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Abstract. We prove that for any base b ≥ 2 and for any linear homogeneous

recurrence sequence {an}n≥1 satisfying certain conditions, there exits a positive

constant c > 0 such that #{n ≤ x : an is palindromic in base b} � x1−c.

1. Introduction

Probably F6 = 55 is the largest palindromic Fibonacci number. It seems, how-

ever, a hard problem to decide if there are only finitely many of these numbers.

Luca proved that for any base b ≥ 2, the set

{n : Fn is palindromic in base b > 1}

has zero density [L]. We will use a distinct approach to prove a stronger and more

general result for a broader class of linear recurrent sequences.

Theorem 1.1. Let b ≥ 2 be an integer and let {an}n≥1 be the linear recurrent

sequence of integers of minimal recurrence relation

(1.1) an+k = c1an+k−1 + · · ·+ ckan, (n ≥ 1),

where ci ∈ Z for 1 ≤ i ≤ k. If the polynomial C(X) = Xk − c1Xk−1− · · · − ck has

a unique dominant root α1 > 0 which is multiplicatively independent with b, then

there exists c = c(b) > 0 such that

#{n ≤ x : an is palindromic in base b} = O(x1−c).

An inmediate corollary is that the number of Fibonnaci numbers up to x which

are palindromes in any base is O(x1−c), for some constant c > 0. We prove that

in this case we can take c = 10−11.

Corollary 1.2. We have that

#{n ≤ x : Fn is palindrome in base 10} � x1−10
−11

.
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2. Preliminary results

In this section, we recall several well known results that will be used in the

paper. The linear recurrence sequence given by (1.1) can be solved as follows.

Theorem 2.1. The general solution of (1.1) is given by

(2.1) an =
R∑
i=1

αni pi(n),

where the corresponding characteristic polynomial

Xk − c1Xk−1 − · · · − ck−1X − ck =
R∏
i=1

(X − αi)mi ,

has R distinct complex roots αi with multiplicity mi, and pi(X) is a polynomial

of degree mi − 1 and coefficients determined by the first k terms of the sequence

{an}n≥1 for i = 1, . . . , R.

For more details refer to [E, §2.3, 2.5].

We say that α1 is dominant if |α1| > |αi| for all 1 < i ≤ R (if the dominant root

exists, we can always index it as the first one by rearranging the roots if needed).

Clearly, the dominant root is real, has |α1| > 1 and p1(X) is a polynomial with

real coefficients. In particular, the sign of an is the same as the sign of the leading

term of p1(x) for all large n when α1 > 0, whereas the sign of an is (−1)n times the

sign of the leading term of p1(X) for all large n when a1 < 0. Thus, by replacing

C(X) with (−1)kC(−X), and simultaneously changing the signs of pi(X) for all

i = 1, . . . , R, if needed (operations which do not change |an| for any n ≥ 1), we

may assume that α1 > 0 and that an is positive for all large n.

Lemma 2.2. Let M be an integer greater than 1. Any recurrence sequence satis-

fying (1.1) is periodic modulus M . The period m = m(M) satisfies m ≤Mk.

Proof. Consider the k-tuples ar = (ar, ar+1, . . . , ar+k−1), 1 ≤ r ≤ Mk + 1. By the

pigeon-hole principle, two of them are equal modulo M , say ar ≡ ar′ (mod M).

Denote m = r′ − r. Since the value of an (mod M) is determined by the k

previous values an−i (mod M) for i = 1, . . . , k of the sequence, we have that the

two sequences an, n ≥ r and am+n, n ≥ r are the same sequence (mod M).

Thus, an ≡ am+n (mod M) for all n. �
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We say that the sequence {sk}k≥1 ⊂ [0, 1] is well distributed if for any interval

I ⊂ [0, 1) we have that DI(x) = o(x) as x→∞, where

DI(x) =

∣∣∣∣#{k ≤ x : sk ∈ I}
x

− |I|
∣∣∣∣ .

Write D(x) = supI⊂[0,1)DI(x). A quantitative version of this definition is the

following inequality.

Theorem 2.3 (Erdős-Turán). For any positive integer M and any sequence {sk}

(2.2) D(y) ≤ y

M + 1
+ 3

M∑
m=1

1

m

∣∣∣∣∣ ∑
1≤j≤y

e(j sk)

∣∣∣∣∣ ,
where e(x) = e2πix.

See [K-N, page 112] for more details.

We will write ‖x‖ for the distance of any real number x to the the nearest

integer.

Theorem 2.4 (Baker). For any algebraic independent numbers y, z there exists

δ = δ(y, z) > 0 such that ‖n log y/ log z‖ � n−δ.

To compute an explicit δ for our example involving the Fibonacci sequence and

the base 10, we use the following result due to Matveev [M]. Recall that for an

algebraic number η we write h(η) for its logarithmic height whose formula is

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(
max{|η(i)|, 1}

))
,

with d being the degree of η over Q and

(2.3) f(X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X]

being the minimal primitive polynomial over the integers having positive leading

coefficient a0 and η as a root.

With this notation, Matveev proved the following deep theorem:

Theorem 2.5 (Matveev). Let K be a number field of degree D over Q, γ1, . . . , γt
be positive reals of K, and b1, . . . , bt rational integers. Put

B ≥ max{|b1|, . . . , |bt|},
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and

Λ := γb11 · · · γbtt − 1.

Let A1, . . . , At be real numbers such that

Ai ≥ max{Dh(γi), | log γi|, 0.16}, i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

|Λ| > exp
(
−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At

)
.

Corollary 2.6. In Theorem 2.4, we can take δ((1 +
√

5)/2, 10) = 4.92× 1010.

Proof. In Matveev’s theorem, we take t = 2, γ1 = (1+
√

5)/2, γ2 = 10, K = Q[
√

5]

for which D = 2. We can then take A1 = 0.5 > 2h(γ1) = log((1 +
√

5)/2),

A2 = 4.7 > 2h(γ2). For an integer n ≥ 2 consider the expression

‖n log γ1/ log γ2‖ =
1

log γ2
|n log γ1 −m log γ2|

for some integer m. Clearly, m < n, for if not the right–hand side above is at least,

n

log γ2
| log γ2 − log γ1| ≥ 2n ≥ 6,

a contradiction. Thus, m < n. Then B := max{m,n} = n. Put z = n log γ1 −
m log γ2. Then

|z|
log γ2

= ‖n log γ1/ log γ2‖ ≤
1

2
,

therefore |z| ≤ (log γ2)/2 < 1.5. Thus,

|ez − 1|
|z|

≤ e1.5 − 1

1.5
< 2.5.

We thus get that

‖n log γ1/ log γ2‖ =
|z|

log γ2
≥ 1

2.5 log γ2
|ez − 1| > 1

6
|γn1 γ−m2 − 1| := |Λ|

6
.

The right-hand side above is not zero since γ1 and γ2 are multiplicatively indepen-

dent. We apply Theorem 2.5 to get the following inequality:

|Λ| ≥ exp
(
−1.4× 305 × 24.5 × 22(1 + log 2)(1 + log n)A1A2

)
.

Using the fact that n ≥ 3, we have 1 + log n < 2 log n, therefore

|Λ| > n−c,



PALINDROMES IN LINEAR RECURRENCE SEQUENCES 5

where we can take

c = 1.4× 305 × 24.5 × 22 × (1 + log 2)× 2× 0.5× 4.7 < 2.46× 1010.

Hence,

‖n log γ1/ log γ2‖ >
1

6
n−c > n−2c,

which completes the proof of this corollary since 2c = 4.92× 1010. �

3. Proof of theorem 1.1

It is enough to prove the estimate for dyadic intervals

P (x) = {n : x/2 < n ≤ x, an is palindromic in base b}.

For any positive integer t = t(x), Lemma 2.2 yields an integer mt which is the

period of the sequence {an} modulo bt. The value of an (mod bt) is determined

by the residue of n (mod bt). We will write ξr for the residue of ar (mod bt) and

ξr for the number obtained from ξr by reversing digits. We have that for n ≡ r

(mod mt) we have that an ≡ ξr (mod bt). A typical sufficiently large palindromic

number an with n ≡ r (mod mt) can be written in base b as

an = ξr · · · ξr,

where both ξr and ξr are strings of t digits in base b. The value of t will be

taken at the end of the proof but certainly it will be t(x) = O(log x). Thus when

x/2 < n ≤ x we have that bt <
√
|an| holds for x large enough, so ξr and ξr do

not overlap. For short, we call J = bt throughout this proof. Also we define α by

mt = Jα. Note that Lemma 2.2 implies that α ≤ k.

Since the t most significant digits of an are coincident with the t digits of the

number ξr, we can write

(3.1) an = ξrb
d(1 + θb−t) 0 ≤ θ < 1,

for some positive integer d. By hypothesis, we know that |α2/α1| < 1. Thus, we

have that

|
R∑
i=2

(αi/α1)
npi(n)/p1(n)| � nmaxi(deg(pi))|α2/α1|n � xO(1)|α2/α1|x/2 < b−t
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for x large enough. By Theorem 2.1, we have

an = αn1p1(n) +
R∑
i=2

αni pi(n) = αn1 p1(n)
(
1 +O

(
J−1
))
.

Taking logarithms and inserting (3.1) we have

log ξr + d log b+ log
(
1 + θJ−1

)
= n logα1 + log p1(n) +O(J−1).

We consider first the case when the multiplicity of α1 is m1 = 1, so the polynomial

p1(n) is a constant, say p1(n) = p1. Therefore

d = n
logα1

log b
+

log p1 − log ξr
log b

+O(J−1).

Thus, when x/2 < n ≤ x, n ≡ r (mod mt) and an is palindromic, we have that∥∥∥∥n logα1

log b
− γr

∥∥∥∥� J−1,

where

γr =
log ξr − log p1

log b
.

Hence, by the Cauchy-Schwarz inequality, we have

|P (x)|2 =

(
mt−1∑
r=0

#{n ∈ P (x) : n ≡ r (mod mt)}

)2

� mt

mt−1∑
r=0

# {n, n′ ∈ P (x), n, n′ ≡ r (mod mt)}

� mt# {n, n′ ∈ P (x), n ≡ n′ (mod mt)} .

We observe that if n, n′ ∈ P (x) then∥∥∥∥|n− n′| logα1

log b

∥∥∥∥ =

∥∥∥∥(n− n′) logα1

log b

∥∥∥∥
≤

∥∥∥∥n logα1

log b
− γr

∥∥∥∥+

∥∥∥∥n′ logα1

log b
− γr

∥∥∥∥
� J−1.

Furthermore |n − n′| = lmt for some 0 ≤ l ≤ x
2mt

and, given l and n ∈ P (x),

there are at most two distinct n′ such that |n − n′| = lmt. Thus, for each l, the
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number of pairs n, n′ ∈ P (x) with |n − n′| = lmt is bounded by 2|P (x)|. With

these observations we have

|P (x)| � mt

|P (x)|
#

{
n, n′ ∈ P (x), n ≡ n′ (mod mt),

∥∥∥∥|n− n′| logα1

log b

∥∥∥∥� J−1
}(3.2)

� mt#

{
l : 0 ≤ l ≤ x

2mt

,

∥∥∥∥lmt
logα1

log b

∥∥∥∥ ≤ C

J

}
,

for some constant C. Now we apply Lemma 2.3 to the sequence sl = ‖lmt
logα1

log b
‖,

the interval [0, C/J ] and y = x
2mt

. It gives

|P (x)| � mj

(
1 +

Cx

2Jmt

+D

(
x

2mt

))
.

By Theorem 2.2, we have

D

(
x

2mt

)
� x

2mtT
+

T∑
i=1

1

i

∣∣∣∣∣∣
∑

1≤j≤x/(2mt)

e

(
ijmt

logα1

log b

)∣∣∣∣∣∣
� x

2mtT
+

T∑
i=1

1

i

1

‖imt
logα1

log b
‖
.

As α1 and b are algebraically independent, Theorem 2.4 yields that there exists

δ = δ(α1, b) > 0 such that

D

(
x

2mt

)
� x

2mtT
+

T∑
i=1

1

i
(imt)

δ

� x

2mtT
+ T δmδ

t

� x
δ

1+δ ,

where we take T = bx
1
δ+1/mtc. Indeed as t = t(x) grows with x, inserting this in

(3.1) we have

|P (x)| � x

J
+mjx

δ
1+δ(3.3)

� x

J
+ Jαx

δ
1+δ

� x1−
1

(1+δ)(1+α) ,

where we take J ∼ x
1

(1+δ)(1+α) as x→∞.
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Now we consider the case when the multiplicity of α1 is m1 ≥ 2. In this case,

we split the interval [x/2, x] in J intervals Ij = [nj, nj+1] of length ∼ x/(2J).

We observe that if n ∈ Ij then log p1(n) = log p1(nj) + O(J−1). Thus, if n ∈
Ij ∩ P (x), n ≡ r (mod mt), we have that∥∥∥∥n logα1

log b
− γr,j

∥∥∥∥� J−1,

where

γr,j =
log ξr − log p1(nj)

log b
.

If we denote by Pj(x) = P (x) ∩ Ij, we proceed as above to get that

|Pj(x)| � mt#

{
l : 0 ≤ l ≤ x

J2mt

,

∥∥∥∥lmt
logα1

log b

∥∥∥∥ ≤ C

J

}
(3.4)

� mj

(
1 +

Cx

2J2mt

+D

(
x

2Jmt

))
.(3.5)

As in the case m1 = 1, we have

D

(
x

2Jmt

)
� x

2mtT
+ T δmδ

t � (x/J)
δ

1+δ ,

therefore

|Pj(x)| � x

J2
+mj(x/J)

δ
1+δ

� x

J2
+ Jα−

δ
1+δx

δ
1+δ .

Thus,

|P (x)| =
J∑
j=1

|Pj(x)| � x

J
+ Jα+1− δ

1+δx
δ

1+δ � x1−
1

(α+1)(1+δ)+1

where we take J ∼ x
1

(α+1)(1+δ)+1 , as x→∞.

3.1. Proof of Corollary 1.2. The characteristic polynomial of the Fibonacci

recurrence has α1 = 1+
√
5

2
as the unique dominant root. It has multiplicity m1 = 1,

so we can apply the estimate (3.3). It is known that for b = 10 and t ≥ 2, the

period of the Fibonacci sequence (mod 10t) is mt = 3×10t � 10t, so we can take

α = 1. Thus, by Corollary 2.6, we have

#{n ≤ x : Fn is base 10 palindrome} � x
1− 1

2(1+4.92×1010)+1 � x1−10
−11

,

which is what we wanted to prove.
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4. Comments and further problems

Each of the binary recurrent sequences of general term an = 10n + 1 or 10n − 1

consists of palindromes in base 10. This shows that in the case of the dominant

root, the condition that the dominant root and the base be multiplicatively inde-

pendent cannot be removed without affecting the conclusion of Theorem 1.1. In

a related spirit, we mention that in [L-T], it was shown that the largest base 2

palindrome of the form 10n ± 1 is 99 = 110011(2).

We believe the conclusion of the theorem also holds under the somewhat more

general hypothesis namely that the sequence is non degenerated (i.e, that αi/αj
is not a root of 1 for i 6= j in {1, . . . , R}, and that the absolute value of the

largest root of the characteristic polynomial is multiplicatively independent over

b. However, we could not deal with the case when a dominant root is not present

and we leave this as an open research problem for the reader.
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