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Abstract

For a polynomial f ∈ Fp[X], we obtain an upper bound on the
number of points (x, f(x)) modulo a prime p which belong to an arbi-
trary square with the side length H. Our results is based on the Vino-
gradov mean value theorem. Using these estimates we obtain results
on the expansion of orbits in dynamical systems generated by nonlin-
ear polynomials and we obtain an asymptotic formula for the number
of visible points on the curve f(x) ≡ y (mod p), where f ∈ Fp[X] is
a polynomial of degree d ≥ 2. We also use some recent results and
techniques from arithmetic combinatorics to study the values (x, f(x))
in more general sets.

Mathematical Subject Classification: 11B50, 37A45

Keywords: polynomial congruences, Vinogradov mean value theorem, ad-
ditive combinatorics, orbits, visible points

1 Introduction

For a prime p, let Fp denote the finite field with p elements, which we always
assume to be represented by the set {0, . . . , p− 1}.

Given a polynomial f ∈ Fp[X] of degree d ≥ 2, a positive integer H < p
and integers K, L, we define by N(H; K,L) the number of solutions to the
congruence

f(x) ≡ y (mod p) (1)

with
(x, y) ∈ [K + 1, K + H]× [L + 1, L + H]. (2)

Using a standard technique and the Weil bound on incomplete Klooster-
man sums one can easily obtain the asymptotic formula

N(H; K,L) =
H2

p
+ O

(
p1/2(log p)2

)
. (3)

where the implied constant depends only on d, see [7] for various generali-
sations of this estimate. It is clear that the main term is dominated by the
error term for H ≤ p3/4 log p and for H ≤ p1/2(log p)2 the result becomes
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weaker than the trivial upper bound N(H; K, L) ≤ H. Here we use a differ-
ent approach and give a nontrivial estimate of N(H; K, L) for any value of
H ≤ p. We note that a nontrivial bound on the number of solutions (x, y)
to congruences

xy ≡ a (mod p) (4)

and
gx ≡ y (mod p), (5)

satisfying (2) have been given in [4] and then has been improved in [5].
Here we use the approach of [5], combined with estimates on the Vino-

gradov mean value theorem (see [10, 11, 18] to estimate N(H; K, L).
Further we consider some generalisations of the original problem. As

usual, for two sets A,B ⊆ Fp, we also employ the notation

A+ B = {a + b : a ∈ A, b ∈ B}. and A · B = {ab : a ∈ A, b ∈ B}.
We say that a set I ⊆ Fp is an almost interval if

# (I + I) = (#I)1+o(1) .

Furthermore, for two almost intervals I and J we call the set I × J and
almost box.

We consider the following two modifications of the congruence (1). For
two almost intervals I and J we denote by M(I,J ) the number of solutions
to

f(x) ≡ y (mod p) (6)

in the almost box I × J , that is, with x ∈ I and y ∈ J .
We now obtain an upper bound on M(I,J ) using the approach of [4]

combined with recent results from additive combinatorics due to Bukh and
Tsimerman [3].

As usual, for a set A ⊆ Fp and a rational function F ∈ Fp[X] we define
the set

F (A) = {F (a) : a ∈ A, a is not a pole of F}.
Also for two sets A,B ⊆ Fp, we also employ the notation

A+ B = {a + b : a ∈ A, b ∈ B} and AB = {a + b : a ∈ A, b ∈ B}.
In [4], a lower bound on max{#(A + A), #(A−1 + A−1)}, due to Bour-

gain [2, Theorem 4.1], has been used. Here we apply a similar argument,
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but we use a bound of [3] on max{#(A+A), #(f(A) + f(A)} instead. This
estimate is also complemented by an estimate obtained via the method of
Garaev [6] that appears to be new and can be of independent interest.

We give two applications of our results.
First we consider orbits of the dynamical system generated by f ∈ Fp[X],

that is, sequences

u0 = u, un = f(un−1), n = 1, 2, . . . , (7)

with some initial value u ∈ Fp. Clearly, any such sequence becomes eventually
periodic, so we denote by Tu the orbit length, that is, Tu be the smallest
positive integer T with

{un : n = 0, . . . , T − 1} = {un : n = 0, 1, . . .}.
Given an initial value u ∈ Fp we consider how far the sequence (7) propagates
in N steps, that is, we study

Lu(N) = max
0≤n≤N

|un − u|.

It has been shown in [8], that

Lu(N) = p1+o(1) (8)

provided that N ≥ p1/2+ε for any fixed ε > 0 (in fact a smilar statement is
given for orbits of iterations of arbitrary rational functions). Here we obtain
a lower bound for essentially arbitrary values of N and Tu. It is based on
similar arguments as those used in [8] for orbits of iterations of linear rational
functions.

Second, for a given polynomial f ∈ Fp[X] of degree d ≥ 2, we also answer
a question posed in [17] by giving a formula for the number of solutions
to (1) in a given box (x, y) ∈ [1, X] × [1, Y ] for real 1 ≤ X, Y ≤ p, with
the additional condition gcd(x, y) = 1. Such points are called visible points
as they are exactly those points of the lattice Z2 that are not obstructed by
other integers points for an observer place at the origin (0, 0). In particular,
we denote

V(X,Y ) = #{(x, y) ∈ [1, X]× [1, Y ] : f(x) ≡ y (mod p), gcd(x, y) = 1}.
In [17] an asymptotic formula for the number of solutions to the more general
congruence F (x, y) ≡ a (mod p) with an absolutely irreducible polynomial
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F ∈ Fp[X, Y ] is given, however only on average over a ∈ Fp (as well as some
results on average over p). Obtaining, “individual” estimates, even in the
case of F (x, y) = f(x)− y has been posed in [17] as an open problem, which
we are now able to address.

We recall that the notations U = O(V ), U ¿ V and V À U are all
equivalent to the statement that the inequality |U | ≤ c V holds with some
constant c > 0. Throughout the paper, any implied constants in these sym-
bols may occasionally depend, where obvious, on d = deg f , but are absolute
otherwise.

2 Main Results

2.1 Points on polynomial curves in small boxes

As usual for positive integers k, d and H we denote by Jk,d(H) the number
of solutions to the system of equations

xν
1 + . . . + xν

k = xν
k+1 + . . . + xν

2k, ν = 1, . . . , d,

in positive integers x1, . . . , x2k ≤ H.
We denote by κ(d) the smallest integer κ such that for k ≥ κ there exists

a constant C(k, d) depending only on k and d and such that the bound

Jk,d(H) ≤ C(k, d)H2k−d(d+1)/2+o(1)

holds as H →∞.
The classical result of Hua [10, Theorem 15] on the Vinogradov mean

value theorem implies that for d ≥ 11

κ(d) ≤ ⌊
d2(3 log d + log log d + 4)

⌋− 11,

see also [18, Theorem 7.4]. Furthermore, explicit numerical estimates on κ(d)
for 2 ≤ d ≤ 10 can be found in [10, Chapter IV] By a very recent striking
result of Wooley [19, Theorem 1.1] we have

κ(d) ≤ d(d + 1)

for any d ≥ 2.
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Theorem 1. Let f ∈ Fp[X] be a polynomial of degree d ≥ 2. Then for any
positive integer H < p, uniformly over arbitrary integers K and L, we have

N(H; K, L) ¿ H(H/p)1/2κ(d)+o(1) + H1−(d−1)/2κ(d)+o(1).

Proof. We can assume that, say, H < p3/4 as otherwise the result follows
from (3).

Making a change of variables, we can also assume that K = L = 0.
Let X be the set of x satisfying (1) and (2) (with K = L = 0). In partic-

ular, N(H; 0, 0) = #X . Then, for any integer k ≥ 1 and any x1 . . . , x2k ∈ X ,
we have

f(x1) + . . . + f(xk)− f(xk+1)− . . .− f(x2k) ≡ z (mod p) (9)

for some z ∈ [−kH, kH]. In particular, there is u ∈ [−kH, kH] such that

N(H; 0, 0)2k ≤ (2kH + 1)Tk(u; H), (10)

where Tk(z; H) is the number of solutions to (9) in 1 ≤ x1 . . . , x2k ≤ H.
Writing

λi = xj
1 + . . . + xj

k − xj
k+1 − . . .− xj

2k, j = 1, . . . , d, (11)

we see that λj ∈ [−kHj, kHj].
For each of O(Hd(d−1)/2) choices of

(λ1, . . . , λd−1) ∈ [−kH, kH]× . . . [−kHd−1, kHd−1],

we see that for any solution to (9) we have

λd ≡ λ (mod p)

for some λ depending only on z and λ1, . . . , λd−1. Therefore λd can take
O(Hd/p + 1) possible values. We now see that for some integers µ1, . . . , µd

Tk(u; H) = (Hd/p + 1)Hd(d−1)/2Jk,d(µ1, . . . , µd; H), (12)

where Jk,d(λ1, . . . , λd; H) is the number of solution to the system of equa-
tions (11) in variables 1 ≤ x1 . . . , x2k ≤ H. We denote

e(z) = exp(2πiz).
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Since for any integer w,
∫ 1

0

e(αw)dα =

{
1, if w = 0,
0, if w 6= 0,

we have the following integral representation of Jk,d(λ1, . . . , λd; H):

Jk,d(λ1, . . . , λd; H)

=
H∑

x1...,x2k=1

∫ 1

0

. . .

∫ 1

0

d∏
j=1

e

(
αj

(
2k∑

ν=1

(−1)νxj
ν − λj

))
dα1 . . . dαd

=

∫ 1

0

. . .

∫ 1

0

∣∣∣∣∣
H∑

x=1

e

(
d∑

j=1

αjx
j

)∣∣∣∣∣

2k

e

(
−

d∑
j=1

αjλj

)
dα1 . . . dαd.

Therefore,

Jk,d(λ1, . . . , λd; H) ≤ Jk,d(0, . . . , 0; H) = Jk,d(H).

Thus, recalling (10) and (12), we derive

N(H; 0, 0)2k ¿ (Hd/p + 1)Hd(d−1)/2+1Jk,d(H).

We now take k = κ(d) which leads us to the estimate

N(H; 0, 0)2k ¿ (Hd/p + 1)H2k−d+1+o(1) = H2k+1+o(1)/p + H2k−d+1+o(1)

and concludes the proof. ut
For the number of points in very small boxes we can get a better bound

by using the following estimate of Bombieri and Pila [1] on the number of
integral points on polynomial curves.

Lemma 2. Let C be an absolutely irreducible curve of degree d ≥ 2 and
H ≥ exp(d6). Then the number of integral points on C and inside of a square
[0, H]× [0, H] does not exceed H1/d exp(12

√
d log H log log H).

We use Lemma 2 to prove an almost sharp estimate for N(H; K, L) when
H ¿ p2/(d2+3).

Theorem 3. Let f ∈ Fp[X] be a polynomial of degree d ≥ 2. Then for any
positive integer H ≤ p2/(d2+3), uniformly over arbitrary integers K and L, we
have

N(H; K, L) ¿ H1/d+o(1).
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Proof. Again we can assume that K = L = 0. For a given integer v 6≡ 0
(mod p), by v∗ denote its multiplicative inverse (the least positive integer
such that vv∗ ≡ 1 (mod p)).

Let f(X) = a0 +a1X + . . .+adX
d and suppose that there are N solutions

of the congruence f(x) ≡ y (mod p), 1 ≤ x, y ≤ H. We may assume that
N ≥ 2(d+1). Then, there exist d+1 solutions (x1, y1), . . . , (xd+1, yd+1) such
that x1, . . . , xd+1 lie in an interval of length 2(d + 1)H/N .

Now, we consider the system




a0 + a1x1 + . . . + adx
d
1 ≡ y1 (mod p);

. . .
a0 + a1xd+1 + . . . + adx

d
d+1 ≡ yd+1 (mod p).

The determinant of this system is the determinant of Vandermonde,

v =

∣∣∣∣∣∣

1 x1 . . . xd
1

. . . . . . . . . . . .
1 xd+1 . . . xd

d+1

∣∣∣∣∣∣
=

∏

1≤i<j≤d+1

(xj − xi). (13)

Note that v 6≡ 0 (mod p). Thus, we have that ai ≡ uiv
∗ (mod p), where

ui =

∣∣∣∣∣∣

1 . . . xi−1
1 y1 xi+1

1 . . . xd
1

. . . . . . . . . . . .
1 . . . xi−1

d+1 yd+1 xi+1
d+1 . . . xd

d+1

∣∣∣∣∣∣
=

d+1∑
j=1

(−1)i+jyjVij (14)

and Vij is the determinant of the matrix obtained from the Vandermonde
matrix after removing the j-th row and the i-th column.

We note that Vij is a polynomial in d variables x1, . . . , xj−1, xj+1, . . . , xd+1

of degree d(d + 1)/2 − i which vanishes when xr = xl for distinct r and l.
Thus

Vij =
∏

1≤r<s≤d+1
r,s6=j

(xs − xr)W (x1, . . . , xj−1, xj+1, . . . , xd+1), (15)

where W is a polynomial (that does not depend on f or p) of degree d −
i. Therefore, we have |Vij| ¿ (H/N)d(d−1)/2Hd−i. This estimate and (14)
together imply the bound

|ui| ¿ (H/N)d(d−1)/2Hd+1−i. (16)

On the other hand, it is clear that

|v| ¿ (H/N)d(d+1)/2. (17)
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Then, the congruence f(x) ≡ y (mod p), 1 ≤ x, y ≤ H is equivalent to
the congruence

u0 + u1x + . . . + udx
d ≡ vy (mod p), 1 ≤ x, y ≤ H

where ui = vai, i = 0, . . . , d.
We can write this congruence as the diophantine equation

u0 + u1x + . . . + udx
d − vy = pt, 1 ≤ x, y ≤ H, t ∈ Z. (18)

We have

|t| ≤ |u0|+ . . . + |ud|Hd + |v|H
p

¿ (H/N)d(d−1)/2Hd+1

p

¿ (H/N)d(d−1)/2Hd+1

H(d2+3)/2
¿ (H1/d/N)d(d−1)/2.

For each value of t, we see from Lemma 2 that the number of integer
solutions 1 ≤ x, y ≤ H to the equation (18) in Lemma 2 is bounded by
H1/d+o(1). Thus

N ¿ (
(H1/d/N)d(d−1)/2 + 1

)
H1/d+o(1),

which implies N ¿ H1/d+o(1). ut

2.2 Sum-product estimates

Some of our results are based on estimating the size of the sets A + A and
f(A) + f(A). For small sets A ⊆ Fp of size at most

√
p, a sum-product

estimate with polynomials f ∈ Fp[X] is given by [3, Theorem 1].

Lemma 4. Let f ∈ Fp[X] be a polynomial of degree d ≥ 2. Then for every
set A ⊆ Fp of size #A ≤ √

p we have

max{#(A+A), #(f(A) + f(A)} À (#A)1+1/16·6d

.

For large sets A ⊆ Fp of size #A >
√

p, we use the method of Garaev [6].
We first estimate exponential sums with two arbitrary sets U ,V ⊆ Fp

Sλ(U ,V) =
∑
u∈U

∑
v∈V

ep (λf(u− v)) ,

where ep(z) = exp(2πiz/p) and using exactly the same technique as in [4]
we have the following result.
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Lemma 5. Let f ∈ Fp[X] be a polynomial of degree d ≥ 2. Then for any
two sets U ,V ⊆ Fp, we have the following estimate

max
λ∈F∗p

|Sλ(U ,V)| ≤
√

p#U#V .

Proof. Using the orthogonality of additive characters, we write

|Sλ(U ,V)| =

∣∣∣∣∣
p−1∑
t=0

ep (λf(t))
1

p

p−1∑

b=0

∑
u∈U

∑
v∈V

ep (b(t− u + v))

∣∣∣∣∣

=

∣∣∣∣∣
1

p

p−1∑

b=0

p−1∑
t=0

∑
u∈U

∑
v∈V

ep(b(t− u + v) + λf(t))

∣∣∣∣∣

≤ 1

p

p−1∑

b=0

∣∣∣∣∣
∑
u∈U

ep(bu)

∣∣∣∣∣

∣∣∣∣∣
∑
v∈V

ep(bv)

∣∣∣∣∣

∣∣∣∣∣
p−1∑
t=0

ep(bt + λf(t))

∣∣∣∣∣ .

Now, for λ ∈ F∗p, applying the Weil bound (see [14, Theorem 5.38]) to the
sum over t, and applying the Cauchy-Schwarz inequality to the sum over u
and v, we obtain

|Sλ(U ,V)| ≤ d

p1/2




p−1∑

b=0

∣∣∣∣∣
∑
u∈U

ep(bu)

∣∣∣∣∣

2



1/2 


p−1∑

b=0

∣∣∣∣∣
∑
v∈V

ep(bv)

∣∣∣∣∣

2



1/2

=
d

p1/2
(p#U)1/2(p#V)1/2 = d

√
p#U#V

(19)

provided that gcd(λ, p) = 1. ut
Following exactly the argument of Garaev [6] and using the estimate of

Lemma 5, we obtain the following result for large sets A ⊆ Fp.

Lemma 6. Let f ∈ Fp[X] be a polynomial of degree d ≥ 2. Then for every
set A ⊆ Fp of size #A ≥ √

p we have

#(A+A) ·#(f(A) + f(A)) À min

{
p#A,

(#A)4

p

}
.

Proof. We consider the equation

f(a1) + f(b− a2) = c, (a1, a2, b, c) ∈ A×A× B × C, (20)
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where
B = A+A and C = f(A) + f(A).

Let J be the number of solutions to (20).
For any triple (a1, a2, a3) ∈ A×A×A, we see that the vector

(a1, a2, b, c) = (a1, a2, a2 + a3, f(a1) + f(a3))

is a solution to (20) and different triples (a1, a2, a3) give different solutions.
Therefore

J ≥ (#A)3. (21)

We can also express J via exponential sums

J =
∑
a1∈A

∑
a2∈A

∑

b∈B

∑
c∈C

1

p

p−1∑

λ=0

ep (λ (f(a1) + f(b− a2)− c)) .

Changing the order of summation, separating the term (#A)2#B#C/p cor-
responding to λ = 0 and recalling (21), we obtain

(#A)3 ≤ (#A)2#B#C
p

+
1

p

p−1∑

λ=1

|Sλ(B,A)|
∣∣∣∣∣
∑
a∈A

∑
c∈C

ep (λ (f(a)− c))

∣∣∣∣∣ .

By (19) we obtain

(#A)3 ¿(#A)2#B#C
p

+
√

p−1#A#B
p−1∑

λ=1

∣∣∣∣∣
∑
a∈A

ep (λf(a))

∣∣∣∣∣

∣∣∣∣∣
∑
c∈C

ep (λc)

∣∣∣∣∣ .

(22)

Adding to the sum over λ the term corresponding to λ = 0 and then applying
the Cauchy-Schwarz inequality, as in (19), we obtain

p−1∑

λ=1

∣∣∣∣∣
∑
a∈A

ep (λf(a))

∣∣∣∣∣

∣∣∣∣∣
∑
c∈C

ep (λc)

∣∣∣∣∣

≤
(

p−1∑

λ=0

∑
a1,a2∈A

ep (λ(f(a1)− f(a2))

)1/2

·
(

p−1∑

λ=0

∑
c1,c2∈C

ep (λ(c1 − c2)

)1/2

.
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Therefore

p−1∑

λ=1

∣∣∣∣∣
∑
a1∈A

ep (λf(a1))

∣∣∣∣∣

∣∣∣∣∣
∑
c∈C

ep (λc)

∣∣∣∣∣ ¿ p
√

#A#C,

which after inserting into (22) implies the desired result. ut
In particular, using Lemma 4 directly if #A < p1/2, applying it to any

subset A0 ⊆ A with #A0 =
⌊
p1/2

⌋
for p1/2 ≤ #A ≤ p1/2+1/64·6d

and using
Lemma 6, otherwise, we see that, for every set A ⊆ Fp

max{#(A+A), #(f(A) + f(A))}

À





(#A)1+1/16·6d
, if #A ≤ p1/2,

p1/2+1/32·6d
, if p1/2 < #A ≤ p1/2+1/64·6d

,

p−1/2(#A)2, if p1/2+1/64·6d
< #A ≤ p2/3,

p1/2(#A)1/2, if p2/3 < #A ≤ p.

In particular, for #A ≤ p2/3 we have

max{#(A+A), #(f(A) + f(A))} À (#A)1+η(d), (23)

where

η(d) =
1

32 · 6d + 1
.

We also note that in the range #A > p2/3 the above result implies the
optimal bound

max{#(A+A), #(f(A) + f(A))} À p1/2(#A)1/2 (24)

in the general setting (the optimality can be shown via the same pigeon-hole
principles as in [6]).

2.3 Points on polynomial curves in almost boxes

Following the same ideas as in [4, Theorem 3], putting together Lemmas 4
and 6, we have the following result.
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Theorem 7. Let f ∈ Fp[X] be a polynomial of degree d ≥ 2. Then for any
almost intervals I,J ⊆ Fp with #I, #J ≤ H, we have

M(I,J ) ¿ H2+o(1)

p
+ H1−ϑ(d)+o(1),

where

ϑ(d) =
1

32 · 6d + 2
.

Proof. We consider the set A of smallest nonnegative residues modulo p of
x ∈ I such that f(x) is congruent modulo p to some integer y ∈ J . Thus
M(I,J ) = #A

Clearly
#(A+A) ≤ #(I + I) ≤ (#I)1+o(1)

and
#(f(A) + f(A)) ≤ #(J + J ) ≤ (#I)1+o(1) .

Using (23) and (24), we conclude the proof. ut

3 Applications

3.1 Expansion of polynomial iterations

Applying now Theorem 1 we have the following estimate for the expansion
of orbits in polynomial dynamical systems.

Theorem 8. Let f ∈ Fp[X] be a polynomial of degree d ≥ 2 and let {un}
be the sequence generated by (7) on the initial value u ∈ Fp. Then for Tu ≥
N ≥ 1 we have

Lu(N) À min{N2κ(d)/(1+2κ(d))+o(1)p1/(1+2κ(d)), N1+(d−1)/(2κ(d)−d+1)+o(1)}.

Proof. We can assume that N ≤ p2/3 since otherwise the bound (8) holds.
Clearly the pairs (un, un+1) = (un, f(un)), n = 0, 1, ..., N − 1, are all distinct
(since N ≤ Tu) and all belong to the square [u − Lu(N), u + Lu(N)] × [u −
Lu(N), u + Lu(N)]. Therefore

N ≤ N (2Lu(N); u− Lu(N), u− Lu(N)) .

13



Using now Theorem 1, we derive

N ¿ Lu(N)(Lu(N)/p)1/(2κ(d)+o(1) + Lu(N)1−(d−1)/(2κ(d)+o(1),

which concludes the proof. ut
Certainly for large values of N one can improve Theorem 8 by using (3)

instead of Theorem 1.

3.2 Visible points on polynomial curves

Following exactly the proof of [17, Theorem 2] and the estimate given by
Theorem 1 we obtain an asymptotic formula for the number of visible points
#V(X, Y ).

Theorem 9. Let f ∈ Fp[X] be a polynomial of degree d ≥ 2. For any positive
ε > 0 there exists some positive η > 0, such that for real positive X,Y ≤ p
with

min{X, Y } > p1−1/(4κ(d)+2)+ε

we have

#V(X, Y ) =

(
6

π2
+ O(p−η)

)
XY

p
.

Proof. For an integer n, we define

M(n; X, Y ) = #{(s, t) ∈ [1, X/n]× [1, Y/n] : f(ns) ≡ nt (mod p)}.

Using [17, Bound (5)], we see that for any D ≥ 1 we have

∣∣∣∣#V(X,Y )− 6

π2
· XY

p

∣∣∣∣ ¿
XY

Dp
+ Dp1/2(log p)2 +

∑
n>D

M(n; X, Y ). (25)

We further split the last sum into two parts:

∑
n>D

M(n; X,Y ) = Σ1 + Σ2 (26)

where

Σ1 =
∑

D<n<E

M(n; X, Y ) and Σ2 =
∑
n≥E

M(n; X, Y )

14



with a suitable number E ≥ D to be chosen later.
We observe that Σ2 is bounded by the number of solutions of the congru-

ence

f(zx) ≡ zy (mod p), 1 ≤ x ≤ X/E, 1 ≤ y ≤ Y/E, z ≥ 1.

For each given x, y we have a polynomial congruence in variable z of degree
d which has, at most d solutions. Hence,

Σ2 ¿ XY/E2 ¿ Z2/E2, (27)

where Z = max{X,Y }.
Now, by Theorem 1 we have

M(n; X,Y ) ¿ Z

n

(
Z

np

)1/2κ(d)+o(1)

+

(
Z

n

)1−(d−1)/2κ(d)+o(1)

.

Therefore,

Σ1 ¿ Z1+1/2κ(d)+o(1)D−1/2κ(d)p−1/2κ(d) + Z1−(d−1)/2κ(d)+o(1)E(d−1)/2κ(d). (28)

Putting together (25), (26), (27) and (28) we have
∣∣∣∣#V(X,Y )− 6

π2
· XY

p

∣∣∣∣ ¿ Z2

Dp
+ Dp1/2(log p)2 + Z1+o(1)(Z/pD)1/2κ(d)

+Z1−(d−1)/2κ(d)+o(1)E(d−1)/κ(d) + Z2/E2.

Choosing D to satisfy

Dp1/2 = Z1+1/2κ(d)D−1/2κ(d)p−1/2κ(d)

and E to satisfy
Z1−(d−1)/2κ(d)E(d−1)/2κ(d) = Z2/E2,

that is,

D = Zp−(κ(d)+1)/(2κ(d)+1) and E = Z1/2+(d−1)/(8κ(d)+2d−2)

and replacing powers of log p with po(1), we derive
∣∣∣∣#V(X, Y )− 6

π2
· XY

p

∣∣∣∣
¿ Zp−κ(d)/(4κ(d)+2) + Zp−1/(4κ(d)+2)+o(1) + Z1−(d−1)/(4κ(d)+d−1)+o(1)

¿ XY

p

(
p1−1/(4κ(d)+2)+o(1)

min{X,Y } +
p

min{X, Y }1+(d−1)/(4κ(d)+d−1)+o(1)

)
.
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In view of the condition min{X, Y } > p1−1/(4κ(d)+2)+ε, the result now follows.
ut

We note that the result of Theorem 9 seems to be new and nontrivial
even for X = Y = p. In this case the argument of the proof of Theorem 9
gives a more explicit estimate

#V(p, p) =
6

π2
p + O

(
p1−1/(4κ(d)+2)+o(1)

)
.

4 Comments

We remark that the method of proof of Theorem 3 resembles that of [15].
On the other hand, the result of [15] has been improved by Konyagin and
Steger [13]. So it is natural to try to use the method of [13] (and thus consider
higher dimensional determinants with the entries of the form xi

hy
j
h). We leave

the exploring this direction as an open problem.
We say that a set G ⊆ Fp is an almost group if

# (G · G) = (#G)1+o(1) .

Now, for an almost interval I and an almost group G we denote by T (G, I)
the number of solutions to

f(z) ≡ y (mod p)

where y ∈ I, z ∈ G, which is a generalisation of the congruence (5). Using [3,
Theorem 2] instead of [3, Theorem 1], as well as analogues of other results
of Section 2.2, and repeating the argument of the proof of Theorem 7, one
can obtain a nontrivial upper bound on T (G, I). Furthermore, using the
argument of [4], one can also estimate the number of solutions to (4) in
almost boxes. In fact, using [9, 12] one can obtain and explicit form of the
estimate of Bourgain [2, Theorem 4.1] on max{#(A + A), #(A−1 + A−1)},
and thus obtain a explicit estimate on the number of solutions to (4) in
almost boxes.

This method however does not seem to apply to the congruence

f(x) ≡ z (mod p)

where x ∈ I, z ∈ G for an almost interval I and an almost group G, which
is certainly an interesting object of study.
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