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Let us denote by r(n) the number of representations of the integer n as a
sum of two squares. It is an outstanding arithmetical function whose study
is a familiar topic in Number Theory. This function has a rather “irregular”
behavior because the value r(n) depends upon the decomposition of n in
prime factors.

On the other hand, it is well known that its average satisfies
∑

n≤x r(n) ∼
πx as x tends to infinity. A particularly interesting expression of this
“irregularity” is given by the fact that the order of magnitude of

∑

n≤x r2(n)
is strictly greater than

∑

n≤x r(n). More precisely,
∑

n≤x r2(n)
∑

n≤x r(n)
≫ log x .

It is then natural to consider the following class of sequences.

Definition. We say that a sequence of positive integers {nk} has the

property B2[∞], or that it is a B2[∞]-sequence, if

lim sup
x→∞

∑

n≤x r2(n)
∑

n≤x r(n)
< +∞ ,

where r(n) = #{n = nk + nj , nk ≤ nj}.

This definition is also a natural extension of the concept of B2[g]-se-
quences, i.e. those for which r(n) ≤ g for every n. We refer to [5] for details
and applications.

As we have seen in our previous discussion, the whole sequence of squares
is not a B2[∞]-sequence. It seems that J. E. Littlewood was the first to
observe that this fact is “atypical” among sequences with growth similar
to the square numbers. In his Ph.D. thesis, A. O. L. Atkin [1] confirmed
Littlewood’s prediction proving the existence of a B2[∞]-sequence very close
to the squares (nk = k2 +O(log k)). He also observed that no sequence {nk}
such that nk = k2 + o(

√
log k) has the property B2[∞].
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Later on, P. Erdős and A. Rényi [4], using probabilistic methods, were
able to show that, in a certain sense, almost every sequence close to the
squares (nk = k2(1 + o(1))) is B2[∞]. In both [1] and [4], the sequences
considered keep the growth of the squares but their terms are not square
numbers. In this paper we shall proceed in the opposite direction and we
construct subsequences of the squares with the required property B2[∞] and
with a moderate rate of growth.

This paper is closely related to [3], where the existence of a B2-sequence
{a2

k} such that ak ≪ k2 is proved.

Theorem. There exists an infinite sequence, a2
1 < a2

2 < . . . < a2
k < . . . ,

of square numbers satisfying property B2[∞] and such that a2
k ≪ k2 log2k.

P r o o f. We shall construct explicitly a family of such sequences. Let

Iν
j = {2n | 2j(1+ν/j) ≤ 2n < 2j(1+(ν+1)/j)}, j = 1, . . . , 0 ≤ ν ≤ j−1.

With a choice of νj , for each j, consider the sets

I(ν) =
⋃

j

I
νj

j , A(ν) = {a2
k | ak ∈ I(ν)} .

We claim that A(ν) satisfies the conditions required by the Theorem. (To
simplify notation we shall consider the case νj = 0. The proof for general
values of νj , j = 1, 2, . . . , is identical.)

Clearly we have a[2j−1/j] ≤ 2j + 2j/j ≤ 2j+1, therefore, given k, there
exists j such that 2j−1/j ≤ k < 2j/(j + 1). Then ak ≤ a[2j/(j+1)] < 2j+2

≪ k log k.

Let us consider

r(n) = #
{

n = a2
k + a2

l

∣

∣

∣
ak ≤ al , ak, al ∈ I =

⋃

j

I0
j

}

.

We have the following inequality:

(I)
∑

n≤x

r(n) =
∑

a2

k+a2

l ≤x
ak≤al

1 ≥ 1

2

(

∑

a2

k
≤x/2

1
)2

≫ x/ log2x .

Therefore to prove the Theorem it is enough to show the following esti-
mate:

(II)
∑

n≤x

r2(n) ≪ x/ log2x .

To see this, let us define, for every j, the function

rj(n) = #{n = a2
k + a2

l | ak ≤ al , ak, al ∈ I0
j } .
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Then

(III)
∑

n≤x

r2(n) ≪
[

∑

j≤[log
4
x]

(

∑

n

r2
j (n)

)1/2]2

.

This is a consequence of the Littlewood–Paley theory of Fourier se-
ries, together with the natural interpretation of the sums

∑

n≤x r2(n) as

L4-norms of the corresponding trigonometric polynomials:
∑

n≤x

r2(n) ≃
∥

∥

∥

∑

j≤(log
2
x)/2

∑

n∈I0

j

e2πin2x
∥

∥

∥

4

4

≃
∥

∥

∥

(

∑

j≤(log
2
x)/2

∣

∣

∣

∑

n∈I0

j

e2πin2x
∣

∣

∣

2)1/2∥
∥

∥

4

4

≪
(

∑

j≤(log
2
x)/2

∥

∥

∥

∑

n∈I0

j

e2πin2x
∥

∥

∥

2

4

)2

≃
(

∑

j≤(log
2
x)/2

(

∑

n

r2
j (n)

)1/2)2

.

We use the standard notation A(z) ≃ B(z) with the following meaning:
there exist constants 0 < C1 ≤ C2 < ∞ such that C1A(z) ≤ B(z) ≤ C2A(z)
for every z.

We claim that

(IV)
∑

n

r2
j (n) ≪ (2j/j)2 .

Then we obtain

(V)
∑

n≤x

r2(n) ≪
(

∑

j≤(log
2
x)/2

2j/j
)2

≪ x/ log2x .

To finish the proof we have to show estimate (IV). We shall do this in
two steps: first we state a lemma.

Lemma. If rj(n) ≥ 2, then r2
j (n) ≪ F (n), where F (n) is the number of

integer solutions (a1, b1, a2, b2) of the following system of inequalities:

0 < |a1/b1| < 1/j , 0 < |a2/b2 − 1| < 1/j .

Assuming this lemma we can complete the proof of (IV). With j fixed
we have

∑

n

r2
j (n) ≤

∑

rj(n)=1

rj(n) +
∑

rj(n)≥2

r2
j (n) .

It is clear that the first term satisfies the estimate
∑

rj(n) ≪ (2j/j)2.
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By the Lemma, the second term is bounded by the number of solutions
(a1, b1, a2, b2) of the following inequalities:

2(2j)2 ≤ (a2
1 + b2

1)(a
2
2 + b2

2) ≤ 2(2j + 2j/j)2 ,

0 < |a1/b1| < 1/j , 0 < |a2/b2 − 1| < 1/j .

Keeping a1, b1 fixed we shall estimate the number of pairs (a2, b2) satis-
fying

√
2

2j

√

a2
1 + b2

1

≤
√

a2
2 + b2

2 ≤
√

2(2j + 2j/j)
√

a2
1 + b2

1

, 0 <

∣

∣

∣

∣

a2

b2
− 1

∣

∣

∣

∣

<
1

j
.

One can identify each solution (a2, b2) with a lattice point in the region
described in the figure.

The condition 0 < |a2/b2 − 1| < 1/j yields b2 > j and, therefore,

√
2

2j/j
√

a2
1 + b2

1

≫ 1 ,

which allows the number of lattice points inside that region to be estimated
by its area. Thus

∑

rj(n)≥2

r2
j (n) ≪

∑

a1,b1
0<|a1/b1|<1/j

4j

(a2
1 + b2

1)j
2
≪

∑

b1<2j

4j

b1j3
≪ 4j

j2
,

which easily yields inequality (IV).
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P r o o f o f t h e L em m a. First we observe (see [3] for details) that
if we have two different decompositions of n ≡ 0 (mod 4) as a sum of two
squares, n = a2 + b2 = c2 + d2, then there exist integers a1, b1, a2, b2 such
that

n = (a2
1 + b2

1)(a
2
2 + b2

2) ,

a1

b1
= tan

(

arctan(a/b) + arctan(c/d)

2

)

,

a2

b2
= tan

(

arctan(a/b) − arctan(c/d)

2

)

.

Let n = a2
r + b2

r = a2
s + b2

s be two different representations of n as the
sum of two squares satisfying

2j ≤ ar ≤ br ≤ 2j + 2j/j ,

2j ≤ as ≤ bs ≤ 2j + 2j/j ,

ar ≡ br ≡ as ≡ bs ≡ 0 (mod 2) .

By our previous argument there exist a1, b1, a2, b2 such that

n = (a2
1 + b2

1)(a
2
2 + b2

2) ,

a1

b1
= tan

(

arctan(ar/br) + arctan(as/bs)

2

)

,

a2

b2
= tan

(

arctan(ar/br) − arctan(as/bs)

2

)

.

The conditions imposed on ar, br, as, bs easily yield that

|a2/b2| < 1/j , |a1/b1 − 1| < 1/j .

On the other hand, both quantities are strictly greater than 0 because
otherwise we could not have started with two different representations of n
as a sum of two squares.

Each pair of different representations

{n = a2
r + b2

r = a2
s + b2

s, as ≡ bs ≡ ar ≡ br ≡ 0 (mod 2)}
produces different angles and, consequently, different integers a1, b1, a2,
b2. Therefore

(

rj(n)
2

)

is bounded above by the number of solutions of the
problem

n = (a2
1 + b2

1)(a
2
2 + b2

2) ,

0 < |a1/b1| < 1/j , 0 < |a2/b2 − 1| < 1/j .

The Lemma follows by observing that if rj(n) ≥ 2 then r2
j (n) ≤ 4

(

rj(n)
2

)

.

R e m a r k s. It is not difficult to see that no subsequence of the squares
{n2

k} such that n2
k = o(k2 log k) can have the property B2[∞].
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Furthermore, one can build sequences of square numbers which grow
very fast and which, nevertheless, are not B2[∞]-sequences.

In the proof of the Theorem we have used some of the methods intro-
duced in [2] and [3] and we have obtained the following estimate:

∥

∥

∥

∑

N≤n≤N+N/ log N

e2πin2x
∥

∥

∥

4
≃ N1/2

(log N)1/2
,

uniformly in N , which improves the results contained in [2]. More precisely,
we have obtained

∥

∥

∥

∑

N≤n≤N+N/M

e2πin2x
∥

∥

∥

4
= 21/4 N1/2

M1/2

(

1 + O

((

log N

M

)1/4))

for every M ≥ 1.
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