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1 Introduction

Let r(n) be the number of integer solutions (x, y) of the Diophantine equa-
tion x2 + y2 = n. It is known that r(n) is an unbounded function. Consider
the polygon with vertices in the r(n) lattice points (x, y). Clearly, all these
lattice points lie on the circle of radius

√
n centered in the origin. The distri-

bution of these points on the above circle was studied in [3] and [4]. In order
to study the above distribution, let S(n) denotes the area of the polygon
whose vertices are the r(n) lattice points. If the above r(n) lattice points are
well-distributed, then S(n) should be close to the area of the circle which is
πn.

If r(n) > 0, then trivially 2/π ≤ S(n)/πn < 1. In [3], it was proved that
the inequality |S(n)/πn−1| ¿ (log log n/ log n)2 holds infinitely often. It [4],
it was shown that the inequality |S(n)/πn − 1| ¿ (log log log n/ log log n)2

holds for most positive integers n having r(n) > 0.
Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and

Fn+2 = Fn+1 + Fn for all n ≥ 0. Since

F2n+1 = F 2
n + F 2

n+1, (1)

1



it follows that r(F2n+1) > 0 for all n ≥ 0. In [6] and Lemma 1 in [1], it was
shown that the equality r(F2n) = 0 holds for most positive integers n.

In this paper, we investigate the size of S(F2n+1). We have the following
result.

Theorem 1. There exists a positive constant c1 such that

(i) The inequality ∣∣∣∣
S(Fn)
πFn

− 1
∣∣∣∣ ¿

1
(log log n)c1

(2)

holds for most odd integers n.

(ii) The inequality ∣∣∣∣
S(Fn)
πFn

− 1
∣∣∣∣ ¿

(
log log n

log n

)c1

(3)

holds for infinitely many positive integers n.

In [3], it was also proved that the set {S(n)/πn : r(n) > 0} is dense in
[2/π, 1]. It turns out that this is not the case for the set {S(F2n+1)/πF2n+1}n≥0.
We have the following result.

Theorem 2. i) For any ε > 0, the elements of the set {S(F2n+1)/πF2n+1}n≥0

lying in [ 2
π , 6

π
√

5
− ε] form a finite set.

ii) The number of elements of the set {S(F2n+1)/πF2n+1}n≥0 lying in
[ 2
π , 6

π
√

5
] is infinite if and only if the sequence F4n+3 contains infinitely

primes.

We believe that the set {S(F2n+1)/πF2n+1}n≥0 ∩ [ 6
π
√

5
, 1] is a dense set

in [ 6
π
√

5
, 1], but this seems to be a very difficult problem to solve.

Throughout this paper, we use the standard notations ¿, À, O and o
with their regular meaning.

2 The Proof of Theorem 1

We start with (i). Let x be a large positive real number. Let n ≤ x be
odd. We show that estimate (2) holds for all such n with o(x) exceptions
as x → ∞. We may assume that n ≥ x/ log x. Let ω(n) be the number of
distinct prime factors of n. By the Turán-Kubilius estimate,

∑

n≤x

(ω(n)− log log x)2 = O(x log log x),
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it follows that the estimate ω(n) > 0.5 log log x holds for all odd n ≤ x with
o(x) exceptions as x → ∞. Since π(10 log log x) ¿ log log x/ log log log x =
o(log log x), it follows that for all odd n ≤ x have at least K := b0.25 log log xc
distinct prime factors p > L := b10 log log xc except for some subset of them
of cardinality o(x) as x →∞. Write

n = p1 · · · pKm,

where L < p1 < · · · < pK are distinct primes and m is an integer. Since
pi | n, it follows that Fpi | Fn for i = 1, . . . , K. Since Fa and Fb are coprime
when a and b are coprime positive integers, it follows that

∏K
i=1 Fpi is a

divisor of Fn. Write
Fn = Fp1 · · ·FpK M,

for some positive integer M . Since n is odd, it follows that al divisors of Fn

are either 2 or are primes which are congruent to 1 modulo 4. Indeed, this
is an easy consequence of representation (1) together with the fact that Fn

and Fn+1 are coprime. Now by (1) we have

Fpi = F 2
(pi−1)/2 + F 2

(pi+1)/2.

Put

Φpi := (4/π) tan−1
(
F(pi+1)/2/F(pi−1)/2

)
for i = 1, . . . ,K.

Write also

Fm =
αm − βm

α− β
for m ≥ 0, where (α, β) =

(
1 +

√
5

2
,
1−√5

2

)
.

Then
Fm+1

Fm
=

αm+1 − βm+1

αm − βm
= α + O

(
1

α2m

)

holds for all m ≥ 1, therefore

F(pi+1)/2

F(pi−1)/2
= α + O

(
1

αpi

)
= α + O

(
1

(log n)2

)
holds for i = 1, . . . , K,

where we used the fact that since pi > L, we have that αpi > (log n)2. Thus,
by Taylor’s formula,

Φpi = γ + O

(
1

(log n)2

)
holds for i = 1, . . . , K, (4)
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where γ := (4/π) tan−1(α). It is well-known and easy to prove that γ is
irrational. Write also M = a2 + b2 with some integers 0 ≤ a ≤ b and put
Φ = (4/π) tan−1(a/b). Proposition 2.4 in [4] implies that the angles

(π/4)

(
Φ +

K∑

i=1

εjΦpj

)
, εj ∈ {±1} for j = 1, . . . , K (5)

correspond to lattice points on the circle x2 + y2 = F 2
n . Using estimate (4)

in (5), we get that among the angles (5) we also have all the angles

(π/4)
(

Φ + (K − 2i)γ + O

(
log log n

(log n)2

))
, i = 0, 1, . . . , K. (6)

Indeed, this can be deduced by taking in (4) K − i of the signs εj to equal
1 and the remaining i of them to equal −1. We next show that for some
constant c2 > 0 every arc of length > 1/Kc2 contains one of the points from
list (6). To see why, take γ1 := γ/4 and put xi = {iγ1} for i = 1, . . . , K,
where for a number x we write {x} for the fractionary part of x. For each
interval J of [0, 1), let V (J , K) = {1 ≤ i ≤ K : xi ∈ J }. Let D(K) be the
discrepancy of the sequence x := (xi)K

i=1 defined as

D(K) = sup
J⊂[0,1]

∣∣∣∣
V (J ,K)

K
− |J |

∣∣∣∣ .

Here, |J | denotes the length of J . By Theorem 3.2 in Chapter 2 in [5], we
know that if the type of γ1 is finite τ , then D(K) ≤ K−1/τ+o(1) as K →∞,
where

τ = sup
{

ρ ∈ R : lim inf
m→∞ mρ‖γ1m‖ = 0

}
.

Thus, assuming that τ is finite, it follows that if we take c2 := 1/(2τ), and
keeping in mind that the error in (6) tends to zero much faster than any
power of negative exponent of K, we conclude that for large x, any arc of
length > 1/Kc2 contains one of the points from list (6).

It remains to justify that τ is finite. For this, it suffices to shows that
the inequality

|2 tan−1(α)− 2pπ/q| À q−c3

holds for all rational numbers p/q with some constant c3. We may assume
that 2pπ/q is very close to 2 tan−1(α). Since tan(2 tan−1(α)) = 2, we get
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that

|2 tan−1(α)− 2pπ/q| ³ |ei2 tan−1(α) − e2πip/q|
= |ei tan−1(2) − e2πip/q|
=

∣∣∣∣
1 + 2i√

5
− e2pπi/q

∣∣∣∣

À 1
q

∣∣∣∣
(

1 + 2i√
5

)q

− 1
∣∣∣∣ À

1
qc3

where all the above inequalities are obvious for 2pπ/q in a small neighbor-
hood 2 tan−1(α) except for the last one which follows by a classical applica-
tion of a lower bound for a linear form in logarithms of algebraic numbers.

Finally, an easy geometrical argument (see the proof of Proposition 3.1
in [4]) now shows that

∣∣∣∣
S(Fn)
πFn

− 1
∣∣∣∣ ¿

1
K2c2

¿ 1
(log log n)c1

,

with c1 := 2c2, which is what we wanted to prove. This takes care of (i).
The proof of (ii) is similar, except that for (ii) we start with a large x, put

L := b10 log log xc and let p1 < · · · < pK be all the primes in [L, (log x)/2].
By the Prime Number Theorem, K ³ log x/ log log x. Put

n = p1 · · · pK .

Again by the Prime Number Theorem, we have

n =
∏

L≤p≤(log x)/2

p = x1/2+o(1)

as x →∞. We thus have that for large x the number n is odd and smaller
than x. Now the previous argument shows that

∣∣∣∣
S(Fn)
πFn

− 1
∣∣∣∣ ¿

1
K2c2

¿
(

log log x

log x

)c1

¿
(

log log n

log n

)c1

,

which is what we wanted to prove.

3 The proof of Theorem 2

Let us say that m is a 2-prime if m = 2kp, where k ≥ 0 and p = 1, or p is
prime. Positive integers m which are 2-primes are characterized by the fact
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that whenever m = a2 + b2 with integers a and b, then a and b are uniquely
determined up to signs and order. We next record that if Fn is a 2-prime,
then n ∈ {1, 2, 3, 4, 6, 8, 9}, or n ≥ 5 is prime and Fn is also prime. Indeed,
this follows easily from [2].

The proof of Theorem 2 is a corollary of the following lemma.

Lemma 1. For any n ≥ 1, then S(F2n+1)
πF2n+1

< 6
π
√

5
if and only if n is odd and

F2n+1 is a 2-prime.

Proof. Since F2n+1 = F 2
n+1 + F 2

n , the circle x2 + y2 = F2n+1 contains lattice
points at the angles

Ψn, π/2−Ψn, Ψn +π/2, π−Ψn, Ψn +π, 3π/2−Ψn, Ψn +3π/2, 2π−Ψn, (7)

where Ψn = tan−1(Fn/Fn+1).
We observe that limn→∞Ψn = Ψ = tan−1(α−1), that Ψn < Ψ when n is

even, and that Ψn > Ψ if n is odd.
If φ1, . . . , φk denote the counter-clockwise ordered angles of the lattice

points on the circle of radius
√

n, we then have

S(n) =
n

2

k∑

i=1

sin(φi+1 − φi), (8)

where we make the convention that φk+1 = φ1.
In particular, the area of the polygon determined by the angles shown

at (7) is
2F2n+1 (cos(2Ψn) + sin(2Ψn)) .

Thus,
S(F2n+1)
πF2n+1

≥ 2
π

(cos(2Ψn) + sin(2Ψn)) ,

and the equality holds if the circle x2 + y2 = F2n+1 does not contain more
angles than the (at most) eight angles described above, and this happens
only if F2n+1 is a 2-prime.

Since tan−1(1/2) ≤ Ψn ≤ tan−1(1) for n ≥ 1, and the function f(x) =
cos(2x) + sin(2x) is decreasing in that interval, we deduce that:

• If n is even, then S(F2n+1)
πF2n+1

> 2
πf(Ψ) = 6

π
√

5
;

• If n is odd and F2n+1 is a 2-prime, then S(F2n+1)
πF2n+1

< 2
πf(Ψ) = 6

π
√

5
.
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To conclude the proof, we have to prove that if n is odd and F2n+1 is
not a 2-prime, then S(F2n+1)/πF2n+1 > 6

π
√

5
. Since F3 = 2, F7 = 13 and

F11 = 89 are prime numbers, we can assume that n ≥ 7.
If F2n+1 is not prime and n is odd, then besides Ψn, which is larger than

Ψ when n is odd, there exist other lattice points on the circle x2+y2 = F2n+1

with an angle Φ ∈ [0, π/4].
Thus, the circle x2+y2 = F2n+1 contains lattice points at angles Ψn,Φ, π

2−
Φ, π

2 −Ψn and all the translations of these angles by a multiple of π/2.
Using (8), we can compute that the area of the polygon determined by

these angles equals:
{

F2n+1

2 (8 sin(Φ−Ψn) + 4 cos(2Φ) + 4 cos(2Ψn)) , if Φ > Ψn;
F2n+1

2 (8 sin(Ψn − Φ) + 4 cos(2Ψn) + 4 cos(2Φ)) , if Φ < Ψn.

Using easy trigonometric manipulations, we can resume both formulas
above in the common expression

2F2n+1

(
2 sin(|Ψn − Φ|)(1− sin(Φ + Ψn)) + f(Ψn)

)
,

where f(x) = cos(2x) + sin(2x). Thus,

S(F2n+1)
2F2n+1

≥ 2 sin(|Ψn − Φ|)(1− sin(Φ + Ψn)) + f(Ψn).

Since the distance between two lattice points in the circle is ≥ √
2, we

have that
|Φ−Ψn| >

√
2/

√
F2n+1. (9)

On the other hand, it is easy to compute that for n odd we have

tanΨn − tanΨ =
Fn

Fn+1
− α−1 =

√
5

α2n+2 − 1
. (10)

We have to prove that

2 sin(|Φ−Ψn|)(1− sin(Φ + Ψn)) + f(Ψn) ≥ f(Ψ) =
3√
5
,

which is equivalent to proving that

2 sin(|Φ−Ψn|)(1− sin(Φ + Ψn)) > f(Ψ)− f(Ψn).
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To estimate the left hand from below, we will use that sinx ≥ 2
√

2
π x for

0 < x ≤ π/4, that Φ + Ψn ≤ π/4 + tan−1(13/21), when n ≥ 7 is odd, and
that the estimate |Φ−Ψn| ≥

√
2/
√

F2n+1 holds. Thus,

2 sin(Φ−Ψn) (1− sin(Φ + Ψn)) ≥ 4
√

2
π

(Φ−Ψn)
(

1− sin
(

π

4
+ tan−1

(
13
21

)))

≥ 8
π

(
1− 34√

610

)
1√

F2n+1
.

To estimate the right hand from above, we use that for n ≥ 7 odd, we
have that α−1 < tan(Ψn) ≤ 13/21, and that F2n+2 < α2n+2/

√
5. Hence,

f(Ψ)− f(Ψn) = cos(2Ψ)− cos(2Ψn) + sin(2Ψ)− sin(2Ψn)

= 2
(

1
tan2(Ψ) + 1

− 1
tan2(Ψn) + 1

+
tan(Ψ)

tan2(Ψ) + 1
− tan(Ψn)

tan2(Ψn) + 1

)

= (tan(Ψn)− tan(Ψ))
(

tan(Ψ) tan(Ψn) + tan(Ψ) + tan(Ψn)− 1
(tan2(Ψ) + 1)(tan2(Ψn) + 1)

)

≤ (tan(Ψn)− tan(Ψ))
(

tan(Ψ) tan(Ψn) + tan(Ψ) + tan(Ψn)− 1
(tan2(Ψ) + 1)2

)

= (tan(Ψn)− tan(Ψ))
(

α−1 tan(Ψn) + α−1 + tan(Ψn)− 1
(α−2 + 1)2

)

= (tan(Ψn)− tan(Ψ))

(
(2 +

√
5) tan(Ψn)− 1

5

)

<
(2 +

√
5) tan(Ψn)− 1√

5(α2n+2 − 1)
<

(2 +
√

5)(13/21)− 1√
5(
√

5F2n+2 − 1)

<

(
5 + 13

√
5

105

)
1

F2n+2 − 1
.

Finally, we observe that the inequality

8
π

(
1− 34√

610

)
1√

F2n+1
>

(
5 + 13

√
5

105

)
1

F2n+2 − 1

holds for n ≥ 7. This completes the proof of the lemma.

To derive Theorem 2 from the lemma above, we observe that only when
F2n+1 is 2-prime and n is odd (hence, F2n+1 is prime), we have that

S(F2n+1)
πF4n−1

<
6

π
√

5
,
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and that
lim

n→∞
F2n+1 2-prime

S(F2n+1)
πF2n+1

=
6

π
√

5
.
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