + tmk2−2r < hmk2−2r ≤ mk2−r−1.

Then we have

|n| > mk2−r−1 ≥ 23r > n0.

¤

Lemma 2.6. For any k ≥ 0, for any h′ < h and for any integer m we have that

rAk,h′(m) ≤ g.

Proof. By induction on k. Lemma 2.2 implies that A0 is a Bh[g]-sequences. In particular,
A0 is a Bh′ [g] sequence for h′ < h. Then rA0,h′(m) ≤ g for any integer m.

Suppose that it is true that for any h′ < h, and for any integer m we have that
rAk−1,h′(m) ≤ g.

Consider m ∈ h′Ak.

• Suppose m 6∈ (h′ − s − t)Ak−1 + su2k−1 + tu2k for any (s, t) 6= (0, 0). Then
rAk,h′(m) = rAk−1,h′(m) ≤ g by the induction hypothesis.

• Suppose that m ∈ (h′−s−t)Ak−1+su2k−1+tu2k for some (s, t) 6= (0, 0). Consider
an element a ∈ A0. Then

m + (h− h′)a ∈ A(s,t)
k ∈ (h− s− t)Ak−1 + su2k−1 + tu2k.

Since (s, t) 6= (h− 1, 1) (because h′ < h) we can apply lemma 2.4 and we have

rAk,h′(m) ≤ rAk,h(m + (h− h′)a) = rAk−1,h−s−t(m + (h− h′)a− su2k−1 − tu2k).

We can the apply the induction hypothesis because h− s− t < h.

¤

2.4. End of the proof.

Proposition 2.4. The sequence A defined in (14) satisfies rA,h(n) ≤ f(n) for all integers
n.

Proof. Next we show that, for every integer k, the sequence Ak satisfies rAk,h(n) ≤ f(n)
for all n. The proof is by induction on k. To check it for k = 0 we observe that if a ∈ A0

then a ≥ 22r ≥ n0. If n < n0 then rA0,h(n) = 0 ≤ f(n). On the other hand, if n ≥ n0 then
rA0,h(n) ≤ g because A0 is a Bh[g] sequence (see Lemma 2.2) and then rA0,h(n) ≤ f(n)
because f(n) ≥ g for n ≥ n0.

Now, suppose that it is true for k−1. In particular rAk−1,h(zk) ≤ f(zk). If rAk−1,h(zk) =
f(zk) there is nothing to prove because in that case Ak = Ak−1. But if rAk−1,h(zk) ≤
f(zk)− 1, then Ak = Ak−1 ∪{u2k−1, u2k}. We will assume this until the end of the proof.

If n 6∈ hAk then rAk,h(n) = 0 ≤ f(n).

If n ∈ hAk, since Ak = Ak−1 ∪ {u2k−1, u2k} we can write

hAk =

h⋃
s,t=0

s+t≤h

((h− s− t)Ak−1 + su2k−1 + tu2k) .

Thus,
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n = a1 + · · ·+ ah−s−t + su2k−1 + tu2k(22)

for some s, t, satisfying 0 ≤ s, t, s + t ≤ h and for some a1, . . . , ah−s−t ∈ Ak−1.

For short we write rs,t(n) for the number of solutions of (22).

• If n ∈ (h − s − t)Ak−1 + su2k−1 + tu2k for some (s, t) 6∈ {(0, 0), (h − 1, 1)} then,
due to Lemma 2.4, we have that rAk,h(n) = rs,t(n).

– For |n| ≤ n0 we have that rs,t(n) = 0 ≤ f(n) (due to Lemma 2.5).
– For |n| > n0 we apply Lemma 2.6 in the first inequality below with h′ =

h− s− t and m = n− su2k−1 − tu2k,

rs,t(n) = rAk−1,h−s−t(n− su2k−1 − tu2k) ≤ g ≤ f(n)

• If n ∈ (h − s − t)Ak−1 + su2k−1 + tu2k for some (s, t) ∈ {(0, 0), (h − 1, 1)},
then rAk,h(n) = r0,0(n) + rh−1,1(n). Notice that r0,0(n) = rAk−1,h(n) and that
rh−1,1(n) = 1 if n = zk and rh−1,1(n) = 0 otherwise.

– If n 6= zk, then rAk,h(n) = rAk−1,h(n) ≤ f(n) by the induction hypothesis.
– If n = zk, then rAk,h(n) = rAk−1,h(zk)+rh−1,1(zk) ≤ (f(zk)−1)+1 = f(n).

¤

Propositions 2.3 and 2.4 proves that rA,h = f . To finish the proof of Theorem 1.1 we
have to prove that A(x) À B(xε(x)) for a suitable sequence 0 = l0 < l1 < · · · .

Recall that 0 = l0 < l1 < · · · is a strictly increasing sequence. Let R≥0 = {x ∈ R :
x ≥ 0}. We extend this sequence to a strictly increasing function l : R≥0 → R≥0. (For
example, define l(x) = l(k + 1)(x− k) + l(k)(k + 1− x) for k ≤ x ≤ k + 1.)

We have

A(x) ≥ A0(x).

Thus, to find a lower bound for A(x) it suffices to find a lower bound for the density of
A0(x).

Lemma 2.7. A0(x) ≥ B(x2−2(l−1(log2 x)+2)r).

Proof. Let b be a positive integer such that

b ≤ x2−2(l−1(log2 x)+2)r.

Let k be such that 2l(k) ≤ b < 2l(k+1). In particular, k ≤ l−1(log2 b) ≤ l−1(log2 x).

Thus,

tr(b) = n0m0 + · · ·+ nkmk < mk+1 = 2l(k+1)+2(k+2)r

< b22(k+2)r

< b22(l−1(log2 x)+2)r ≤ x.

¤

Recall that ε(x) is a decreasing positive function defined on [1,∞) such that limx→∞ ε(x) =
0. Lemma 2.7 completes the proof of Theorem 1.1 by choosing a function l(x) satisfying
the inequality

2−2(l−1(log2 x)+2)r ≥ ε(x)

for x large enough.
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