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Abstract

Let p be a large prime number, K,L, M, λ be integers with 1 ≤ M ≤ p and
gcd(λ, p) = 1. The aim of our paper is to obtain sharp upper bound estimates for
the number I2(M ; K, L) of solutions of the congruence

xy ≡ λ (mod p), K + 1 ≤ x ≤ K + M, L + 1 ≤ y ≤ L + M

and for the number I3(M ; L) of solutions of the congruence

xyz ≡ λ (mod p), L + 1 ≤ x, y, z ≤ L + M.

Using the idea of Heath-Brown from [6], we obtain a bound for I2(M ; K, L), which
improves several recent results of Chan and Shparlinski [3]. For instance, we prove that
if M < p1/4, then I2(M ; K, L) ≤ Mo(1).

The problem with I3(M ; L) is more difficult and requires a different approach.
Here, we connect this problem with the Pell diophantine equation and prove that for
M < p1/8 one has I3(M ; L) ≤ Mo(1). Our results have applications to some other
problems as well. For instance, it follows that if I1, I2, I3 are intervals in F∗p of length
|Ii| < p1/8, then

|I1 · I2 · I3| = (|I1| · |I2| · |I3|)1−o(1).

MSC Classification: 11A07, 11B75
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1 Introduction

In what follows, p denotes a large prime number, K,L, M, λ are integers with 1 ≤ M ≤ p and
gcd(λ, p) = 1. By x, y, z we denote variables that take integer values. The notation “o(1)” in
the exponent on M means a function that tends to 0 as M →∞.

Let I2(M ; K,L) be the number of solutions of the congruence

xy ≡ λ (mod p), K + 1 ≤ x ≤ K + M, L + 1 ≤ y ≤ L + M

and let I3(M ; L) be the number of solutions of the congruence

xyz ≡ λ (mod p), L + 1 ≤ x, y, z ≤ L + M.

Estimates of incomplete Kloosterman sums implies that

I2(M ; K,L) =
M2

p
+ O(p1/2(log p)2). (1)

In particular, if M/(p3/4(log p)2) →∞ as p →∞, one gets that

I2(M ; K, L) = (1 + o(1))
M2

p
.

This asymptotic formula also holds when M/p3/4 →∞ as p →∞ (see [5]). The problem of
upper bound estimates of I2(M ; K, L) for smaller values of M has been a subject of the work
of Chan and Shparlinski [3]. Using Bourgain’s sum-product estimate [1], they have shown
that there exists an effectively computable constant η > 0 such that for any positive integer
M < p, uniformly over arbitrary integers K and L, the following bound holds:

I2(M ; K, L) ¿ M2

p
+ M1−η.

In the present paper we obtain the following upper bound estimates for I2(M ; K, L).

Theorem 1. Uniformly over arbitrary integers K and L, we have

I2(M ; K,L) <
M4/3+o(1)

p1/3
+ M o(1). (2)

When K = L, we have

I2(M ; L,L) <
M3/2+o(1)

p1/2
+ M o(1). (3)

In other words, for any fixed ε > 0 one has

I2(M ; K, L) ¿ M4/3+ε

p1/3
+ M ε, I2(M ; L,L) ¿ M3/2+ε

p1/2
+ M ε,

where the implied constant in Vinogradov’s symbol “¿” may depend only on ε. In particular,
from Theorem 1 it follows that if M < p1/4 then I2(M ; K, L) < M o(1).

Theorem 1 together with (1) easily implies the following consequence, which improves
upon the mentioned result of Chan and Shparlinski.
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Corollary 1. Uniformly over arbitrary integers K and L, we have

I2(M ; K, L) ¿ M2

p
+ M4/5+o(1).

If K = L, then

I2(M ; L,L) ¿ M2

p
+ M3/4+o(1).

The proof of Theorem 1 is based on an idea of Heath-Brown [6]. The problem with
I3(M ; L) is more difficult and requires a different approach. Here, we shall connect this
problem with the Pell diophantine equation and establish the following statement.

Theorem 2. Let M ¿ p1/8. Then, uniformly over arbitrary integer L, we have

I3(M ; L) ¿ M o(1). (4)

From Theorem 2 we can easily derive a sharp bound for the cardinality of product of
three small intervals in F∗p.

Corollary 2. Let I1, I2, I3 be intervals in F∗p of length |Ii| < p1/8. Then

|I1 · I2 · I3| = (|I1| · |I2| · |I3|)1−o(1).

We remark that Corollary 2 is equivalent to saying that for any fixed ε > 0 there exists
c = c(ε) > 0 such that |I1 · I2 · I3| > c(|I1| · |I2| · |I3|)1−ε.

Theorems 1 and 2 have also applications to the problem on concentration points on
exponential curves as well. Let g ≥ 2 be an integer of multiplicative order t, and let M < t.
Denote by Ja(M ; K,L) the number of solutions of the congruence

y ≡ agx (mod p); x ∈ [K + 1, K + M ], y ∈ [L + 1, L + M ].

Chan and Shparlinski [3] used a sum product estimate of Bourgain and Garaev [2] to prove
that

Ja(M ; K, L) < max{M10/11+o(1),M9/8+o(1)p−1/8}
as M →∞. From our Theorem 1 we shall derive the following improvement on this result.

Corollary 3. Let M < t. Uniformly over arbitrary integers K and L, we have

Ja(M ; K,L) < (1 + M3/4p−1/4)M1/2+o(1).

In particular, if M ≤ p1/3, then we have Ja(M ; K, L) < M1/2+o(1).
Theorem 2 allows us to strengthen Corollary 3 when M ¿ p3/20.

Corollary 4. The following bound holds:

Ja(M ; K,L) < (1 + Mp−1/8)M1/3+o(1).

In particular, if M ¿ p1/8, then we have Ja(M ; K,L) < M1/3+o(1).
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2 Proof of Theorem 1

We will need the following lemma which is a simple version of a more precise result about
divisors in short intervals, see, for example, [4].

Lemma 1. For every positive integer n and every integer m ≥ √
n, the interval [m,m+n1/6]

contains at most two divisors of n.

Proof. Suppose that d1, d2, d3 ∈ [m,m+L] are three divisors of n. We claim that the number

r =
d1d2d3

(d1, d2)(d1, d3)(d2, d3)

is also a divisor of n. To see this, for a given prime q, let α1, α2, α3, α such that qαi‖di, i =
1, 2, 3 and qα‖n. Assume that α1 ≤ α2 ≤ α3 ≤ α. The exponent of q in the rational number r
is α1 +α2 +α3− (min(α1, α2)+min(α1, α3)+min(α2, α3)) = α3−α1. Since 0 ≤ α3−α1 ≤ α
we have that r is an integer divisor of n.

On the other hand, since (di, dj) ≤ |di − dj| ≤ L we have

n ≥ r >
m3

L3
≥ n3/2

L3
,

and the result follows.

Now we proceed to prove Theorem 1. Our approach is based on Heath-Brown’s idea
from [6]. We can assume that M is a sufficiently large integer. The congruence xy ≡ λ
(mod p), K + 1 ≤ x ≤ K + M, L + 1 ≤ y ≤ L + M is equivalent to

xy + Lx + Ky ≡ b (mod p), 1 ≤ x, y ≤ M, (5)

where b = λ − KL. From the pigeon-hole principle it follows that for any positive integer
T < p there exists a positive integer t ≤ T 2 and integers u0, v0 such that

tL ≡ u0 (mod p), tK ≡ v0 (mod p), |u0| ≤ p/T, |v0| ≤ p/T.

From (5) we get that

txy + u0x + v0y ≡ b0 (mod p), 1 ≤ x, y ≤ M,

for some |b0| < p/2. We write this congruence as an equation

txy + u0x + v0y = b0 + zp, 1 ≤ x, y ≤ M, z ∈ Z. (6)

Comparing the minimum and maximum value of the left hand side we can see that

|z| ≤
∣∣∣txy + u0x + v0y − b0

p

∣∣∣ <
T 2M2

p
+

2M

T
+

1

2
.

We observe that for each given z the equation (6) is equivalent to the equation

(tx + u0)(ty + v0) = nz, 1 ≤ x, y ≤ M (7)

for certain integer nz. If nz = 0, then either tx+u0 = 0 or ty + v0 = 0. Since λ 6≡ 0 (mod p),
in either case x and y are both determined uniquely. So, we need only consider those z for
which nz 6= 0.
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• Case M < p1/4/4. In this case we take T = 8M . Then |z| < 1 and we have to consider
only the integer nz = n0 in (7). Each solution of (7) produces two divisors of |n0|,
|tx + u0| and |ty + v0|, one of them is greater than or equal to

√
|n0|. If |n0| ≤ 236M18

the number of solutions of (7) is bounded by the number of divisors of n0, which is
M o(1). If |n0| > 236M18 the positive integers |tx + u0| and |ty + v0| lie in two intervals
I1 and I2 of length T 2M ≤ 26M3 < |n0|1/6. If there were five solutions, we would have
three divisors greater of equal to

√
|n0| in an interval of length ≤ |n0|1/6. We apply

Lemma 1 to conclude that there are at most four solutions. Hence, in this case we have

I2(M ; K,L) < M o(1).

• Case M ≥ p1/4/4. In this case we take T ≈ (p/M)1/3. Thus |z| ¿ M4/3/p1/3. For each
z the number of solutions of (7) is bounded by the number of divisors of nz which is
po(1) = M o(1). Hence, in this case we get

I2(M ; K, L) <
M4/3+o(1)

p1/3
.

Thus, we have proved that

I2(M ; K, L) <
M4/3+o(1)

p1/3
+ M o(1)

which proves the first part of Theorem 1.
The proof of the second part of Theorem 1 (corresponding to the case K = L) is similar,

with the only difference that we simply take t ≤ T (instead t ≤ T 2) satisfying

tK ≡ u0 (mod p), |u0| ≤ p/T.

3 An auxiliary statement

To prove Theorem 2 we need the following auxiliary statement.

Proposition 1. Let |A|, |B|, |C|, |D|, |E|, |F | ≤ MO(1) and assume that ∆ = B2 − 4AC is
not a perfect square (in particular, ∆ 6= 0). Then the diophantine equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (8)

has at most M o(1) solutions in integers x, y with 1 ≤ |x|, |y| ≤ MO(1).

The proof of Proposition 1 given here can be shortened by a direct appeal to Lemma
3.5 of Vaughan and Wooley [8]. Their proof uses results from Chapter 11 of Hua [7] and is
somewhat sketchy. Here we give a self-contained proof of Proposition 1.

The following lemma is well-known from the classical theory of Pell’s equation.

Lemma 2. Let A be a positive integer that is not a perfect square and let (x0, y0) be a
solution of the equation x2−Ay2 = 1 in positive integers with the smallest value of x0. Then
for any other integer solution (x, y) there exists a non-negative integer n such that

|x|+
√

A|y| = (x0 +
√

Ay0)
n.
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Lemma 3. Let A be a squarefree integer, N is a positive integer. Then the congruence
z2 ≡ A (mod N), 0 ≤ z ≤ N − 1, has at most N o(1) solutions.

Proof. Let J(N) be the number of solutions of the congruence in question and let N =
pα1

1 · · · pαk
k be a canonical factorization of N . Clearly, J(N) = J(pα1

1 ) · · · J(pαk
k ), where J(pα)

is the number of solutions of the congruence z2 ≡ A (mod pα), 0 ≤ z ≤ pα − 1. Since A is
squarefree, we have J(2α) ≤ 4 and J(pα) ≤ 2 for odd primes p. The result follows.

Lemma 4. Let A, E be integers with |A|, |E| < MO(1) such that A is not a perfect square.
Then the equation

x2 − Ay2 = E, 1 ≤ x, y < MO(1)

has at most M o(1) solutions.

Proof. (1) We can assume that A is also a squarefree number. Indeed, let A = A1B
2
1 , where

A1, B1 are nonzero integers, A1 is squarefree and is not a perfect square. Then our equation
takes the form x2 − A1(B1y)2 = E, 1 ≤ x, y < MO(1). Since B1y < MO(1), it follows that
indeed we can assume that A is squarefree.

(2) We can assume that in our equation gcd(x, y) = 1. Indeed, if d = gcd(x, y), then
d2 | E. In particular, since E has M o(1) divisors, we have M o(1) possible values for d. Besides,
(x/d)2 − A(y/d)2 = E/d2, where we have now gcd(x/d, y/d) = 1. Thus, without loss of
generality, we can assume that gcd(x, y) = 1. In particular, it follows that gcd(y, E) = 1.

(3) Since A is not a perfect square, we have, in particular, that E 6= 0.

(4) For any x, y ∈ Z+ with (y, E) = 1 there exists 1 ≤ z ≤ |E| such that x ≡ zy (mod E).

Given 1 ≤ z ≤ |E|, let Kz be the set of all pairs (x, y) with

x2 − Ay2 = E, 1 ≤ x, y < MO(1), (x, y) = 1

such that x ≡ zy (mod E).
If (x, y) ∈ Kz, then (zy)2 − Ay2 ≡ 0 (mod E). Since (y, E) = 1, it follows that z2 ≡ A

(mod E). Due to Lemma 3, the number of solutions of this congruence is at most |E|o(1) =
M o(1). Thus, we have at most M o(1) possible values for z. Therefore, it suffices to show that
|Kz| = M o(1) for any such z.

Let x0 be the smallest positive integer such that

x2
0 − Ay2

0 = E, (x0, y0) ∈ Kz.

Let (x, y) be any other solution from Kz. Then,

x2
0 − Ay2

0 = E, x2 − Ay2 = E.

From this we derive that

(x0x− Ayy0)
2 − A(xy0 − x0y)2 = (x2

0 − Ay2
0)(x

2 − Ay2) = E2. (9)

On the other hand, from (x0, y0), (x, y) ∈ Kz it follows that

x0 ≡ zy0 (mod E), x ≡ zy (mod E)
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Since z2 ≡ A (mod E), we get xx0 ≡ z2yy0 (mod E) ≡ Ayy0 (mod E). We also have
x0y ≡ xy0 (mod E), as both hand sides are zyy0 (mod E). Therefore,

x0x− Ay0y ≡ 0 (mod E), xy0 − x0y ≡ (mod E). (10)

From (9) and (10) we get that

(
x0x− Ay0y

E

)2

− A

(
xy0 − x0y

E

)2

= 1

and the numbers inside of parenthesis are integers.
Now there are two cases to consider:
(1) A > 0. In view of Lemma 2,

∣∣∣∣
x0x− Ay0y

E

∣∣∣∣ +
√
|A|

∣∣∣∣
xy0 − x0y

E

∣∣∣∣ = (u0 +
√
|A|v0)

n,

where (u0, v0) is the smallest solution to X2 − AY 2 = 1 in positive integers, and n is some
non-negative integer.

Since the left hand side is of the order of magnitude MO(1), we have that n ¿ log M =
M o(1). Thus, there are M o(1) possible values for n and, each given n produces at most 4 pairs
(x, y). This proves the statement in the first case.

(2) A < 0. Then we get that

x0x− Ay0y

E
∈ {−1, 0, 1}, xy0 − x0y

E
∈ {−1, 0, 1},

and the result follows.

The proof of Proposition 1. Now we can deduce Proposition 1 from Lemma 4. Multiply-
ing (8) by 4A, we get

(2Ax + By + D)2 −∆y2 + (4EA− 2BD)y + 4AF −D2 = 0,

where ∆ = B2 − 4AC. Multiplying by ∆ we get,

(∆y + BD − 2EA)2 −∆(2Ax + By + D)2 = T,

where T = (BD − 2EA)2 + ∆(4AF − D2). Now, since ∆ is not a full square, and since
T, ∆ ≤ MO(1), we have, by Lemma 4 and the condition |A|, |B|, |C|, |D|, |E|, |F | ≤ MO(1),
that there are at most M o(1) possible pairs (∆y + BD − 2EA, 2Ax + By + D). Each such
pair uniquely determines y (as ∆ 6= 0) and x (as ∆ is not a full square, therefore A 6= 0).
This finishes the proof of Proposition 1.

4 Proof of Theorem 2

In what follows, by v∗ we denote the least positive integer such that vv∗ ≡ 1 (mod p). We
rewrite our congruence in the form

(L + x)(L + y)(L + z) ≡ λ (mod p), 1 ≤ x, y, z ≤ M
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which, in turn, is equivalent to the congruence

L2(x + y + z) + L(xy + xz + yz) + xyz ≡ λ− L3 (mod p), 1 ≤ x, y, z ≤ M. (11)

Assume that M ¿ p1/8 and that p is large enough to satisfy several inequalities through-
out the proof. Let

k = max{1, 2M2/p1/4}. (12)

Lemma 5. If L = uv∗ for some integers u, v with |u| ≤ M3/k and 1 ≤ |v| ≤ M2/k, then
the number of solutions of the congruence (11) is at most M o(1).

Proof. The congruence (11) is equivalent to

v2xyz + uv(xy + xz + yz) + u2(x + y + z) ≡ µ (mod p),

where |µ| < p/2 and µ ≡ λv2 − u3v∗ (mod p). The absolute value of the left hand side is
bounded by

(M2/k)2M3 + (M3/k)(M2/k)(3M2) + (M3/k)2(3M) ≤ 7M7/k2 ≤ 7M7/(2M2/p1/4)2

=
7

4
M3p1/2 < p/2.

Hence, the congruence (11) is equivalent to the equality

v2xyz + uv(xy + xz + yz) + u2(x + y + z) = µ.

Multiplying by v, we get

(vx + u)(vy + u)(vz + u) = vµ + u3

The absolute value of the right and the left hand sides is ≤ MO(1), and besides it is distinct
from zero (since vµ + u3 ≡ λv3 (mod p), and λv3 6≡ 0 (mod p). Therefore, the number of
solutions of the latter equation is bounded by M o(1) and the lemma follows.

Due to this conclusion, from now on we can assume that L does not satisfy the condition
of Lemma 5, that is we shall assume that

L 6= uv∗, |u| ≤ M3/k, |v| ≤ M2/k. (13)

For 0 ≤ r, s ≤ 3k− 1 and 0 ≤ t ≤ k− 1 let Sr,s,t be the set of solutions (x, y, z) such that





x + y + z ∈ ( rM
k

, (r+1)M
k

]

xy + xz + yz ∈ ( sM2

k
, (s+1)M2

k
]

xyz ∈ ( tM3

k
, (t+1)M3

k
]

Clearly, the number of solutions I3(M ; L) of our congruence satisfies

I3(M ; L) ≤ 9k3 max |Srst|.
We fix one solution (x0, y0, z0) ∈ Srst. Any other solution (xi, yi, zi) ∈ Srst satisfies the

congruence
AiL

2 + BiL + Ci ≡ 0 (mod p) (14)
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where

Ai = xi + yi + zi − (x0 + y0 + z0),

Bi = xiyi + xizi + yizi − (x0y0 + x0z0 + y0z0),

Ci = xiyizi − x0y0z0.

We have
|Ai| ≤ M/k, |Bi| ≤ M2/k, |Ci| ≤ M3/k. (15)

A solution (xi, yi, zi) 6= (x0, y0, z0) we call degenerated if Ai = 0, and non-degenerated
otherwise.

The set of non-degenerated solutions.

We shall show that there are at most M o(1) non-degenerated solutions. We can assume
that there are at least several non-degenerated solutions (otherwise we are done). With this
set of solutions we shall form a system of congruence with respect to L,L2. Let us fix one
solution (A1, B1, C1). Note that the condition Ai 6= 0 and the inequalities (15) imply that
Ai 6≡ 0 (mod p).

Case (1). If AiB1 6= A1Bi for some i, then in view of (15) we also have that AiB1 6≡ A1Bi

(mod p). Solving the system of equations (14) corresponding to the indices i and 1, we obtain
that

L ≡ (CiA1 − AiC1)(AiB1 − A1Bi)
∗ ≡ uv∗ (mod p),

L2 ≡ (BiC1 − CiB1)(AiB1 − A1Bi)
∗ ≡ u′v∗ (mod p),

where
u = CiA1 − AiC1, v = AiB1 − A1Bi, u′ = BiC1 − CiB1.

From this we derive that

|u| ≤ 2M4/k2, |u′| ≤ 2M5/k2, |v| ≤ 2M3/k2 (16)

and (uv∗)2 ≡ L2 ≡ u′v∗ (mod p). Hence, u2 ≡ u′v (mod p) and, using (16), (12), we get
|u2|, |u′v| ≤ 4M8/k4 ≤ p/4, so that we actually have the equality u2 = u′v.

Multiplying (11) by v, we get

vxyz + u(xy + xz + yz) + u′(x + y + z) ≡ v(λ− L3) (mod p) (17)

Since 1 ≤ x, y, z ≤ M , the inequalities (16) give

|vxyz + u(xy + xz + yz) + u′(x + y + z)| ≤ 14M6

k2
≤ 14M6

(2M2p−1/4)2
=

7M2p1/2

2
< p/2.

This converts the congruence (17) into the equality

vxyz + u(xy + xz + yz) + u′(x + y + z) = µ

for some µ ¿ MO(1) and µ ≡ v(λ − L3) (mod p). We multiply this equality by v2 and use
u′v = u2; we get that

(vx + u)(vy + u)(vz + u) = µv2 + u3. (18)

9



Since µv2 + u3 6= 0, the total number of solutions of the latter equation is ¿ M o(1).

Case (2). If we are not in case (1), then for any index i one has A1Bi = AiB1, which, in
turn, implies that we also have

A1Ci ≡ AiC1 (mod p).

In view of inequalities (15), we get that the latter congruence is also an equality, so that we
have

A1Bi = AiB1, A1Ci = AiC1. (19)

From the first equation and the definition of Ai, Bi, Ci, we get

zi(A1(xi + yi)−B1) = B1(xi + yi − a0)− A1xiyi + b0A1, (20)

from the second equation we get

zi(A1xiyi − C1) = C1(xi + yi − a0) + c0A1, (21)

where
a0 = x0 + y0 + z0, b0 = x0y0 + y0z0 + z0x0, c0 = x0y0z0.

Multiplying (20) by A1xiyi − C1, and (21) by A1(xi + yi) − B1, subtracting the resulting
equalities, and making the change of variables xi + yi = ui, xiyi = vi, we obtain

(B1(ui − a0)− A1vi + b0A1) (A1vi − C1) = (C1(ui − a0) + c0A1) (A1ui −B1) .

We rewrite this equation in the form

A1v
2
i + C1u

2
i −B1uivi − (a0C1 − c0A1)ui − (b0A1 − a0B1 + C1)vi + b0C1 − c0B1 = 0.

If B2
1 − 4A1C1 is a full square (as a number), say R2

1, then from (14) we obtain that
L ≡ (−B1 ± R1)(2A1)

∗ = uv∗ with |u| ≤ |B1| + |B1| +
√
|4A1C1| ≤ 4M2/k, |v| ≤ 2M/k,

which contradicts our condition (13).
If B2

1 − 4A1C1 is not a full square, then we are at the conditions of Proposition 1 and
we can claim that the number of pairs (ui, vi) is at most M o(1). We now conclude the proof
observing that each pair ui, vi produces at most two pairs xi, yi, which, in turn, determines
zi. Therefore, the number of non-degenerated solutions counted in Srst is at most M o(1).

The set of degenerated solutions.

We now consider the set of solutions for which Ai = 0. If Bi 6= 0, then Bi 6≡ 0 (mod p) and
thus we get L = −CiB

∗
i with |Ci| ≤ M3/k, |Bi| ≤ M2/k, which contradicts condition (13).

If Bi = 0 then together with Ai = 0 this implies that Ci = 0. Thus,

xi + yi + zi = a0 = x0 + y0 + z0,

xiyi + xizi + yizi = b0 = x0y0 + y0z0 + z0x0,

xiyizi = c0 = x0y0z0.

Hence,
(L + xi)(L + yi)(L + zi) = (L + x0)(L + y0)(L + z0).

The right hand side is not zero (since it is congruent to λ (mod p) and gcd(λ, p) = 1). Thus,
the number of solutions of this equation is at most M o(1). The result follows.

10



5 Proof of Corollaries

If M < p5/8 then
M4/3+o(1)

p1/3
+ M o(1) < M4/5+o(1)

and the statement of Corollary 1 for I2(M ; K, L) follows from Theorem 1. If M > p5/8 then,
p1/2(log p)2 < M4/5+o(1) and the statement of Corollary 1 for I2(M ; K,L) follows from (5).
Analogously we deal with I2(M ; K, K) considering the cases M > p2/3 and M < p2/3.

In order to prove Corollary 3, let k = Ja(M ; K, L) and let (xi, yi), i = 1, . . . , k, be all
solutions of the congruence y ≡ agx (mod p) with xi ∈ [K+1, K+M ] and yi ∈ [L+1, L+M ].
Since M < t, the numbers y1, . . . , yk are distinct. Since yiyj ≡ agz (mod p) for some z ∈
[2K + 2, 2K + 2M ], there exists a value λ such that for at least k2/2M pairs (yi, yj) we have
yiyj ≡ λ (mod p). Hence, theorem 1 implies that

k2

2M
<

M3/2+o(1)

p1/2
+ M o(1),

and the result follows.
Corollary 4 is proved similar to Corollary 3. For any triple (i, j, `) we have yiyjy` ≡ agz

(mod p) for some z ∈ [3K + 3, 3K + 3M ]. Hence, there exists λ 6≡ 0 (mod p) such that the
congruence yiyjy` ≡ λ (mod p) has at least k3/3M solutions. Thus,

k3

3M
< M o(1),

and the result follows in this case. If M > p1/8, then in the interval [L + 1, L + M ] we can
find a subinterval of length p1/8 which would contain at least k/(2Mp−1/8) members from
y1, . . . , yk. Thus, the preceding argument gives that

(
k

Mp−1/8

)3

3M
< M o(1),

and the result follows.
Now we prove Corollary 2. Let W be the number of solutions of the congruence

xyz ≡ x′y′z′ (mod p), (x, x′, y, y′, z, z′) ∈ I1 × I1 × I2 × I2 × I3 × I3.

Then,

W =
1

p− 1

∑
χ

∣∣∣
∑
x∈I1

χ(x)
∣∣∣
2∣∣∣

∑
y∈I1

χ(y)
∣∣∣
2∣∣∣

∑
z∈I1

χ(z)
∣∣∣
2

,

where χ runs through the set of Dirichlet’s characters modulo p. Applying the Holder’s
inequality, we obtain

W ≤
( 1

p− 1

∑
χ

∣∣∣
∑
x∈I1

χ(x)
∣∣∣
6)1/3( 1

p− 1

∑
χ

∣∣∣
∑
y∈I2

χ(y)
∣∣∣
6)1/3( 1

p− 1

∑
χ

∣∣∣
∑
z∈I3

χ(z)
∣∣∣
6)1/3

.

Thus,
W ≤ W

1/3
1 ·W 1/3

2 ·W 1/3
3 ,
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where Wj is the number of solutions of the congruence

xyz ≡ x′y′z′ (mod p), x, y, z, x′, y′, z′ ∈ Ij.

According to Theorem 2, for each given triple (x′, y′, z′) there are at most |Ij|o(1) possibilities
for (x, y, z). Thus, we have that Wi ≤ |Ij|3+o(1). Therefore,

W ≤ (|I1| · |I2| · |I3|)1+o(1).

Now, using the well known relationship between the cardinality of a product set and the
number of solutions of the corresponding equation, we get

|I1 · I2 · I3| ≥ |I1|2 · |I2|2 · |I3|2
W

≥ (|I1| · |I2| · |I3|)1−o(1)

and the result follows.

6 Conjectures and Open Problems

It is very interesting to us the problem of obtaining similar results in four and higher dimen-
sional cases. Let I4(M ; L) be the number of solutions of the congruence

xyzt ≡ λ (mod p), L + 1 ≤ x, y, z, t ≤ L + M.

When we estimated I3(M ; L) we used its connection with the Pell’s diophantine equation. If
we apply the same method for I4(M ; L) at the first sight it may look that the method works,
however we have not been able to handle diophantine equations that appear in the course of
the argument. Thus, the problem we are interested is to prove that there exists an absolute
constant δ > 0 such that if M < pδ, then I4(M ; L) < M o(1).

We conclude our paper with several conjectures and open problems related to I2(M ; K, L),
I3(M ; L), Ja(M ; K,L) and the product of three small intervals in F∗p.

Conjecture 1. For M < p1/2 one has I2(M ; K, L) < M o(1)

Conjecture 2. For M < p1/3 one has I3(M ; L) < M o(1)

Conjecture 3. For M < p1/2 one has Ja(M ; K, L) < M o(1).

Conjecture 4. Let I1, I2, I3 be intervals in F∗p of length |Ii| < p1/3. Then

|I1 · I2 · I3| = (|I1| · |I2| · |I3|)1−o(1).

Problem 1. From Theorem 1 it follows that if M < p1/4, then I2(M ; K, L) < M o(1). Improve
the exponent 1/4 to a larger constant.

Problem 2. From Theorem 1 it follows that if M < p1/3, then I2(M ; L,L) < M o(1). Improve
the exponent 1/3 to a larger constant.

Problem 3. Theorem 2 claims that if M < p1/8, then I3(M ; L) < M o(1). Improve the
exponent 1/8 to a larger constant.
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