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Abstract. We obtain analogues of several recent bounds on the number of
solutions of polynomial congruences modulo a prime with variables in short
intervals in the case of polynomial equations in high degree extensions of finite
fields. In these settings low-dimensional affine spaces play the role of short
intervals and thus several new ideas are required.

1. Introduction

Recently there has been a series of results that give upper bounds on the
number of solutions of polynomial s-variate congruences modulo a prime p that
are contained in s-dimensional cubes of the form

[K1 + 1, K1 +M ]× . . .× [Ks + 1, Ks +M ]

with a side length M that is small compared to p (so standard methods based
on bounds of exponential sums do not apply), see [3, 4, 5, 6, 7, 8] and references
therein.

Here we formulate and investigate several similar problems in the somewhat
dual setting of finite fields that are large degree extensions of some small field.
Note that many of the tools applicable in the case of congruences modulo p do
not work or even exist in the case of general finite fields. For example, such
important technical tools as analogues of the results of Bombieri and Pila [2] and
Wooley [12, 13], do not exist in the settings of this work (more precisely, in the
settings of function fields). So we use some alternative approaches.

Let Fq be a finite field of q elements and let Fqn = Fq(α) be an extension of
Fq of degree n obtained by adjoining a root α of an irreducible polynomial ψ of
degree n over Fq.

In extension fields Fq, instead of intervals, we consider the following linear
subspaces

Vm = {a0 + a1α + · · ·+ am−1α
m−1 : ai ∈ Fq, i = 0, . . . ,m− 1}, 1 ≤ m ≤ n.

Here, for various polynomials F (X, Y ) ∈ Fqn we obtain non-trivial upper
bounds for number of solutions to the equation

F (x, y) = 0, (x, y) ∈ P0 + Vm × Vm,
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for an arbitrary fixed point P0 = (x0, y0) ∈ Fqn × Fqn and also of some related
equations.

Although our argument can be made uniform with respect to all parameters,
to simplify the exposition and results, we always assume that q is fixed, while
m → ∞. In particular, the implied constants in the symbols ‘O’ and ‘�’ may
depend on q and d = degF , but are uniform with respect to m and n (as usual,
U = O(V ) and U � V mean that |U | ≤ c V with some constant c > 0).

Throughout the paper, for z > 0 we define log z as log z = max{ln z, 1}, where
ln z is the natural logarithm of z.

2. Polynomial Divisor Function

The following estimate is one of our principal tool. It is a polynomial analogue
of the well-known bound on the classical divisor function.

Lemma 1. The number of divisors of a polynomial f ∈ Fq[T ] of degree s is
qO(s/ log s)

Proof. This has been proved in [11] for q = 2, the general case is completely
analogous. �

3. General Curves

Here we consider points in small subspaces on reasonably general polynomial
curves. Our next result is an analogue of [5, Theorem 5] and [7, Theorem 1].

Theorem 2. Let f ∈ Fqn [X] be a polynomial of degree d with p > d ≥ 2,
where p is the characteristic of Fqn. For any positive integer `,m ≤ n and point
P0 = (x0, y0) ∈ Fqn × Fqn, the number of solutions to the equation

f(x) = y, (x, y) ∈ P0 + V` × Vm,

is bounded by q`+O(`/ log `)
(
q−`/2

d−1
+ q−(d`−m)/2d−1

+ q−(n−m)/2d−1
)
.

Proof. Making a change of variables, without lost of generality, we can assume
that P0 = (0, 0). We also assume that f is exactly of degree d, that is, its leading
coefficient A0 6= 0.

Let J be the number of solutions to the corresponding equation. We claim
that for any k = 0, 1, . . . , d there is a polynomial

Fk(X,Z1, . . . , Zk) ∈ Fqn [X,Z1, . . . , Zk]

of the form

Fk(X,Z1, . . . , Zk) = AkX
d−kZ1 · · ·Zk +Gk(X,Z1, . . . , Zk),

where Ak ∈ F∗qn , degX Gk < d−k, where we assign the degree−1 to the identically
zero polynomial (thus Gd is the zero polynomial) and such that

(1) J2k ≤ q`(2
k−k−1)Rk,



CONCENTRATION OF POINTS ON CURVES IN FINITE FIELDS 3

where Rk is the number of solutions to

Fk(x, z1, . . . , zk) = y

with (x, z1, . . . , zk) ∈ V k+1
` , y ∈ Vm.

We prove (1) by induction on k.
Clearly (1) holds for k = 0 with F0(X) = f(X).
Now assume that (1) is correct for some k < d. For a set S ⊆ Fqn we denote

by χS the characteristic function of S. We write

J2k+1 ≤ q`(2
k+1−2k−2)R2

k

= q`(2
k+1−2k−2)

(∑
x∈V`

∑
z1,...,zk∈V`

χV` (Fk(x, z1, . . . , zk))

)2

.

Thus, by the Cauchy inequality

(2) J2k+1 ≤ q`(2
k+1−k−2)

∑
z1,...,zk∈V`

(∑
x∈V`

χV` (Fk(x, z1, . . . , zk))

)2

.

Furthermore(∑
x∈V`

χV` (Fk(x, z1, . . . , zk))

)2

=
∑

x1,x2∈V`

χV` (Fk(x1, z1, . . . , zk)− Fk(x2, z1, . . . , zk))

=
∑
x∈V`

∑
zk+1∈V`

χV` (Fk(x+ zk+1, z1, . . . , zk)− Fk(x, z1, . . . , zk)) .

Recalling (2) we have

(3) J2k+1 � q`(2
k+1−k−2)

∑
x,z1,...,zk+1∈V`

χV` (Fk+1(x, z1, . . . , zk+1)) ,

where

Fk+1(X,Z1, . . . , Zk+1) = Fk(X + Zk+1, Z1, . . . , Zk)− Fk(X,Z1, . . . , Zk)

= Ak(d− k)Xd−(k+1)Z1 . . . Zk+1 +Gk+1(X,Z1, . . . , Zk+1)

and

Gk+1(X,Z1, . . . , Zk+1) = Ak

d−k∑
j=2

(
d− k
j

)
Xd−k−jZj

k+1Z1 · · ·Zk

+Gk(X + Zk+1, Z1, . . . , Zk)−Gk(X,Z1, . . . , Zk).

Since degX Gk(X,Z1, . . . , Zk) < d−k, then degX Gk+1(X,Z1, . . . , Zk+1) < d−k−1
and we conclude the proof of (1).
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We now notice that Fd−1 is of the form

Fd−1(X,Z1, . . . , Zd−1) = Ad−1XZ1 . . . Zd−1 + gd−1(Z1, . . . , Zd−1)

where gd−1(Z1, . . . , Zd−1) ∈ Fqn [Z1, . . . , Zd−1] does not depend on X.
Thus Rd−1 is the number of solutions to the equation

(4) xz1 . . . zd−1 + A−1d−1gd−1 = y, y ∈ A−1d−1Vm, x, z1, . . . , zd−1 ∈ V`
If for some fixed z1, . . . , zd−1 there is a solution (x1, y1) to (4), then for any

other solution (x2, y2) (corresponding to the same z1, . . . , zd−1), we obtain

(x1 − x2)z1 . . . zd−1 = y1 − y2.

Clearly y1 − y2 ∈ A−1d−1Vm. Thus, denoting zd = x1 − x2, we obtain

(5) Rd−1 ≤ q`(d−1) +Qd,

where Qd is the number of solutions to the equation

(6) z1 . . . zd = y, y ∈ A−1d−1Vm, z1, . . . , zd ∈ V`.

Since Fqn ' Fq[T ]/ψ(T ) for some irreducible polynomial ψ(T ) ∈ Fq[T ] of degree
n such that ψ(α) = 0, we can identify any element u ∈ Fqn with the corresponding
polynomial u(T ) ∈ Fq[T ] of degree deg u ≤ n − 1 and thus the equation (6) is
equivalent to the following polynomial congruence

z1 . . . zd ≡ y (mod ψ),

that in turn implies that

z1 . . . zd = y + uψ, deg z1, . . . , deg zd ≤ `− 1,

for some polynomial u ∈ Fq[T ] such that

deg uψ ≤ deg z1 + . . .+ deg zd ≤ d(`− 1)

(and the equation is considered in the rings Fq[T ]). Hence, we infer that deg u ≤
max{−1, d(`−1)−n}, where as before we assign the degree −1 to the identically
zero polynomial.

Therefore, there are at most

qmax{−1,d(`−1)−n}+1qm+1 �
(
1 + qd`−n

)
qm

possibilities for the polynomial w = y + uψ on the right hand side of (3).
If the polynomial w(T ) vanishes, then we obviously have at most dq`(d−1) pos-

sibilities for each solution (z1, . . . zd).
Otherwise, by Lemma 1 we get qO(d`/ log(d`)) = qO(`/ log `) possibilities, for each

polynomial z1, . . . , zd−1, after which zd is uniquely defined. Therefore

Qd � q`(d−1) +
(
1 + qd`−n

)
qm+O(`/ log `)

� q`(d−1) + qm+O(`/ log `) + qd`+m−n+O(`/ log `).
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Hence, by (5),

Rd−1 � q`(d−1) + qm+O(`/ log `) + qd`+m−n+O(`/ log `),

and using (1) with k = d− 1 we conclude the proof. �

We remark that Theorem 2 is nontrivial only if m < d`, which is a rather
natural condition. In fact the example of the polynomial f(X) = Xd shows that
such a condition is necessary.

Furthermore, we see that for a quadratic polynomial f ∈ Fqn [X] and ` = m ≤
n/2 the bound takes form qm/2+o(m), which is actually tight.

Remark 3. We are grateful to the referee for the observation that the Lagrange
interpolation can be used to show that the number of solutions to y = f(x),
(x, y) ∈ Vm × Vm is bounded by qm/2+o(m) (that is, exactly of the same shape
as for d = 2) for any polynomial f ∈ Fqn [X] of degree d ≥ 2, provided that
m < 2n/(d2 + d + 2). On the other hand, one perhaps may expect the bound
qm/d+o(m).

4. Hyperbolas

Here we consider several special curves for which we obtain improvements of
the general estimate of Theorem 2.

For example, we have the following analogue of [6, Theorem 1].

Theorem 4. For any positive integer m ≤ n, point P0 = (x0, y0) ∈ Fqn × Fqn,
and λ ∈ F∗qn, the number of solutions of the equation

xy = λ, (x, y) ∈ P0 + Vm × Vm,
is bounded by

(i)
(
1 + q(4m−n)/3

)
qO(m/ logm) for arbitrary x0, y0;

(ii)
(
1 + q(3m−n)/2

)
qO(m/ logm) for x0 = y0.

Proof. First we consider the case of arbitrary x0, y0. After a change of variable
we have an equivalent equation

(7) xy + ax+ by = c, x, y ∈ Vm
for some a, b, c ∈ Fqn . For any non-negative s ≤ n− 1 we can write

Fqn × Fqn = {(u, v) + αn−s(w, z) : u, v ∈ Vn−s, w, z ∈ Vs}.
For each nonzero t ∈ V2s+1 we write (ta, tb) = (ut, vt) + αn−s(wt, zt) with ut, vt ∈
Vn−s and wt, zt ∈ Vs. By the Dirichlet principle, there is a nonzero t ∈ V2s+1 such
that (wt, zt) = (0, 0), so at = u0, bt = v0 for some u0, v0 ∈ Vn−s. Clearly, the
equation (7) is equivalent to the equation

(8) txy + u0x+ v0y = w0

for some w0 ∈ Fqn .
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Again, we write Fqn ' Fq[T ]/ψ(T ) for some irreducible polynomial ψ(T ) ∈
Fq[T ] of degree n such that ψ(α) = 0, we can identify the elements of Fqn with
the corresponding polynomials in Fq[T ] and the equation (8) is equivalent to the
following equation in Fq[T ]:

t(T )x(T )y(T ) + u0(T )x(T ) + v0(T )y(T )− w0(T ) = z(T )ψ(T ),

deg x, deg y ≤ m− 1.
(9)

We observe that deg u0, deg v0 ≤ n− s− 1 and deg t ≤ 2s. Thus,

deg zψ ≤ max{deg txy, deg u0x, deg v0y, degw0}
≤ max{2s+ 2m− 2, n+m− s− 2, n− 1}.

Then, either z = 0 or

(10) deg z ≤ max{2s+ 2m− n− 2,m− s− 2}.
Multiplying (9) by t, we obtain an equivalent the equation (over Fq[T ]):

(11) (tx+ v0)(ty + u0) = µz,

where µz = t(zψ + w0) + u0v0. Next, we give an upper bound for the number of
solutions of (11) for each z ∈ Fq[T ].

Clearly there are O(1) solutions to xy = λ with (tx+ v0)(ty + u0) = 0.
We now always assume that µz 6= 0 distingue two cases:
Case 1: m ≤ n/4. In this case we take s = m and then z = 0. If deg µ0 ≤ 18m

the number of solutions of (11) is bounded by the numbers of divisors of µ0, which
is qO(m/ logm). If deg µ0 > 18m we claim that (11) has, at most four solutions.
Suppose that we have five solutions, say (x1, y1), . . . , (x5, y5). Renumbering the
variables, can assume that either

(12) deg(txi + v0) ≥
1

2
deg µ0, i = 1, 2, 3.

or

(13) deg(tyi + u0) ≥
1

2
deg µ0, i = 1, 2, 3.

We consider only the case (12) and the case (13) is completely analogous.
Since for i = 1, 2, 3, the polynomial txi + u0 divides µ0, it is clear that

(14) lcm[tx1 + v0, tx2 + v0, tx3 + v0] | µ0

On the other hand,

lcm[tx1 + v0, tx2 + v0, tx3 + v0]

=

∏
1≤i≤3(txi + v0)∏

1≤i<j≤3 gcd(txi + v0, txj + v0)
· gcd(tx1 + v0, tx2 + v0, tx3 + v0).

We observe that if r | (txi + v0) and r | (txj + v0) then r | t(xi − xj). Thus

deg(txi + v0, txj + v0) ≤ m+ 2s− 1 = 3m− 1 <
1

6
deg µ0 − 1
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and we get

deg µ0 ≥ deg lcm[tx1 + v0, tx2 + v0, tx3 + v0]

≥ 3

2
deg µ0 − 3

(
1

6
deg µ0 − 1

)
= deg µ0 + 3.

Case 2: m > n/4. In this case we take s = b(n−m)/3c. By (10) we have

deg z ≤ 4m− n
3

.

For each z, the number of solutions of (11) is bounded by the number of divisors
of µz, which is bounded by qO(n/ logn) = qO(m/ logm) since m > n/4.

Thus, then number of solutions of (9) is bounded by
(
1 + q(4m−n)/3

)
qO(m/ logm)

which implies the desired bound in case of arbitrary x0, y0 ∈ Fqn .
In the “diagonal” case P0 = (x0, x0) ∈ Fqn × Fqn instead of (8) we obtain

txy + u0x + u0y = w0 for some t ∈ Vs+1 and u0 ∈ Vn−s. Repeating the same
argument as in the case of arbitrary x0, y0, we conclude the proof. �

In turn, Theorem 4 can be used to estimate the number of solutions to the
equation

x = ϑu, x = x0 + Vm, u ∈ [u0, u0 +M ],

for x0 ∈ Fqn and some integers m, M and u0, see [4, 6] for analogous results for
congruences modulo p. We do not present this result as one can probably obtain
stronger bounds by using the method of [4].

We now have the following analogue of [1, Theorem 1].

Theorem 5. For any positive integer m ≤ n and a point W0 = (x0, y0, u0, v0) ∈
F4
qn, the number of solutions in Fqn of xy = uv with x, y, u, v ∈ W0 + V 4

m is

bounded by 20q(nq2m + q4m−n).

Proof. The desired number of solutions is

J = #{(x, y, u, v) ∈ W0 + V 4
m : xy = uv}.

After removing the solutions of xy = uv = 0 we obtain

J ≤ 4q2m + #{(x, y, u, v) ∈ W0 + V 4
m : x/u = v/y 6= 0}.

For a, b ∈ Fq now define the set (a+ Vm)/(b+ Vm) as

a+ Vm
b+ Vm

=

{
a+ r

b+ s
∈ F∗qn : r, s ∈ Vm

}
and put

U =

(
x0 + Vm
u0 + Vm

)⋂(
v0 + Vm
y0 + Vm

)
.

Then
J ≤ 4q2m +

∑
λ∈U

Nx0,u0(λ)Nv0,y0(λ),
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where Na,b(λ) is the number of solutions (x, u) ∈ (a, b) +Vm×Vm of the equation
x/u = λ in Fqn . We observe that the Dirichlet principle implies that for any
λ ∈ Fqn there exist r, s ∈ Vbn/2c+1 such that

• r(T ) is monic;
• r(T ) and s(T ) are relatively prime polynomials;
• λ = r/s.

We choose, for each λ a unique such pair r, s.
On the other hand we observe that r/s ∈ U . Thus, the set R of chosen pairs

(r, s) is of cardinality

(15) #R ≤ #U ≤ q2m.

We now write

(16) J ≤ 4q2m +
∑

(r,s)∈R

Nx0,u0(r/s)Nv0,y0(r/s).

We observe that, after a change of variables, Nx0,u0(r/s) is the number of
solutions of ry − sx = c in Fqn for a suitable c ∈ Fqn , with x, y ∈ Vm. As
before, we assume that Fqn ' Fq[T ]/ψ(T ), where ψ(T ) ∈ Fq[T ] is the minimal
polynomial of α and write the above equation as an equation in Fq[T ]:

(17) r(T )y(T )− s(T )x(T ) = c(T ) + u(T )ψ(T ).

Thus Nx0,u0(r/s) equals the number of solutions x, y, u ∈ Fq[T ] to (17) with
deg x, deg y ≤ m−1. We write alsoR for the set of pairs of admissible polynomials
(r, s) (rather than for the set of Fqn elements, as in (16)).

Next we estimate Nx0,u0(r/s) for deg s ≤ deg r. We observe that

deg uψ ≤ max{deg ry, deg sx, deg c} ≤ max{deg r +m− 1, n− 1}.

Thus deg u ≤ max{m+ deg r − n− 1,−1}.
For each u we consider a solution (xu, yu) (in the case it has it). Thus, any

solutions to (17) is of the form (x, y) = (xu + rt, yu + st) with t ∈ Fqn [T ], and
since deg x, deg y ≤ m− 1 we have that deg t ≤ m− 1− deg r. Thus

Nx0,u0(r/s) ≤
∑

u∈Fq [T ]
deg u≤max{m+deg r−n−1,−1}

(
1 + qm−deg r

)
≤

(
1 + qm−deg r

) (
1 + qm−n+deg r

)
.

Similarly, for deg r ≤ deg s we have

Nx0,u0(r/s) ≤
(
1 + qm−deg s

) (
1 + qm−n+deg s

)
.
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Since this estimate does not depend on (x0, u0) and since the case deg r ≤ deg s
can be studied similarly, we see from (16) that

J ≤ 4q2m + 2
∑

(r,s)∈R
deg s≤deg r≤bn/2c

(
1 + qm−deg r

)2 (
1 + qm−n+deg r

)2
≤ 4q2m + 8

∑
(r,s)∈R

deg s≤deg r≤bn/2c

(
1 + q2m−2 deg r

) (
1 + q2m−2n+2deg r

)
≤ 4q2m + 8

∑
(r,s)∈R

deg s≤deg r≤bn/2c

(
1 + q2m−2 deg r + q2m−2n+2deg r + q4m−2n

)
≤ 4q2m + 8#R

(
1 + q2m−n

)
+ 8

∑
s,r∈Fq [T ]
r monic

deg s≤deg r≤bn/2c

(
q2m−2 deg r + q4m−2n

)
.

Using (15) we obtain

(18) J ≤ 12q2m + 8q4m−n + 8
∑

s,r∈Fq [T ]
r monic

deg s≤deg r≤bn/2c

(
q2m−2 deg r + q4m−2n

)
.

Furthermore,∑
s,r∈Fq [T ]
r monic

deg s≤deg r≤bn/2c

(
q2m−2 deg r + q4m−2n

)

≤
∑

r∈Fq [T ]
r monic

deg r≤bn/2c

(
q2m−deg r+1 + q4m−2n+deg r+1

)

≤
bn/2c∑
d=0

∑
r∈Fq [T ]
r monic
deg r=d

(
q2m−d+1 + q4m−2n+d+1

)

≤
bn/2c∑
d=0

(
q2m+1 + q4m−2n+2d+1

)
≤ (bn/2c+ 1]) q2m+1 + 2q4m−n+1.

Recalling (18), we derive

J ≤ 12q2m + 8q4m−n + 8
(
(bn/2c+ 1]) q2m+1 + 2q4m−n+1

)
≤ 6q2m+1 + 4q4m−n+1 + 8

(
(bn/2c+ 1]) q2m+1 + 2q4m−n+1

)
≤ 18nq2m+1 + 20q4m−n+1,

which concludes the proof. �
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Certainly the constant in the bound of Theorem 5 can easily be improved.
We now derive an analogue of the estimates of the 4th moment of character

sums from [1, 9, 10]. In fact in the case of finite fields this bound is more explicit
and precise.

Corollary 6. For any positive integer m ≤ n and an element x0 ∈ Fqn we have∑
χ

∣∣∣∣∣ ∑
x∈x0+Vm

χ(x)

∣∣∣∣∣
4

≤ 20q(nq2m+n + q4m),

where χ runs through all multiplicative characters of Fqn.

From Corollary 6 we immediately obtain the following analogue of [8, Theo-
rem 5].

Theorem 7. For any positive integers k, j, for any positive integer m ≤ n and
a point W0 = (x0, y0, u0, v0) ∈ F4

qn, the number of solutions in Fqn of xkyj = ukvj

with (x, y, u, v) ∈ W0 + V 4
m is bounded by 40

√
kjq(nq2m + q4m−n).

Proof. The number of solutions of xkyj = ukvj = 0 with (x, y, u, v) ∈ W0 +V 4
m is,

at most, 4q2m. Writing Tkj(W0,m) for the number of solutions of the equation
xkyj = ukvj, (x, y, u, v) ∈ W0 + V 4

m, xyuv 6= 0 we have

Tkj(W0,m) =
1

qn − 1

∑
x∈x0+Vm

x 6=0

∑
y∈y0+Vm
y 6=0

∑
u∈u0+Vm

u6=0

∑
v∈v0+Vm
v 6=0

∑
χ

χ(xkyju−kv−j)

=
1

qn − 1

∑
χ

∑
x∈x0+Vm

x 6=0

χk(x)
∑

y∈y0+Vm
y 6=0

χj(y)
∑

u∈u0+Vm
u6=0

χk(u)
∑

v∈v0+Vm
v 6=0

χj(v).

Using Hölder inequality, we obtain

T 4
kj(W0,m) ≤ 1

(qn − 1)4

∑
χ

∣∣∣∣∣ ∑
x∈x0+Vm

χk(x)

∣∣∣∣∣
4

·
∑
χ

∣∣∣∣∣ ∑
y∈y0+Vm

χj(y)

∣∣∣∣∣
4

·
∑
χ

∣∣∣∣∣ ∑
u∈u0+Vm

χk(u)

∣∣∣∣∣
4

·
∑
χ

∣∣∣∣∣ ∑
v∈v0+Vm

χj(v)

∣∣∣∣∣
4

.

(19)

We observe that there exist, at most, k characters χ such that χk is a given
character. Using this and Corollary 6, we obtain∑

χ

∣∣∣∣∣ ∑
x∈x0+Vm

χk(x)

∣∣∣∣∣
4

≤ k
∑
χ

∣∣∣∣∣ ∑
x∈x0+Vm

χ(x)

∣∣∣∣∣
4

≤ 20kq(nq2m+n + q4m).

Putting this estimate, and similar estimates for the other there sums, in (19) and
using that qn − 1 ≥ qn/2 we derive

Tkj(W0,m) ≤ 40
√
kjq(nq2m + q4m−n).
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Adding the solutions of xkyj = ukvj = 0 we get the desired estimate. �

5. Further Questions

Here we mention several possible directions for further study.

Problem 8. Obtain an upper bound on the number of solutions to x2 = λy3 with
(x, y) ∈ P0 + Vm × Vm for some point P0 ∈ F2

qn.

As in [8] (see also [5]) we note that the equation of Problem 8 is related to
studying the distribution of Weierstrass equations of isomorphic elliptic curves.
The methods of [5, 8] are based on the bound of Bombieri and Pila [2, Theo-
rem 4] for the number of integral points on plane algebraic curves. Obtaining an
analogue of this bound in function is certainly of independent interest.

Problem 9. Let K = Fq(T ) and Let F (X, Y ) ∈ K[X, Y ] be an absolutely irre-
ducible polynomial of degree d over K. Obtain an upper bound on the number
of solutions to the equations F (x, y) = 0 in polynomials x(T ), y(T ) ∈ Fq[T ] of
degree at most n (as n→∞).

Motivated by some algorithmic applications, several congruences with products
of variables from small intervals have been considered in [3, 4]. These questions
are also of interest in extensions of finite fields and also have the same algorithmic
implications as in [3].

Problem 10. Obtain tight upper bounds on the number of solutions to symmetric
and one-sided equations

x1 . . . xν = y1 . . . yν and x1 . . . xν = λ,

where λ ∈ Fqn, with variables (x1, . . . , xν) ∈ P0 +Vm× . . .×Vm and (y1, . . . , yν) ∈
Q0 + Vm × . . .× Vm.

Obtaining the analogues of other results of [3, 4] for high degree extensions of
finite fields is of interest too.
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Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento
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