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Abstract. Let p(n) be the function that counts the number of parti-
tions of n. For a positive integer m, let P (m) be the largest prime factor
of m. Here, we show that P (p(n)) tends to infinity when n tends to
infinity through some set of asymptotic density 1. In fact, we show that
the inequality P (p(n)) > log log n holds for almost all positive integers
n. This improves a result of the second author from [3].

1. Introduction

Let p(n) be the partition function of n, which is the number of ways of

writing n = λ1 + λ2 + · · · + λk, where k ≥ 1 and 1 ≤ λ1 ≤ · · · ≤ λk are

positive integers. There is a huge literature on this function with respect to

its size, congruence properties, recurrence relations, and so on. Put P (m)

for the largest prime factor of the positive integer m with the convention

that P (1) = 1 and let ω(m) be the number of distinct prime factors of m.

In response to a question of Erdős and Ivić, Schinzel showed ω(
∏N

m=1 p(m))

tends to infinity with N (this is Lemma 2 in [2]). His method used lower

bounds for nonzero linear forms in logarithms of algebraic numbers. Later,

Schinzel and Wirsing [6] proved the effective result

(1.1) ω(
N∏
m=1

p(m)) ≥ (1− ε) logN

log 2
if N > N0(ε)

valid for all ε > 0. The proof of estimate (1.1) does not use linear forms in

logarithms.

Here, we visit Schinzel’s original argument and prove the following result.

Theorem 1. The set of n for which the inequality

P (p(n)) > log log n

holds is of asymptotic density 1.
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This improves a result of the second author from [3], where it is proved

by a different method that the inequality P (p(n)) > log log log log log log n

holds for almost all positive integers n.

Notation. We use c1, c2, . . . for computable positive constants that appear

increasingly throughout the paper. We use the Landau symbols O and o and

the Vinogradov symbols �, � and � with their usual menaings. Recall

that A = O(B), A� B and B � A are all equivalent to the fact that the

inequality |A| ≤ cB holds with some constant c. The constants implied by

these symbols in our arguments are absolute. Furthermore, A � B means

that both A � B and B � A hold, and A = o(B) and A ∼ B mean that

A/B tends to 0 and to 1, respectively.

2. Preliminary results

We start with Rademacher’s formula for p(n) (Chapter 5 in [1]).

Lemma 1. We have

(2.1)

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k

[
d

dx

(
sinh((π/k)

√
2/3(x− 1/24))√

x− 1/24

)]
x=n

,

where

Ak(n) :=
∑

1≤h≤k
gcd(h,k)=1

ωh,ke
−2πinh/k

with ωh,k being the root of unity of order 24 given by

ωh,k := eπis(h,k),

and s(h, k) is the Dedekind sum

s(h, k) :=
k−1∑
µ=1

(
µ

k
−
[µ
k

]
− 1

2

)(
hµ

k
−
[
hµ

k

]
− 1

2

)
.

In practice, one may truncate the sum appearing in (2.1) at k := b
√
nc

and then the nearest integer to this partial sum is exactly the value of

p(n) when n > n0 is sufficiently large. Since in the range k ≤
√
n the kth

term of the expansion (2.1) is of order of magnitude O(exp(c1

√
n/k), where

c1 := π
√

2/3 and A1(n) = 1, we get that

(2.2) p(n) =
1

π
√

2

[
d

dx

(
sinh(π

√
2/3(x− 1/24))√
x− 1/24

)]
x=n

+O(exp(c1

√
n/2).
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The first term of the expansion (2.2) is, after some calculation

1

π
√

2

[
d

dx

(
sinh(π

√
2/3(x− 1/24))√
x− 1/24

)]
x=n

=
ec1
√
n−1/24

2π
√

2(n− 1/24)

(
π√
6
− 1

2
√
n− 1/24

)
+O(exp(−c1

√
n)).(2.3)

Putting together (2.2) and (2.3), we get our working formula

(2.4) p(n) = ec1
√
n−1/24f(n) +O(ec1

√
n/2),

where

(2.5) f(n) :=
1

4
√

3(n− 1/24)

[
1− c2√

n− 1/24

]

and c2 =

√
3/2

π
.

We shall also need a result of Matveev [4] from transcendental number

theory. But first, some notation. For an algebraic number η having

F (X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X]

as minimal polynomial over the integers, the logarithmic height of η is de-

fined as

h(η) :=
1

d

(
log |a0|+

d∑
i=1

log max
{∣∣η(i)

∣∣ , 1}) .
With this notation, Matveev [4] proved the following deep theorem.

Lemma 2. Let K be a field of degree D, η1, . . . , ηk be nonzero elements

of K, and b1, . . . , bk be integers. Put B := max{|b1|, . . . , |bk|}, and Λ :=

1−
∏k

i=1 η
bi
i . Let A1, . . . , Ak be real numbers such that

Aj ≥ max{Dh(ηj), | log ηj|, 0.16}, j = 1, . . . , k.

Then, assuming that Λ 6= 0, we have

log |Λ| > −3 · 30k+4(k + 1)5.5D2(1 + logD)(1 + log(kB))
k∏
i=1

Ai.

We shall use the above result only when η1, . . . , ηk are rational. So, K :=

Q, D = 1, and the logarithmic height of η := r/s, with nonzero coprime

integers r and s is just log(max{|r|, |s|}).



4 J. CILLERUELO AND F. LUCA

3. The proof of Theorem 1

We let x be a large positive real number. Let 2 = p1 < p2 < · · · < pk <

· · · be the increasing sequence of prime numbers. We put r := r(x) for a

function tending slowly to infinity and let

(3.1) Nr(x) := {n ∈ [x, 2x) : P (p(n)) ≤ pr}.

Our goal is to show that if r(x) is chosen such that pr ≤ log log x then

#Nr(x) = o(x) as x → ∞, since once we have done that then Theorem

1 will follow by replacing x with x/2, then with x/4, and so on, and then

summing up all these estimates.

Well, let us assume that n ∈ Nr(x) and write

(3.2) p(n) =: pa1
1 · · · par

r .

Comparing relation (3.2) with (2.4), we get

ec1
√
n−1/24f(n)− pa1

1 · · · par
r = O(e(c1/2)

√
n).

Dividing across by ec1
√
n−1/14f(n), we get

1− e−c1
√
n−1/24f(n)−1pa1

1 · · · par
r = O

(
ne−(c1/2)

√
n
)

= O
(
e−c3

√
n
)
,

where c3 := c1/3. Taking logarithms, we get

(3.3)∣∣∣c1

√
n− 1/24 + log f(n)− a1 log p1 − · · · − ar log pr

∣∣∣ = O
(
e−c3

√
n
)
.

We let z := log x, K := bz1/2c, and assume that there exists an interval

[n, n + z) ⊂ [x, 2x) containing K numbers n1 < n2 < · · · < nK such that

P (p(ni)) ≤ pr for all i = 1, . . . , K.

Indeed, if this is not the case, then we can split [x, 2x) in O(x/z) intervals

of length z, each one containing at most K − 1 elements of Nr(x) and then

it would follow that

(3.4) #Nr(x)�
(x
z

)
· (K − 1) = O

(
x

(log x)1/2

)
= o(x) as x→∞,

which is what we want to prove.

For i = 1, . . . , K, let us write

p(ni) =
r∏
j=1

p
αi,j

j .

Put

g(x) := c1

√
x− 1/24 + log f(x).
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We let y = bx1/4c, yi ∈ {0, 1, . . . , byc} and compute

(3.5)
K∑
i=1

yig(ni).

The absolute value of a vector shown in (3.5) is O(Kyx1/2) and there are

(byc + 1)K such vectors. Thus, by the Pigeon Hole Principle, there is a

nonzero vector y := (y1, . . . , yK) with integer components |yi| ≤ y for all

i = 1, . . . , K, such that

(3.6)

∣∣∣∣∣
K∑
i=1

yig(ni)

∣∣∣∣∣� Ky
√
x

(byc+ 1)K − 1
� x

yK
=

1

xK/4−1
� 1

xK/5
.

Writing down relations (3.3) for n := ni for i = 1, . . . , K we get∣∣∣∣∣g(ni)−
r∑
j=1

αi,j log pj

∣∣∣∣∣ = O(exp(−c3

√
x)), for i = 1, . . . , K,

and taking linear combinations of the above relations with the coefficients

y = (y1, . . . , yK), we get that for large x we have

(3.7)

∣∣∣∣∣
K∑
i=1

yig(ni)−
r∑
j=1

βj log pj

∣∣∣∣∣� Ky exp(−c3

√
x) ≤ exp(−c4

√
x),

where we can take c4 := c3/2 and

(3.8) βj :=
K∑
i=1

yiαi,j for all j = 1, . . . , r.

Comparing the upper bounds from (3.6) and (3.7), we get that∣∣∣∣∣
r∑
j=1

βj log pj

∣∣∣∣∣ ≤
∣∣∣∣∣
K∑
i=1

yig(ni)

∣∣∣∣∣+O(exp(−c4

√
x))

= O

(
1

xK/5
+

1

exp(c4

√
x)

)
= O

(
1

xK/5

)
.(3.9)

We distinguish two cases. In the first case, we assume that

Γ :=
r∑
j=1

βj log pj

is nonzero. Hence, we have that the inequality

(3.10) |Γ| ≤ 1

xK/6

holds for all large enough x. Now Γ is nonzero but Γ = o(1), so Γ ∼ eΓ−1 =:

Λ 6= 0 as x→∞, and we can use Matveev’s result Lemma 2 to find a lower

bound on this last expression.
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We take, in the notations of Lemma 2,

k := r, ηj := pj and bj := βj for j = 1, . . . , r.

Clearly, K := Q, so D = 1, and Aj := log pj for j = 1, . . . , r.

We also use the fact that the inequality pm ≤ (m + 1)2 holds for all

positive integers m (see, for example, (3.13) in [5]).

As for B, observe that

αi,j ≤ log p(n)/ log pj � x1/2 holds for all j = 1, . . . , r and i = 1, . . . , K,

therefore, using (3.8), we deduce that

|βj| � yKx1/2 = o(x) as x→∞.

So, we can take B := x for all sufficiently large x, and then we have that

indeed

B ≥ max{|βj| : j = 1, . . . , r}
holds. Lemma 2 shows that there exists some absolute constant c5 such that

the inequality

(3.11) |Λ| > exp
(
−cr5(log x)(log(r + 1)2)r

)
holds. Comparing the last estimate (3.11) above with estimate (3.10) and

using the fact that |Λ| ∼ |Γ| as x→∞, we get that the inequality

(2c5 log(r + 1))r ≥ K

7

holds for large values of x. In turn, this implies that the inequality

r log log(r + 1) ≥ logK +O(1) ≥ c6 log log x

holds for large x, where we can take c6 := 1/3. Hence,

r � log log x

log log log log x
.

With the Prime Number Theorem (or with the Chebyshev estimates), we

get that

pr � r log r � log log x

(
log log log x

log log log log x

)
.

Note that the function appearing in the right–hand side above is of order

at least log log x, which for large x contradicts our assumption that pr ≤
log log x. Thus, we get a contradiction assuming that Γ 6= 0.

Now we deal with the harder case when Γ = 0. Well, in this case, in-

equality (3.7) becomes

(3.12)

∣∣∣∣∣
K∑
i=1

yig(ni)

∣∣∣∣∣ = O(exp(−c4

√
x)).
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We write each ni := n+ λi for i = 1, . . . , K (note that λ1 = 0, although we

will not use this information), and write the Taylor series

g(ni) =
∞∑
k=0

g(k)(n)

k!
λki for all i = 1, . . . , K,

which, via estimate (3.12), yields

(3.13)

∣∣∣∣∣
∞∑
k=0

g(k)(n)

k!

K∑
i=1

yiλ
k
i

∣∣∣∣∣ = O(exp(−c4

√
x)).

We need the derivatives of g(y). Observe that

g(t) =
√
t− 1/24− log

(
t− 1

24

)
− log c7 + log

(
1− c2√

t− 1/24

)
,

where c7 := 4
√

3 and c2 :=
√

3/2/π. For k ≥ 1, one checks easily, by

induction, that

dk

dtk

√
t− 1/24 = (−1)k−1

(
1

2

)(
1

2

)
· · ·
(

2k − 3

2

)
1

(t− 1/24)(2k−1)/2

= (−1)k−1 (2k − 2)!

(k − 1)!22k−1(t− 1/24)(2k−1)/2
,(3.14)

and that

(3.15)
dk

dtk
log

(
t− 1

24

)
= (−1)k−1 (k − 1)!

(t− 1/24)k
.

Finally, using the Taylor series expansion for log(1− y), we get easily that

(3.16) log

(
1− c2√

t− 1/24

)
= −

∑
j≥1

cj2
j(t− 1/24)j/2

,

and taking derivatives, we arrive at

dk

dtk

(
log

(
1− c2√

t− 1/24

))
= −

∑
j≥1

cj2
j

dk

dyk

(
1

(t− 1/24)j/2

)

= (−1)k+1
∑
j≥1

cj2
j

(
j(j + 2) · · · (j + 2(k − 1))

2k(t− 1/24)j/2+k

)
(3.17)

To get a contradiction, we shall show that for large x, inequality (3.13) leads

to the conclusion that

(3.18)
K∑
i=1

yiλ
k
i = 0 for k = 0, 1, . . . , K − 1.

Assuming that we proved that, it follows that y is a zero of the linear

map whose matrix A has as ith row the vector (λi−1
1 , · · · , λi−1

K ) for all
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i = 1, . . . , K. However, A is nonsingular because its determinant is a Van-

dermonde whose value is
∏

1≤i<j≤K(λj − λi) 6= 0, so y = 0, which is the

contradiction.

Well, let’s get to work and prove that relations (3.18) must hold for large

x by induction on k.

Put

Mk(t) :=

∣∣∣∣g(k)(t)

k!

∣∣∣∣ for t ∈ [n, n+ z].

Relations (3.14), (3.15) and (3.17) show easily that

(3.19) Mk(t) �
1

k3/2nk−1/2

uniformly in k ≤ K, t ∈ [n, n + z] and n ∈ [x, 2x]. Indeed, for (3.14), by

Stirling’s formula, we have

1

k!

∣∣∣∣ dkdtk√t− 1/24

∣∣∣∣ =
(2k − 2)!

(k − 1)!k!22k−1(t− 1/24)k−1/2

� 1

k1/222k−1

((2k − 2)/e)2k−2

(k/e)k ((k − 1)/e)k−1

1

nk−1/2

(
1 +O

( z
n

))k−1/2

� 1

k3/2

(
1− 1

k

)k−1
1

nk−1/2

(
1 +O

(
zK

x

))
� 1

k3/2nk−1/2
,(3.20)

uniformly for k ≤ K and n ∈ [x, 2x]. From (3.15), we have

1

k!

∣∣∣∣ dkdtk
(

log

(
t− 1

24

))∣∣∣∣ =
1

k(t− 1/24)k

=
1

knk

(
1 +O

( z
n

))k
=

1

knk

(
1 +O

(
Kz

x

))
� 1

knk
.(3.21)

For (3.17), put

aj,k :=
cj2
j

(
j(j + 2) · · · (j + 2(k − 1))

2k(t− 1/24)j/2

)
for j ≥ 1.

Observe that

aj+1,k

aj,k
= c2

(
j

j + 1

)(
(j + 1) · · · (j + 1 + 2(k − 1))

j · · · (j + 2(k − 1))

)
1

(t− 1/24)1/2

�
(
j + 1 + 2(k − 1)

j

)
1

(t− 1/24)1/2
� K

x1/2
= o(1)
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uniformly in j ≥ 1, k ≤ K, and n ∈ [x, 2x] as x→∞, which shows that in

the series shown in (3.17), the first term dominates. Thus,

1

k!

∣∣∣∣∣ dkdtk log

(
1− c2√

t− 1/24

)∣∣∣∣∣ � 1 · 3 · · · (2k − 1)

k!2k(t− 1/24)k+1/2

=
2k!

22kk!2nk+1/2

(
1 +O

( z
n

))k+1/2

(3.22)

� 1

k1/2

(2k/e)2k

22k(k/e)2k

1

nk+1/2

(
1 +O

(
Kz

x

))
� 1

k1/2nk+1/2
.

Since the terms arising from (3.20), (3.21) and (3.22) are of different orders

of magnitude with the term coming from (3.20) dominating, we get estimate

(3.19).

Now we are ready to prove that relations (3.18) must hold. Let us take

k = 0 and use the Taylor’s formula with remainder at k = 1 in (3.12) getting

√
n

∣∣∣∣∣
K∑
i=1

yi

∣∣∣∣∣ � |g(0)(n)
K∑
i=1

yiλ
0
i |

� max
n≤t≤n+z

{∣∣∣g(1)(t)

1!

∣∣∣} K∑
i=1

|yiλi|+ exp(−c4

√
x)

� yKz

n1/2
+ exp(−c4

√
x)� yKz

n1/2
,(3.23)

giving

(3.24)

∣∣∣∣∣
k∑
i=1

yi

∣∣∣∣∣� yKz

n
� yKz

x
= o(1) as x→∞,

and since the left–hand side of the inequality (3.24) above is an integer, we

get that

(3.25)
K∑
i=1

yi = 0,

which is the desired relation (3.12) with k = 0. Assume now by induction

that relation (3.12) holds for all exponents 0, 1, . . . , k−1 for some k ≤ K−1

and let us prove it for k. Applying again the Taylor formula with remainder

at k in (3.12) and the induction hypothesis, as well as calculation (3.19),
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we get that

1

k3/2nk−1/2

∣∣∣∣∣
K∑
i=1

yiλ
k
i

∣∣∣∣∣�
∣∣∣∣∣g(k)(n)

k!

K∑
i=1

yiλ
k
i

∣∣∣∣∣ =

∣∣∣∣∣
k∑
`=0

g(`)(n)

`!

K∑
i=1

yiλ
`
i

∣∣∣∣∣
� max

n≤t≤n+z

{∣∣∣g(k+1)(t)

(k + 1)!

∣∣∣} K∑
i=1

|yiλi|k+1 + exp(−c4

√
x)

� yKzK

(k + 1)3/2nk+1−1/2
+ exp(−c4

√
x)� yKzK

(k + 1)3/2nk+1−1/2
,

where the last inequality follows because the last term exp(−c4

√
x) is of a

smaller order than
1

K3/2nK+1
> exp

(
−(log(2x))3/2 − (log log x)

)
.

Thus, we get from the above calculation that

(3.26)

∣∣∣∣∣
K∑
i=1

yiλ
k
i

∣∣∣∣∣� yKzK

n
� yKzK

x
= o(1) as x→∞,

because the numerator of the right–hand side in inequality (3.26) is

yKzK ≤ x1/4(log x)1/2(log x)(log x)1/2

= x1/4 exp(O((log x)1/2 log log x)

= o(x)

as x → ∞. Since the right–hand side of the inequality (3.26) above is an

integer, we get that
∑K

i=1 yiλ
k
i = 0, as desired. Thus, we obtained a contra-

diction, assuming that Γ = 0. Hence, both cases Γ = 0 and Γ 6= 0 yielded

contradictions, so the conclusion is that an interval [n, n+ z] ⊂ [x, 2x) can-

not contain K members of Nr(x). Now the argument used previously to

derive estimate (3.4) yields the desired conclusion.
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