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1 Introduction

A Carmichael number is a positive integer N which is composite and the con-
gruence aN ≡ a (mod N) holds for all integers a. The smallest Carmichael
number is N = 561 and was found by Carmichael in 1910 in [6]. It is well–
known that there are infinitely many Carmichael numbers (see [1]). Here,
we let k be any odd positive integer and study the presence of Carmichael
numbers in the sequence of general term 2nk +1. Since it is known [15] that
the sequence 2n + 1 does not contain Carmichael numbers, we will assume
that k ≥ 3 through the paper. We have the following result.

For a positive integer m let τ(m) be the number of positive divisors of
m. We also write ω(m) for the number of distinct prime factors of m. For
a positive real number x we write log x for its natural logarithm.
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Theorem 1. Let k ≥ 3 be an odd integer. If N = 2nk + 1 is Carmichael,
then

n < 22×106τ(k)2(log k)2ω(k). (1)

The proof of Theorem 1 uses a quantitative version of the Subspace
Theorem as well as lower bounds for linear forms in logarithms of algebraic
numbers.

Besides k = 1 there are other values of k for which the sequence 2nk + 1
does not contain any Carmichael numbers. Indeed in [2] it has been shown,
among other things, that if we put

K = {k : (2nk + 1)n≥0 contains some Carmichael number}
then K is of asymptotic density zero. This contrasts with the known fact
that the set

{k : (2nk + 1)n≥0 contains some prime number}
is of lower positive density (see [9]). Since 1729 = 26×27+1 is a Carmichael
number, we have that 27 ∈ K. While Theorem 1 gives us an upper bound
on the largest possible n such that 2nk + 1 is Carmichael, it is not useful in
practice to check if a given k belongs to K. Here, we prove by elementary
means the following result.

Theorem 2. The smallest element of K is 27.

For the proofs of Theorems 1 and 2, we start with some elementary
preliminary considerations concerning prime factors of Carmichael numbers
of the form 2nk +1, namely Lemmas 1, 2, 3 and 4. Then we move on to the
proofs of Theorem 1 and 2.

2 Preliminary considerations

Here we collect come results about prime factors of Carmichael numbers of
the form 2nk + 1. There is no lack of generality in assuming that k is odd.
We start by recalling Korselt’s criterion.

Lemma 1. N is Carmichael if and only if N is composite, squarefree and
p− 1 | N − 1 for all prime factors p of N .

Assume now that k is fixed and N = 2nk + 1 is a Carmichael number
for some n. By Lemma 1, it follows that

2nk + 1 =
s∏

i=1

(2midi + 1), (2)
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where s ≥ 2, 1 ≤ mi ≤ n and di are divisors of k such that pi = 2midi + 1 is
prime for i = 1, . . . , s. The prime factors p = 2md + 1 of N for which d = 1
are called Fermat primes. For them, we must have m = 2α for some integer
α ≥ 0. The next result shows that one can bound the Fermat prime factors
of 2nk + 1 in terms of k.

Lemma 2. If k ≥ 3 is odd and p = 22α
+ 1 is a prime factor of the positive

integer N = 2nk + 1, then p < k2.

Proof. If α = 0, then p = 3 < k2 because k ≥ 3. So, we assume that α ≥ 1.
We write n = 2αq + r, where |r| ≤ 2α−1. Then

N = 2nk + 1 = 22αq+rk + 1 ≡ (−1)q2rk + 1 (mod p).

It then follows easily that p divides one of 2|r|k ± 1 or k ± 2|r| according to
the parity of q and the sign of r. None of the above expressions is zero and
the maximum such expression is 2|r|k+1. Hence, p ≤ 2|r|k+1 ≤ 22α−1

k+1,
which implies 22α−1 ≤ k, so 22α ≤ k2. Clearly, the inequality is in fact
strict since the left–hand side is even and the right–hand side is odd, so
p = 22α

+ 1 ≤ k2, and the inequality is again strict since p is prime and k2

isn’t, which completes the proof of the lemma.

Primes factors p = 2md + 1 of N for which 2nk and 2md are multiplica-
tively dependent play a peculiar role in the subsequent argument. In what
follows, we prove that there can be at most one such prime factor.

Lemma 3. Assume that p = 2md+1 is a proper prime divisor of the integer
N = 2nk+1, such that d | k and 2md and 2nk are multiplicatively dependent.
Then p ≤ 2n/3k1/3 + 1. Furthermore N has at most a prime factor p such
that p− 1 and N − 1 are multiplicatively dependent.

Proof. Let ρ be the minimal positive integer such that 2nk = ρu for some
positive integer u. Since 2md and 2nk are multiplicatively dependent, it
follows that 2md = ρv for some positive integer v. Since 2md < 2nk, it follows
that v < u. Furthermore, ρv ≡ −1 (mod p) and also ρu ≡ −1 (mod p).
This implies easily that ν2(u) = ν2(v), where νp(m) denotes the exponent of
the prime p in the factorization of m. To see this, write u = 2αuu1, v = 2αvv1

with u1, v1 odd integers and assume, for example, that αu < αv. We get a
contradiction observing that

−1 ≡ ρvu1 ≡ (ρ2αuu1v1)2
αv−αu ≡ (ρuv1)2

αv−αu ≡ 1 (mod p).
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Writing α = ν2(u) = ν2(v), we get that u = 2αu1, v = 2αv1 for some odd
integers u1 and v1. Furthermore, since p = (ρ2α

)v1 + 1 is prime, it follows
that v1 = 1, otherwise p would have ρ2α

+ 1 as a proper factor. This shows
that p is uniquely determined in terms of 2nk. Furthermore, since u1 ≥ 3,
we get that ρ2α ≤ (2nk)1/3, so p ≤ 2n/3k1/3 + 1.

The next lemma shows that each of the prime factors p = 2md+1 of the
Carmichael number N = 2nk+1 for which 2md and 2nk are multiplicatively
independent is small.

Lemma 4. Assume that p = 2md + 1 is a prime divisor of the Carmichael
number N = 2nk + 1 such that d > 1 and 2nk and 2md are multiplicatively
independent. Then

m < 7
√

n log k whenever n > 3 log k.

Proof. Let p = d2m + 1 be the prime factor of k2n + 1. Put X = n/ log k.
Consider the congruences

d2m ≡ −1 (mod p) and k2n ≡ −1 (mod p). (3)

Look at the set of numbers

{mu + nv : (u, v) ∈ {0, 1, . . . , bX1/2c}}.

All the numbers in the above set are in the interval [0, 2nX1/2] and there
are (bX1/2c + 1)2 > X of them. Thus, there exist (u1, v1) 6= (u2, v2) such
that

|(mu1 + nv1)− (mu2 + nv2)| ≤ 2nX1/2

X − 1
<

3n

X1/2
= 3

√
n log k

provided that X > 3, which is equivalent to n > 3 log k. We put u = u1−u2

and v = v1 − v2. Then

(u, v) 6= (0, 0), max{|u|, |v|} ≤ X1/2 and |um + vn| ≤ 3
√

n log k. (4)

We may also assume that gcd(u, v) = 1, otherwise we may replace the pair
(u, v) by the pair (u/ gcd(u, v)), v/ gcd(u, v)) and then all inequalities (4) are
still satisfied. In the system of congruences (3), we exponentiate the first
one to u and the second one to v and multiply the resulting congruences
getting

2um+vndukv ≡ (−1)u+v (mod p).
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Thus, p divides the numerator of the rational number

2um+vndukv − (−1)u+v. (5)

Let us see that the expression appearing at (5) above is not zero. Assume
that it is. Then, since k and d are odd, we get that um + vn = 0, dukv = 1
and u + v is even. In particular, (2md)u(2nk)v = 1, which is false because
(u, v) 6= (0, 0) and 2nk and 2md are multiplicatively independent. Thus,
the expression (5) is nonzero. Since p is a divisor of the numerator of the
nonzero rational number shown at (5), we get, by using also (4), that

p ≤ 2|um+vn|d|u|k|v| + 1 ≤ 21+3
√

n log kk2X1/2

= 21+(3+2/ log 2)
√

n log k < 27
√

n log k, (6)

because 2/ log 2 < 3, which implies the desired conclusion.

3 The Quantitative Subspace Theorem

We need a quantitative version of the Subspace Theorem due to Evertse. Let
us recall it. Let MQ be all the places of Q; i.e. the ordinary absolute value
and the p-adic absolute value. For y ∈ Q and w ∈ MQ we put |y|w = |y| if
w = ∞ and |y|w = p−νp(y) if w corresponds to the prime number p. When
y = 0, we set νp(y) = ∞ and |y|w = 0. Then

∏

y∈MQ

|y|w = 1 holds for all y ∈ Q∗.

Let M ≥ 2 be a positive integer and define the height of the rational vector
y = (y1, . . . , yM ) ∈ QM as follows. For w ∈ MQ write

|y|w =

{ (∑M
i=1 y2

i

)1/2
if w = ∞;

max{|y1|w, . . . , |yM |w} if w < ∞.

Set
H(y) =

∏

w∈MQ

|y|w.

For a linear form L(y) =
∑M

i=1 aiyi with a = (a1, . . . , aM ) ∈ QM , we write
H(L) = H(a).
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Theorem 3 (Evertse). Let S be a finite subset of MQ of cardinality s con-
taining the infinite place and for every w ∈ S we let L1,w, . . . , LM,w be M
linearly independent linear forms in M indeterminates whose coefficients in
Q satisfy

H(Li,w) ≤ H for i = 1, . . . , M and w ∈ S. (7)

Let 0 < δ < 1 and consider the inequality

∏

w∈S

M∏

i=1

|Li,w(y)|w
|y|w <

( ∏

w∈S
|det(L1,w, . . . , LM,w)|w

)
H(y)−M−δ. (8)

There exist linear subspaces T1, . . . , Tt1 of QM with

t1 ≤
(
260M2

δ−7M
)s

, (9)

such that every solution y ∈ QN\{0} of (8) satisfying H(y) ≥ H belongs to
T1

⋃ · · ·⋃ Tt1.

We shall apply Theorem 3 to a certain finite subset of S of MQ and
certain systems of linear forms Li,w with i = 1, . . . , M and w ∈ S. Moreover,
in our case the points y for which (8) holds are in (Z∗)M . In particular
|y|w ≤ 1 will hold for all finite w ∈ MQ, as well as the inequalities

1 ≤ H(y) ≤
∏

w∈S
|y|w ≤ M max{|yi| : i = 1, . . . ,M}.

Finally, our linear forms will have integer coefficients and will in fact satisfy

det(L1,w, . . . , LM,w) = ±1 for all w ∈ S. (10)

With these conditions, the following is a straightforward consequence of
Theorem 3 above.

Corollary 1. Assume that (10) is satisfied, that 0 < δ < 1, and consider
the inequality

∏

w∈S

M∏

i=1

|Li,w(y)|w < M−δ (max{|yi| : i = 1, . . . ,M})−δ (11)

for some y ∈ (Z∗)M . Then the conclusion of Theorem 3 holds.
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4 S-units on curves

We shall also use a result concerning bounds on the number of solutions
of a certain type of S-unit equation. Recall that an S-unit is a non-zero
rational number y such that |y|w = 1 for all w 6∈ S. The following result is
a corollary of Theorem 1.1 in [14].

Theorem 4 (Pontreau). Let f(X, Y ) ∈ Q[X, Y ] be a polynomial of degree
D which is irreducible (over C) and which is not a binomial (i.e., has more
than two nonzero coefficients). Then the number of solutions (u, v) of the
equation

f(u, v) = 0 with (u, v) ∈ S2 (12)

is bounded above by

t2 ≤ 2104s+51D6s+3(log(D + 2))10s+6. (13)

5 Baker’s linear form in logarithms

We need the following theorem due to Matveev (see [13] or Theorem 9.4 in
[5]).

Theorem 5. Let t ≥ 2 be an integer, γ1, . . . , γt be integers larger than 1
and b1, . . . , bt be integers. Put

B = max{|b1|, . . . , |bt|},
and

Λ = γb1
1 · · · γbt

t − 1.

Then, assuming that Λ 6= 0, we have

|Λ| > exp
(−1.4× 30t+3 × t4.5(1 + log B)(log γ1)(log γ2) · · · (log γt)

)
.

6 Proof of Theorem 1

Since Theorem 2 is in fact independent of Theorem 1, we shall assume that
k ≥ 27 whenever N = 2nk + 1 is Carmichael. In particular, log k > 3.

From now on we assume that

n > 3 log k. (14)

In particular, Lemma 4 holds.
We put δ0 = (2

√
τ(k))−1 and split the prime factors of the Carmichael

number N = 2nk + 1 into four subsets as follows:
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(1) Fermat primes;

(2) The (at most one) prime p = 2md + 1 such that 2md and 2nk are
multiplicatively dependent;

(3) The primes p = 2md + 1 not of type (1) or (2) above with m < δ0
√

n;

(4) The remaining primes.

We write Ni for the product of the primes of type i above for i = 1, 2, 3, 4.
We next find an upper bound for N1N2N3. Clearly, writing p = 22α

+ 1 for
the maximal Fermat prime factor of N , we have that

N1 ≤
α∏

β=0

(22β
+ 1) = 22α+1 − 1 = (p− 1)2 − 1 < k4, (15)

by Lemma 2. Secondly,

N2 ≤ 2n/3k1/3 + 1 < 2n/3k, (16)

by Lemma 3. Further, putting n0 = δ0
√

n, we have

N3 ≤
∏

1≤m≤n0
d|k

(2md + 1) ≤
∏

1≤m≤n0

∏

d|k
2m+1d =

∏

1≤m≤n0

2(m+1)τ(k)kτ(k)/2

≤ 2(n0+1)(n0+2)τ(k)/2+n0τ(k) log k, (17)

where we used the fact that 1/(2 log 2) < 1. Assume that the exponent of 2
in (17) is at most n2

0τ(k) = n/4. This happens if

(n0 + 1)(n0 + 2)τ(k)/2 + n0τ(k) log k ≤ n2
0τ(k),

which is equivalent to

2n0 log k < n2
0 − 3n0 − 2.

Assuming that n0 ≥ 2, the above inequality is implied by n0 ≥ 4 + 2 log k,
and since log k > 3, the last two inequalities are satisfied when n0 > 4 log k.
Recalling the definition of n0, we deduce that if

n > 64τ(k)(log k)2, (18)

then (17) implies that
N3 < 2n/4. (19)
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So, if inequality (18) holds, then by estimates (15), (16) and (19), we get

N1N2N2 < k4(2n/3k)2n/4 = 27n/12k5 < 27n/12+10 log k < 22n/3,

where the last inequality follows because 5/ log 2 < 10 and n > 120 log k,
where the last inequality is implied by (18). Since N1N2N3N4 = N > 2n,
we get that N4 > 2n/3. On the other hand, by Lemma 4, we have that if
p | N4, then

p < 27
√

n log kk + 1 ≤ 21+log k+7
√

n log k < 28
√

n log k,

where the last inequality above is a consequence of (18). Hence,

2n/3 < N4 < 28ω(N4)
√

n log k,

showing that

ω(N4) >

√
n

24
√

log k
.

We record what we have proved as follows.

Lemma 5. Assume that

n > 64τ(k)(log k)2. (20)

Then there exist at least
√

n/(24
√

log k) primes p = 2md+1 dividing 2nk+1
subject to the following properties:

(1) d > 1 is a divisor of k;

(2) δ0
√

n < m < 7
√

n log k;

(3) 2md and 2nk are multiplicatively independent.

We next take a look at prime divisors p = d2m + 1 of N4. As we have
seen, they have the property that

m > n0 = δ0

√
n. (21)

Write
n = qm + r, where 0 ≤ r ≤ m− 1 < 7

√
n log k. (22)

Then
q =

⌊ n

m

⌋
≤ n

m
≤ δ−1

0

√
n ≤ 2

√
τ(k)n. (23)
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In congruences

k2mq+r ≡ −1 (mod p) and d2m ≡ −1 (mod p),

raise the second one to power q and divide it out of the first one to get

k2rd−q ≡ (−1)q−1 (mod p).

Thus, p divides dq + (−1)qk2r. Let us check that this last expression is
nonzero. If it were zero, we would then get that r = 0, that q is odd, and
that k = dq, therefore 2nk = (2md)q, which is impossible since 2nk and 2md
are multiplicatively independent. Thus, dq + (−1)qk2r 6= 0, and

|dq + (−1)qk2r| ≤ 2rdqk ≤ 2rkq+1 = 2r+(q+1)(log k)/(log 2).

Using (22) and (23) we have that

r + (q + 1)
log k

log 2
≤ 7

√
n log k + (

√
τ(k)n + 1)(log k)/(log 2)

=
log k

√
τ(k)n

log 2

(
1 +

7 log 2√
τ(k) log k

+
1√

τ(k)n

)

<
log k

√
τ(k)n

log 2

(
1 +

7 log 2√
τ(k) log k

+
1

8τ(k) log k

)

<
log k

√
τ(k)n

log 2

(
1 +

7 log 2√
2 log(27)

+
1

16 log(27)

)

< 5 log k
√

τ(k)n

Thus, writing δ1 = 5 log k
√

τ(k), U = d2m + 1 and V = dq + (−1)qk2r,
we have

2δ0
√

n < U and |V | < 2δ1
√

n,

therefore

U > |V |δ2 , where δ2 = δ0δ1
−1 = (10τ(k) log k)−1. (24)

We record the following conclusion.

Lemma 6. Assume that inequality (20) is satisfied. Then the number of
triples of integers (U, V1, V2) with the following properties:

(1) U = d2m, V1 = dq, V2 = (−1)qk2r;
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(2) d > 1 is a divisor of k and q and r are nonnegative integers;

(3) 2md and 2mq+rk are multiplicatively independent;

(4) U + 1 | V1 + V2;

(5) U > |V1 + V2|δ2;
exceeds √

n

24
√

log k
.

We next find an upper bound for the number of triples (U, V1, V2) with
the conditions (1)–(5) of Lemma 6 above in terms of k alone.

Lemma 7. Assume that

n > 1028(log k)6τ(k). (25)

Then the number of triples (U, V1, V2) with the conditions (1)–(5) of Lemma
6 is at most

23×613τ(k)2(log k)2ω(k).

Proof. We apply Corollary 1. We fix the numbers k and n. The finite set of
valuations is

S = {p | 2k} ∪ {∞},
so s = ω(k) + 2, where we recall that ω(m) is the number of distinct prime
factors of the positive integer m. The following argument based on the
Subspace Theorem is not new. It has appeared before in [3], [4], [7], [8],
[12], and perhaps elsewhere. Recall that

U = d2m, V1 = dq V2 = (−1)qk2r.

Start with

1
U + 1

=
1

U(1 + 1/U)
=

1
U

(
1− 1

U
+ · · ·+ (−1)N1−1

UM1−1
+

ζU

UM1

)
,

where M1 is a sufficiently large positive integer to be determined later and
|ζU | ≤ 2. Thus, we get

∣∣∣∣
1

1 + U
− 1

U
+ · · ·+ (−1)M1

UM1

∣∣∣∣ <
2

UM1+1
.
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Multiply the above inequality by V = V1 + V2, to get
∣∣∣∣

V

1 + U
− V1 + V2

U
+ · · ·+ (−1)M1(V1 + V2)

UM1

∣∣∣∣ ≤
2|V |

UM1+1
.

Multiply both sides above by UM1 to get
∣∣∣∣
V UM1

1 + U
− V1U

M1−1 − V2U
M1−1 + · · ·+ (−1)M1V1 + (−1)M1V2

∣∣∣∣ ≤
2|V |
U

.

(26)
We take M = 2M1 + 1 and label the M variables as

y = (y1, . . . , y2M1+1) = (z, y1,M1−1, y2,M1−1, . . . , y1,0, y2,0).

We take the linear forms to be

L1,∞(y) = z − y1,M1−1 − y2,M1−1 + · · ·+ (−1)M1−1y1,0 + (−1)M1−1y2,0

and Li,w(y) = yi for (i, w) 6= (1,∞). It is clear that these forms are linearly
independent for every fixed w ∈ S, and condition (10) is satisfied for them.
We evaluate the double product

∏

w∈S

M∏

i=1

|Li,w(y)|w, (27)

when (U, V1, V2) are as in Lemma 6,

z =
(V1 + V2)UM1

1 + U
and yi,j = ViU

j (i = 1, 2, j = 0, . . . , M1 − 1).

For i ≥ 2, yi is an S-unit and Li,w(y) = yi for all w ∈ S, so that

∏

w∈S

M∏

i=2

|Li,w(y)|w = 1. (28)

For i = 1, since V/(1 + U) ∈ Z, it follows that z is an integer multiple of
UM1 . Hence,

∏

w∈S\{∞}

M∏

i=2

|Li,w(y)|w ≤ U−M1 . (29)

Finally, we have

|L1,∞(y)|∞ ≤ 2|V |
U

, (30)
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by (26). Multiplying (28), (29) and (30), we get that

∏

w∈S

M∏

i=1

|Li,w(y)|w ≤ 2|V |
UM1+1

. (31)

Choose M1 = b3/δ2c. Then we have that M1 > 2/δ2, therefore

UM1 > U2/δ2 > |V |2,
by (24). Thus,

2|V |
UN1+1

<
|V |
UN1

≤ 1
|V | . (32)

We now compare |V | and |Vi| for i = 1, 2. If q is even, then V = |V1|+ |V2|.
Assume now that q is odd. Then

|V | = |V1||k2rd−q − 1|. (33)

By using the inequality of Theorem 5 with t = 3, γ1 = k, γ2 = 2, γ3 =
d, b1 = 1, b2 = r, b3 = −q, we have that

|k2rd−q − 1| > exp(−c1(log k)2 log n), (34)

where we used the fact that max{d, k} ≤ k and max{r, q} ≤ n, and we can
take c1 = 1.4× 306 × 34.5 × 2× log 2. Let us check that

|k2rd−q − 1| > U−1. (35)

For this, since U > 2m > 2δ0
√

n, it is enough that

δ0(log 2)
√

n > c1(log k)2 log n,

which is equivalent to
√

n

log(
√

n)
> c2(log k)2

√
τ(k), (36)

where c2 = 11.2× 306 × 34.5. Let us spend some time unraveling (36). It is
easy to prove that if A > 3 then the inequality

x

log(x)
> A is implied by x > 2A log A.

Using this argument it follows that it suffices that
√

n > 2c2(log k)2
√

τ(k) log
(
c2(log k)2

√
τ(k)

)
(37)
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Since 2 log log k < log k, τ(k) < k and log(c2) < 28, we get that

log(c2) + (log τ(k))/2 + 2 log log k < 28 + 1.5 log k < 11 log k,

where the last inequality follows because log k > 3. Hence, in order for (37)
to hold, it suffices that

√
n > 22c2(log k)3

√
τ(k),

which is satisfied for
n > 1028(log k)6τ(k), (38)

which is exactly condition (25). Since condition (25) holds, we get that also
inequality (35) holds. With (33), we get that

|V | = |V1||k2rd−q − 1| > |V1|U−1,

therefore |V1| < |V |U < |V |2. A similar argument shows that |V2| ≤ V 2.
Thus, we always have max{|V1|, |V2|} ≤ |V |2 regardless of the parity of q.
Hence,

|Vi|UM1−1 ≤ |V |2UM1−1 ≤ |V |M1+1 (i = 1, 2);
|V |UM1

1 + U
< |V |UM1−1 < |V |M1+1.

This shows that for our vector y we have that

max{|yi| : i = 1, . . . ,M} < |V |M1+1. (39)

Finally, we have

M = 2M1 + 1 ≤ 6
δ2

+ 1 < 60τ(k) log k + 1 < 2δ0
√

n < U < |V |.

Indeed, the middle inequality is equivalent to

n > τ(k)(2 log 2)2 log2(60τ(k) log k + 1),

which is implied by (38). Thus,

M max{|yi| : i = 1, . . . , M} < |V |M1+2.

Comparing (31) with (32) and the last estimate above, we get

∏

w∈S

M∏

i=1

|Li,w(y)|w ≤ 2|V |
UM1+1

≤ 1
|V | ≤ (M max{|yi| : i = 1, . . . , M})−δ ,

(40)
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where δ = 1/(M1 + 2).
We now apply Corollary 1 with H = 1. Note that relation (7) holds

for our system of forms, while the condition H(y) ≥ 1 is needed in (i) if
obviously fulfilled since y ∈ ZM . We get that all solutions y to our problem
lie in t1 proper subspaces of Q, where t1 is bounded as in (9).

Let us take such a subspace. We then get an equation of the form

d0

(
V1 + V2

1 + U

)
UM1 +

2∑

i=1

M1−1∑

j=0

ci,jViU
j = 0 (41)

for some vector of coefficients

(d0, ci,j : 1 ≤ i ≤ 2, 0 ≤ j ≤ M1 − 1) ∈ QM

not all zero. We divide across equation (41) by V1U
−M1 . Further, by setting

W = V2/V1 = (−1)qk2rd−q, we arrive at

d0
W + 1
U + 1

+
2∑

i=1

M1−1∑

j=0

ci,jW
i−1U−(M1−j) = 0.

The last equation above is a rational function in the pair (U,W ), which is
nonzero as a rational function (this has been checked in many places, like
[3], or [8], for example). Clearing the denominator 1 + U , we arrive at an
equation of the form

1∑

i=0

M1∑

j=0

ei,jW
iU−j = 0 (42)

for some coefficients (ei,j : 0 ≤ i ≤ 1, 0 ≤ j ≤ M1) ∈ QM , not all zero. Put
U1 = U−1. The above equation (42) is of the form

WP (U1) + Q(U1) = 0,

where P (X) and Q(X) are in Q[X] of degrees at most M1. We distinguish
a few cases.

When P (X) = 0, then Q(X) 6= 0. Then U1 has at most M1 values,
therefore m is determined in at most M1 ways.

A similar argument works when Q(X) = 0.
Assume now that none of P (X) and Q(X) is the constant zero polyno-

mial. Put
F (X, Y ) = Y P (X) + Q(X).
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Then any solution (U,W ) to equation (42) leads to a solution to the equation
F (U1,W ) = 0. Assume next that F (X, Y ) is a binomial polynomial. It
then follows that P (X) = c1X

f1 and Q(X) = c2X
f2 for some nonzero

rational coefficients c1, c2 and some nonnegative integer exponents f1, f2.
Then since F (U1,W ) = 0, it follows that WUf2−f1 = −c2/c1 is uniquely
determined. To recover W and U uniquely, we need to check that W and U
are multiplicatively independent. If they were not, we would have integers
λ and µ not both zero such that

|W |λ = kλ2rλd−qλ = dµ2mµ = Uµ.

Hence, we get that rλ −mµ = 0, and that kλ = dµ+λ. If λ = 0, we then
get that dµ = 1, so µ = 0, therefore (λ, µ) = 0, which is false. Thus, λ 6= 0.
This leads easily to the conclusion that 2nk and 2md are multiplicatively
dependent (in fact, we get the relation (2md)µ+qλ = (k2n)λ), which is not
the case. Thus, when F (X,Y ) is a binomial polynomial, then there is at
most one convenient solution to F (U1,W ) = 0.

Assume now that F (X, Y ) has at least three nonzero coefficients. Write
P (X) = Xf1P1(X) and Q(X) = Xf2Q1(X), where f1, f2 are nonnegative
integer exponents, and P1(X) and Q1(X) are polynomials in Q[X] with
P1(0)Q1(0) 6= 0. Replace F (X, Y ) by

F (X, Y )
Xmin{f1,f2} = Y Xf1−min{f1,f2}P1(X) + Xf2−min{f1,f2}Q1(X).

Then any solution (U,W ) to equation (42) still satisfies F (U1, V ) = 0 with
this new F (X, Y ) (because U1 6= 0). Furthermore, F (X, Y ) is now irre-
ducible over C[X,Y ] because it is not divisible by neither X nor Y and it is
linear in Y . Its degree D satisfies

D ≤ max{1 + deg(P1(X), deg(P2(X)} ≤ M1 + 1 < M.

But then, by Theorem 4, the number of solutions (U,W ) is at most

t2 ≤ 2104s+51M6s+3(log(M + 2))10s+6. (43)

Note that U determines uniquely d and m, which in turn determine also q
and r uniquely by (22). To summarize, we get that for fixed n satisfying
(38) and odd k ≥ 3, the number of triples (U, V1, V2) with the conditions
(1)–(5) of Lemma 6 is at most

t1t2,
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where t1 and t2 are shown at (9) and (43), respectively. We now bound t1
and t2 for our application.

Note that since δ−1 = M1 + 2, M = 2M1 + 1 and M1 = b3/δ2c, we get
easily that

δ−1 = (M + 3)/2

M ≤ 6
δ2

+ 1 ≤ 61τ(k)log k, (44)

s = ω(k) + 2 ≤ 3ω(k). (45)

Therefore

t1 < (260M2
δ−7M )s

< (260M2
((M + 3)/2)7M )s;

and since s ≥ 3,

t2 < 2104s+51M6s+3(log(M + 2))10s+6 (46)
<

(
2221M7 log7(M + 2)

)s
.

Hence,

t1t2 <

(
2
60M2

(
1+ 1

60

(
7 log((M+3)/2)

(log 2)M
+ 221

M2 + 7 log M

(log 2)M2 +
7 log log(M+2)

(log 2)M2

)))s

< 261sM2
(47)

provided the quantity

E(M) =
7 log((M + 3)/2)

(log 2)M
+

221
M2

+
7 log M

(log 2)M2
+

7 log log(M + 2)
(log 2)M2

satisfies E(M) < 1. We observe that

M = 2M1 + 1 = 2b3/δ2c+ 1 = 2b30τ(k) log kc+ 1
≥ 2b30× 2× log(27)c+ 1 = 395

and certainly, E(M) < 1 for M ≥ 395.
Finally, putting (44) and (45) in (47) we get

t1t2 < 23×613ω(k)τ2(k) log2 k.
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Theorem 1 follows now from Lemmas 6 and 7. Indeed, observe first that
inequality (25) implies inequality (20). Next, assuming that inequality (25),
the conclusion of Lemmas 6 and 7 is that

n < 242(log k)26×613τ(k)2(log k)2ω(k)

< 22×106τ(k)2(log k)2ω(k),

where we have used that 242(log k) < 2τ(k)2(log k)2ω(k) for k ≥ 27.
So, to finish, it suffices to prove that

22×106τ(k)2(log k)2ω(k) > 1028(log k)6τ(k),

which follows since 2x > (10x)4 for x > 100 with

x = 2× 106τ(k)2(log k)2ω(k).

7 The proof of Theorem 2

We have to show that if k ≤ 25 is odd, then there is no Carmichael number
of the form 2nk + 1. We distinguish five cases, according to whether k is
prime, or k ∈ {9, 15, 21, 25}.

7.1 k ≤ 23 is prime

By Lemma 1, we have that if p is a Fermat prime factor of N = 2nk + 1,
then p < k2 ≤ 232, therefore p ∈ {3, 5, 17, 257}. By the Main Theorem 2 in
[15], we get that there are only seven possibilities for N , namely

N ∈ {5× 13× 17, 5× 13× 193× 257, 5× 13× 193× 257× 769, (48)
3× 11× 17, 5× 17× 29, 5× 17× 29× 113, 5× 17× 257× 509} .

There is another possibility listed in [15], namely

N = 5× 29× 113× 65537× 114689,

which is not convenient for us since 65537 is a Fermat number exceeding
232. However, no number from list (48) is of the form 2nk + 1 for some odd
prime k ≤ 23.
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7.2 Preliminary remarks about the cases k ∈ {9, 15, 21, 25}
We first run a search showing that there is no Carmichael number of the
form 2nk + 1 for all n ∈ {1, . . . , 256}. Suppose now that n > 256. Write

2nk + 1 =
s∏

i=1

(2midi + 1)

where 1 ≤ mi ≤ n, di | k for i = 1, . . . , s and pi = 2midi + 1 is prime for all
i = 1, . . . , s. We assume that the primes are listed in such a way that

a = m1 ≤ m2 ≤ · · · .

We first show that n > a + 20. Indeed, assume that this is not so. If
p1 is a Fermat prime, then, by Lemma 1, we have a ≤ (log k)/ log 2 < 5,
so n ≤ a + 20 ≤ 25, which is false. If 2nk and 2m1d1 are multiplicatively
dependent, then Lemma 2 shows that a ≤ n/3. Thus, n ≤ a+20 ≤ n/3+20,
therefore n ≤ 30, which is again false. Finally, assume that d1 > 1 and
2m1d1 and 2nk are multiplicatively dependent. Then Lemma 3 shows that
a = m1 < 7

√
n log k < 14

√
n because 3 log k ≤ 3 log 27 < 12 < n. Thus,

n < 14
√

n + 20, which is impossible for n ≥ 256. So, indeed n > a + 20.
From this, we conclude that if we put bi such that

bi = ν2(p1p2 · · · pi − 1)

for i = 1, 2, . . . , s − 1 and bi ≤ a + 20, then ai+1 ≤ bi. This argument will
be used in what follows without further referencing.

7.3 k = 9

If p is a Fermat number dividing N , then p ≤ 92 = 81 by Lemma 1, so
p ∈ {3, 5, 17}. Clearly, 3 - 2n · 9 + 1 for any n ≥ 1, therefore p ∈ {5, 17}. We
now write

2n · 9 + 1 =
s∏

i=1

(2ai + 1)
t∏

i=1

(2bi · 3 + 1)
u∏

i=1

(2ci · 9 + 1),

where a1 < · · · < as, b1 < · · · < bt, c1 < · · · < cu. It is easy to see that
a1, b1, c1 cannot be all three distinct. Let a = min{a1, b1, c1}. We do a case
by case analysis according to the number a.

If a = 1, the possibilities are that two of 3, 7, 19 divide N . As we have
seen, 3 - N , so both 7 and 19 divide N . However, 7 never divides 2n · 9 + 1,
which is a contradiction.
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If a = 2, then two of 5, 13, 37 divide N . However, 5 | N implies n ≡ 0
(mod 4). Similarly, 13 | N implies n ≡ 10 (mod 12), while 37 | N implies
n ≡ 2 (mod 36), and no two such congruences can simultaneously hold.

If a = 3, then 23 · 3 + 1 = 25 is not prime, and we get a contradiction.
If a = 4, then neither one of 24 ·3+1 = 49 = 72 or 24 ·9+1 = 145 = 5×29

is prime, again a contradiction.
Thus, a ≥ 5. In particular, s = 0, and b1 = c1. Put p1 = 2a · 3 + 1 and

p2 = 2a · 9 + 1. For an odd prime p we put ordp(2) for the multiplicative
order of 2 modulo p. Then ord2(pi) = 2αi ·δi, where αi ≤ a and δi ∈ {1, 3, 9}
for i = 1, 2. The congruences

2n · 9 ≡ −1 (mod p1) and 22a · 9 ≡ 1 (mod p1)

imply 2n−2a ≡ −1 (mod p1), which implies that ordp1(2) | 2n−4a, therefore
2n ≡ 4a (mod 2α1). Similarly, from the congruences

2n · 9 ≡ −1 (mod p2) and 2a · 9 ≡ −1 (mod p2),

we get 2n−a ≡ 1 (mod p2), so n ≡ a (mod 2α2), or 4n ≡ 4a (mod 2α2).
Thus, putting α = min{α1, α2}, we get that 2n ≡ 4a (mod 2α) and also
4n ≡ 4a (mod 2α), therefore 2n ≡ 0 (mod 2α). In particular, 2α · 9 | 18n,
showing that one of the numbers p1 or p2 divides 218n − 1. Since

pi | 2n · 9 + 1 | 218n · 918 − 1 = (218n − 1)918 + (918 − 1)

for both i = 1, 2, we get that one of p1 or p2 divides

918 − 1 = 24 · 5 · 7 · 13 · 19 · 37 · 73 · 757 · 530713.

However, none of the primes appearing in the right hand side above is of the
form 2a · 3 + 1 for some a ≥ 5, which completes the argument in this case.

7.4 k = 15

If p is a Fermat number dividing N , then p < 152, therefore p ∈ {3, 5, 17}.
Clearly, it is not possible that 3 | 2n · 15 + 1 or 5 | 2n · 15 + 1 for any n ≥ 1,
so only p = 17 is possible. We write

2n · 15 + 1 =
s∏

i=1

(2midi + 1),

where s ≥ 2, di | 15 for i = 1, . . . , s and pi = 2midi + 1 is prime for all
i = 1, . . . , s. We put again a = min{mi : i = 1, . . . , s}. Then p1 = 2ad1 + 1
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and p2 = 2ad2 + 1 are both prime divisors of N for two different divisors d1

and d2 of 15. We again do a case by case analysis according to the values
of a.

If a = 1, then p1, p2 ∈ {7, 11, 31}. However, 7 - 2n · 15 + 1 for any
n ≥ 1, therefore both 11 and 31 divide N . However, 11 | N implies that
n ≡ 3 (mod 10), while 31 | N implies that n ≡ 1 (mod 5), and these two
congruences are contradictory.

Assume next that a = 2. Since 22 ·5+1 = 21 = 3×7 is not prime, it fol-
lows that the only possibility is that both 13 and 61 divide N . However, the
condition 13 | N implies that n ≡ 5 (mod 12), whereas 61 | N implies that
n ≡ 2 (mod 60), and again the last two congruences for n are contradictory.

The case a = 3 is not possible since neither 23 · 3 + 1 = 25 = 52 nor
23 · 15 + 1 = 121 = 112 is prime.

Assume now that a = 4. Since 24 ·3+1 = 49 = 72 and 24 ·5+1 = 81 = 34,
it follows that the only possibility is that both 17 and 241 divide N . However,
the condition 17 | N implies that n ≡ 7 (mod 8), whereas 241 | N implies
that n ≡ 4 (mod 24), and these last congruences are again contradictory.

The case a = 5 is also impossible since none of 25 · 5 + 1 = 161 = 7× 23
and 25 · 15 + 1 = 13× 37 is prime.

So, from now on ai ≥ 6 for all i = 1, . . . , s. Let p = 2bd + 1 for some
b ≥ 6. Assume that d = 5. Since p ≡ 1 (mod 8), it follows that (−1/p) =
(2/p) = 1, where the above notation is the Legendre symbol. Since 5 ≡ −2−b

(mod p), it follows that (5/p) = 1. Since 3 ≡ −2−n×5−1 (mod p), it follows
that (3/p) = 1, therefore, by quadratic reciprocity, (p/3) = 1, therefore
p ≡ 1 (mod 3). However, 2b · 5 + 1 is never 1 (mod 3) for any positive
integer b. This shows that d 6= 5. In particular, d ∈ {3, 15} for all prime
factors p of N . Assume next that d = 3. By a similar argument, we have
(−1/p) = (2/p) = (3/p) = 1 and now the condition 5 ≡ −2−n×3−1 (mod p)
implies that (5/p) = 1, which, via quadratic reciprocity, implies that p ≡ 1, 4
(mod 5). Since also p = 2b · 3 + 1, it follows easily that b ≡ 0 (mod 4) (for
the values of b congruent to 1, 2, 3 modulo 4 we get that 2b ·3+1 is congruent
to 2, 3, 0 modulo 5, respectively, none of which is convenient). Since when
b ≡ 1 (mod 3), we have 2b · 3 + 1 is a multiple of 7, we get that b ≡ 0, 2
(mod 3), which together with the fact that b ≡ 0 (mod 4), leads to b ≡ 0, 8
(mod 12).

Suppose first that a ≡ 0 (mod 12). It then follows that the smallest
b > a such that 2b · 3 + 1 is a prime factor of N is b ≥ a + 8. Write
p1 = 2a · 3 + 1 and p2 = 2a · 15 + 1. Then

p1p2 = 1 + 2a+1(9 + 2a−1 · 45)
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is a divisor of N . So, p3 = 2a+1 · 15 + 1 is also a divisor of N . Thus,

p1p2p3 = (1 + 2a+1(9 + 2a−145))(1 + 2a+1 · 15)
= 1 + 2a+1(24 + 2a−1 · 45) + 22a+2 · 15(9 + 2a−1 · 45)
= 1 + 2a+4(3 + 2a−4M1)

is a divisor of N , where M1 is some odd integer. Thus, p4 = 2a+4 · 15 + 1 is
also a prime factor of N . We then have

p1p2p3p4 = (1 + 2a+4(3 + 2a−4 ·M1))(1 + 2a+4 · 15)
= 1 + 2a+4(18 + 2a−4M2)
= 1 + 2a+5(9 + 2a−5M2),

where M2 is some odd integer. Thus, p5 = 2a+5 ·15+1 is also a prime factor
of N . However, since a ≡ 0 (mod 12), it follows that a + 5 ≡ 5 (mod 12),
which implies that p5 ≡ 0 (mod 13), a contradiction.

Assume next that a ≡ 8 (mod 12). Since 28 · 15 + 1 = 3841 = 23× 167
is not prime, it follows that a ≥ 20. We take again p1 = 2a · 3 + 1 and
p2 = 2a · 15 + 1. Then

p1p2 = 1 + 2a+1(9 + 2a−1 · 45)

is a divisor of N . Thus, p3 = 2a+1 · 15 + 1 is a divisor of N and

p1p2p3 = (1 + 2a+1 · 15)(1 + 2a+1(9 + 2a−1 · 45))
= 1 + 2a+1(24 + 2a−1M1)
= 1 + 2a+4(3 + 2a−4M1)

is a divisor of N for some odd integer M1. Since a + 4 ≡ 0 (mod 12), it
follows that either 2a+4 · 3 + 1 is a divisor of N or 2a+4 · 15 + 1 is a divisor
of N but not both. In the first case, p4 = 2a+4 · 3 + 1 and

p1p2p3p4 = (1 + 2a+4 · 3)(1 + 2a+4(3 + 2a−4M1)) = 1 + 2a+5(3 + 2a−5M2)

is a divisor of N for some odd integer M2, while in the second case we have
p4 = 2a+4 · 15 + 1 and

p1p2p3p4 = (1 + 2a+4 · 15)(1 + 2a+4(3 + 2a−4M1)) = 1 + 2a+5(9 + 2a−5M2)

is a divisor of N again for some odd integer M2. In both cases, we conclude
that p5 = 2a+5 · 15 + 1 divides N and

p1p2p3p4p5 = (1 + 2a+5 · 15)(1 + 2a+5(T + 2a−5M2))
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is a divisor of N for some T ∈ {3, 9}. We thus get that

p1p2p3p4p5 equals 1 + 2a+6(9 + 2a−6M3) or 1 + 2a+8(3 + 2a−8M3)

according to whether T = 3 or T = 9, respectively. In the first case, we have
that p6 = 2a+6 ·15+1 divides N , whereas in the second case p6 = 2a+8 ·15+1
divides N . Observe that

p1 · · · p6 = (1 + 2a+6(9 + 2a−6M3))(1 + 2a+6 · 15) = 1 + 2a+9(3 + 2a−9M4)

for some odd integer M4 in the first case, whereas

p1 · · · p6 = (1 + 2a+8(3 + 2a−8M3))(1 + 2a+8 · 15) = 1 + 2a+9(9 + 2a−9M4)

in the second case. In either case, p7 = 2a+9 · 15 + 1 is a divisor of N .
However, since a ≡ 8 (mod 12), it follows that a + 9 ≡ 5 (mod 12), so p7 is
a multiple of 13, which is a contradiction.

7.5 k = 21

If p is a Fermat factor of N , then p < 212, therefore p ∈ {3, 5, 17, 257}.
Clearly, it is not possible that 3 | 2n · 21 + 1. One also checks that 257 -
2n · 21 + 1 for any n ≥ 1, so only p = 5, 17 are possible. We write

2n · 21 + 1 =
s∏

i=1

(2midi + 1),

where s ≥ 2, di | 21 for i = 1, . . . , s and pi = 2midi + 1 is prime for all
i = 1, . . . , s. We put again a = min{mi : i = 1, . . . , s}. Then p1 = 2ad1 + 1
and p2 = 2ad2 + 1 are both prime divisors of N for two different divisors d1

and d2 of 21. We again do a case by case analysis according to the values
of a.

When a = 1, we get that two of 2 + 1, 2 · 3 + 1, 2 · 7 + 1, 2 · 21 + 1 are
prime factors of N , which is impossible because 2 + 1 = 3 and 2 · 3 + 1 = 7
cannot divide N while 2 · 7 + 1 = 15 = 3× 5 is not prime.

When a = 2, we get that two of 22+1, 22 ·3+1, 22 ·7+1, 22 ·21+1. Since
85 = 5× 17 is not prime, it follows that N is divisible by two of {5, 13, 29}.
If 5 | N , then n ≡ 2 (mod 4). If 13 | N , then n ≡ 3 (mod 12), whereas if 29
(mod N), then n ≡ 25 (mod 28), and no two of the above congruences are
simultaneously possible (the last two imply that n ≡ 3 (mod 4) and n ≡ 1
(mod 4), respectively).
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The case a = 3 is not possible since neither 23 · 3 + 1 = 25 = 52 nor
23 · 7 + 1 = 57 = 3× 19 is prime.

From now on, a ≥ 4. Let p = 2bd + 1 be a prime factor of N . Let
us show that d cannot be 7. Assume that it is. Since b ≥ 4, it follows
that (−1/p) = (2/p) = 1, and since 7 ≡ −2−b (mod p), it follows that
(7/p) = 1. Since also 3 ≡ −2−n×7−1 (mod p), it follows that (3/p) = 1, so,
by quadratic reciprocity, p ≡ 1 (mod 3). However, 2b·7+1 is never congruent
to 1 modulo 3, which is a contradiction. Hence, d ∈ {1, 3, 21}. Further,
suppose that d = 3. Then, by the same argument, (−1/p) = (2/p) = 1
and so 3 ≡ −2−b (mod p), therefore (3/p) = 1. Since also 7 ≡ −2−n × 3−1

(mod p), we get that (7/p) = 1, which, by quadratic reciprocity, implies that
(p/7) = 1. Since p = 2b ·3+1, it follows that b ≡ 0 (mod 3) (for b congruent
to 1, 2 modulo 3 we get that p is congruent to 0, 6 modulo 7, and none of
these possibilities is convenient). Further, in this same instance, it is clear
that we cannot have b ≡ 3 (mod 4), since it would lead to p = 2b · 3 + 1
being a multiple of 5. Hence, b ≡ 0, 1, 2 (mod 4), which together with b ≡ 0
(mod 3), leads to b ≡ 0, 6, 9 (mod 12).

Assume now that a = 4. Since 24 ·3+1 = 49 = 72, it follows that the only
possibility is that both 17 and 337 divide N . The condition 17 | N implies
that n ≡ 2 (mod 8) while the condition that 337 | N implies that n ≡ 4
(mod 21). The above conditions imply that n ≡ 130 (mod 168). Further

17× 337 = 5729 = 1 + 25 × 179

is a divisor of N . It follows that N is divisible by one of 1 + 25 · 3 = 97 or
1 + 25 · 21 = 673. However, there is no n ≥ 0 such that 97 | 2n · 21 + 1.
Further, 673 | N implies that n ≡ 5 (mod 48), which is incompatible with
n ≡ 130 (mod 168) since the first one means that n ≡ 2 (mod 3), whereas
the second one means that n ≡ 1 (mod 3).

So, from now on we have that a ≥ 5. Thus, p1 = 2a · 3 + 1 and p2 =
2a · 21 + 1. As we have seen, a ≡ 0 (mod 3). It is also easy to see that
a ≡ 0, 1 (mod 4), otherwise one of 2a · 3 + 1 or 2a · 21 + 1 is a multiple of 5.
Thus, a ≡ 0, 9 (mod 12).

Now

p1p2 = (1+2a ·3)(1+2a ·21) = 1+2a(3+21)+22a ·63 = 1+2a+3(3+2a−3 ·63).

Assume first that a ≡ 0 (mod 12). Then the next prime factor of N of the
form p = 2b · 3 + 1 must have b ≡ 0, 6, 9 (mod 12), therefore b ≥ a + 6, so
p3 = 2a+3 · 21 + 1 must divide N . However, since a ≡ 0 (mod 12), it follows
that p3 is a multiple of 13. Assume next that a ≡ 9 (mod 12). In particular,
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a ≥ 9. In fact, since 29 · 3 + 1 = 29× 53 is not prime, it follows that a ≥ 21.
Then none of 2a+1 · 3 + 1 and 2a+2 · 3 + 1 are prime factors of N since a + 1
and a+2 are not multiples of 3. Thus, none of 2a+1 ·21+1 and 2a+2 ·21+1
is a prime factor of N either. Hence, exactly one of 2a+3 ·3+1 or 2a+3 ·21+1
is a prime factor of N . Assume that it is p3 = 2a+3 · 21 + 1. Then

p1p2p3 = (1 + 2a+3(3 + 2a−3 · 69))(1 + 2a+3 · 21) = 1 + 2a+6(3 + 2a−6M1)

for some odd integer M1. Since a + 4 and a + 5 are not multiples of 3, it
follows that none of 2a+3 · 3 + 1 or 2a+4 · 3 + 1 are factors of N , therefore
2a+3 · 21 + 1 and 2a+4 · 21 + 1 are not factors of N either. Hence, one of
2a+6 ·3+1 or 2a+6 ·21+1 is a prime factor of N . Since a+6 ≡ 3 (mod 12) it
follows that the first one cannot be a prime factor of N , whereas the second
one is a multiple of 13 so it cannot be prime. So, assume that p3 = 2a+3·3+1.
Then

p1p2p3 = (1 + 2a+3(3 + 2a−3 · 69)(1 + 2a+3 · 3) = 1 + 2a+4(3 + 2a−4M1)

for some odd integer M1. Since a + 4 is not a multiple of 3, it follows that
2a+4 · 3 + 1 is not a prime factor of N , and so p4 = 2a+4 · 21 + 1 is a prime
factor of N . Observe that

p1p2p3p4 = (1 + 2a+4(3 + 2a−4M1)(1 + 2a+4 · 21) = 1 + 2a+7(3 + 2a−7M2)

for some odd integer M2. Next, 2a+5 · 3 + 1 are 2a+6 · 3 + 1 are not prime
factors of N because a + 5 and a + 6 are congruent to 2, 3 (mod 12), so
2a+5 · 21 + 1 and 2a+6 · 21 + 1 are not prime factors of N either. Thus, one
of 2a+7 · 3 + 1 and 2a+7 · 21 + 1 is a prime factor of N , and since a + 7 is not
a multiple of 3, it follows that p4 = 2a+7 ·21+1 is a prime factor of N . Now

p1p2p3p4 = (1 + 2a+7(3 + 2a−7M2)(1 + 2a+7 · 21) = 1 + 2a+10(3 + 2a−10M3)

for some odd integer M3. Since a + 8 is not a multiple of 3, it follows that
2a+8 ·3+1 does not divide N , therefore 2a+8 ·21+1 does not divide N either.
If 2a+9 · 3 + 1 is a prime factor of N , then 2a+9 · 21 + 1 is a prime factor
of N also, but since a ≡ 9 (mod 12), it follows that a + 9 ≡ 2 (mod 4),
therefore 2a+9 · 21 + 1 is in fact a multiple of 5. Thus, none of 2a+9 · 3 + 1 or
2a+9 ·21+1 is a prime factor of N . Since a+10 is not a multiple of 3, we get
that 2a+10 · 3 + 1 cannot be a prime factor of N . Thus, p5 = 2a+10 · 21 + 1
is a prime factor of N . Thus,

p1 · · · p5 = (1+2a+10(3+2a−10M3))(1+2a+10 ·21) = 1+2a+13(3+2a−13M4)

25



is a divisor of N for some odd integer M4. Since a+11 is not a multiple of 3,
it follows that 2a+11 ·3+1 is not a prime factor of N . Therefore 2a+11 ·21+1
is not a prime factor of N either. As for a + 12, it follows that either both
p6 = 2a+12 · 3 + 1 and p7 = 2a+12 · 13 + 1 are prime factors of N , or none of
them is. If both of them are, then

p6p7 = (1 + 2a+12 · 3)(1 + 2a+12 · 21) = 1 + 2a+15 ·M5

for some odd integer M5. So, in either case, namely when both p5 and p6

are prime factors of N , or when none of them is, we still infer that one of
2a+13 · 3 + 1 or 2a+13 · 21 + 1 is a prime factor of N . However, since a ≡ 9
(mod 12), a + 13 is not a multiple of 3, so 2a+13 · 3 + 1 cannot be a prime
factor of N , whereas since a + 13 ≡ 2 (mod 4), the number 2a+13 · 21 + 1 is
a multiple of 5, so it cannot be a prime factor of N either. This completes
the analysis of the case k = 21.

7.6 k = 25

If p is a Fermat number dividing N , then p < 252 = 625, therefore p ∈
{3, 5, 17, 257}. Clearly, 5 - 2n · 25 + 1 for any n ≥ 0, and one can check that
257 - 2n · 25 + 1 for any n ≥ 0. Thus, p ∈ {3, 17}. We now write

2n · 25 + 1 =
s∏

i=1

(2ai + 1)
t∏

i=1

(2bi · 5 + 1)
u∏

i=1

(2ci · 25 + 1),

where a1 < · · · < as, b1 < · · · < bt, c1 < · · · < cu. It is easy to see that
a1, b1, c1 cannot be all three distinct. Let a = min{a1, b1, c1}. We do a case
by case analysis according to the number a.

If a = 1, then 2 · 25+1 = 51 = 3× 17 is not prime, so we must have that
both 3 and 11 divide 2n ·25+1. If 3 | 2n ·25+1, then n ≡ 1 (mod 2), while if
11 | 2n·25+1, then n ≡ 7 (mod 10). Thus, 33 = 25+1 is a divisor of N . This
implies that b = min{a2, b2, c2} ≤ 5. Put b = min{a2, b2, c2}. Assume first
that b < 5. Then not all three a2, b2, c2 are distinct. The case b = 2 is not
possible since 22+1 = 5 is not a divisor of N and 22 ·5+1 = 21 = 3×7 is not
prime. The case b = 3 is also not possible because 23 · 25+1 = 201 = 3× 67
is not prime. In case b = 4, since 24 · 5 + 1 = 81 = 34 is not prime, the
only possibility is that both 24 + 1 = 17 and 24 · 25 + 1 = 401. However,
17 | N implies that n ≡ 1 (mod 8), whereas 401 | N implies that n ≡ 4
(mod 200), and these congruences cannot be both satisfied. Thus, b = 5.
However, this is not possible since none of 25 · 5 + 1 = 161 = 7 × 23 and
25 · 25 + 1 = 801 = 32 × 89 is prime.
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Assume now that a = 2. This is not possible because 22 + 1 = 5 cannot
divide N and 22 · 5 + 1 = 21 = 3× 7 is not prime.

The case a = 3 is not possible because 23 · 25 + 1 = 201 = 3× 67 is not
prime.

Assume now that a = 4. Since 24 · 5 + 1 = 81 = 34, it follows that N
is divisible by both 24 + 1 = 17 and 24 · 25 + 1 = 401. Again the condition
17 | N implies that n ≡ 1 (mod 8), whereas 401 | N implies that n ≡ 4
(mod 200) and these two congruences cannot simultaneously hold.

From now on, a ≥ 5, therefore both 2a · 5 + 1 and 2a · 25 + 1 are prime
factors of N , which is false since one of these two numbers is always a
multiple of 3.
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