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Abstract. We give new upper and lower bounds for Fh(g, N), the
maximum size of a Bh[g] sequence contained in [1, N ]. We prove

Fh(g, N) ≤ (
√

3hh!gN)1/h,

and for any ε > 0 and g > g(ε, h),

Fh(g, N) ≥
(

(1− ε)

√
π

6

√
hgN

)1/h

+ o(N1/h).

1. Introduction

Given a sequence of integers A, we define Rh(A; k) as the number of
representations of k as the sum of h elements of A,

Rh(A; k) = #{k = a1 + · · ·+ ah; a1 ≤ · · · ≤ ah, ai ∈ A},
and we say that a sequence of integers A is a Bh[g] sequence if Rh(A; k) ≤
g for any integer k. Sidon was led to consider such sequences in con-
nection with the theory of Fourier series. B2[1] sequences are also called
Sidon sequences.

It is a major problem giving good estimates for Fh(g, N), the max-
imum size of Bh[g] sequences contained in {1, . . . , N}. See [H-R] for a
classical reference about this topic, and [S-S] and [K] for recent surveys.

By a trivial counting argument we obtain the upper bound

Fh(g, N) ≤ (hh!gN)1/h.
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For g = 1, Erdős and Turan [E-T] proved F2(1, N) ≤ N1/2+O(N1/4).
See [C1] for new upper bounds for Fh(1, N), h ≥ 3.

On the other hand, Erdős observed in an addendum to [E-T] that a
construction of J. Singer in [S] gives F2(1, N) ≥ N1/2 + o(N1/2). (See
[R] for an easy construction). Later R. C. Bose and S. Chowla [B-Ch]
were able to prove Fh(1, N) ≥ N1/h + o(N1/h) for any integer h.

When g > 1 is more difficult to obtain good estimates for Fh(g,N).
The first author [C2] and M. Helm [H], independently proved F2(2, N) ≤√

6N +1. In [C-R-T] nontrivial upper bounds were proved for Fh(g,N):

F2(g, N) ≤
(

4
1 + 1

(π/2+1)2

gN

)1/2

+ o(N1/2),

Fh(g,N) ≤ 1
(1 + cosh(π/h))1/h

(hh!gN)1/h + o(N1/h), h ≥ 3.

Also N. Alon (see [K]) has obtained non trivial upper bounds for large h
by exploiting the “concentration” of the sums a1 + · · ·+ ah around their
mean, using the Chebyshev inequality. He gets

Fh(g, N) ≤
(
33/2

√
hh!gN

)1/h

+ o(N1/h).

In section 2 we get new upper bounds which improve the previous
ones for h ≥ 7. In particular we prove

Theorem 1.1.
Fh(g, N) ≤ (

√
3hh!gN)1/h.

In relation to the lower bounds, a construction of M. Kolountzakis
[K] of B2[2] sequences gives F2(2, N) ≥ √

2N + o(N1/2). In [C-R-T] it

is proved that F2(g, N) ≥
√

g+[g/2]
g+2[g/2]N

1/2 + o(N1/2).
Recently Lindstrom [L] generalized the argument of [K] to prove

Fh(g, N) ≥ (gN)1/h + o(N1/h) for g = mh−1, m ≥ 2.
In section 3 we obtain new lower bounds, improving the previous ones

for h ≥ 3.
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Theorem 1.2. Let h be an integer fixed. For any ε > 0, and for any
g > g(ε, h)

Fh(g,N) ≥
(

(1− ε)
√

π

6

√
hgN

)1/h

+ o(N1/h),

when N →∞.

In our construction it is needed g to be big enough. This situation al-
ready appears in [L, (1.6)] and in fact our construction recover Lindstrom
result.

2. Upper bounds

In this section we note that the use of Chebyshev inequality is waste-
ful in Alon’s argument. Instead of it we obtain a lower bound for the
variance by observing that it cannot be smaller than the case where the
integers are as compressed as possible.

Proof of Theorem 1.1.
Suppose that A ⊂ [1, N ] is a Bh[g] sequence. Let the random variable

Y be defined by Y = X1 + · · · + Xh, where the Xj are independent
random variables uniformly distributed in A. We can obtain an upper
bound in an easy way:

E
(
(Y − Ȳ )2

)
= hE

(
(X − X̄)2

) ≤ hE
(
(X − (N + 1)/2)2

) ≤ h
(N − 1)2

4
.

In order to estimate E
(
(Y − Ȳ )2

)
we consider the multiset hA =

{a1 + · · ·+ ah; ai ∈ A} = {si : i = 1, . . . , k}, where k = |A|h.

|A|hE
(
(Y − Ȳ )2

)
=

∑

si∈hA

(si − Ȳ )2.

The minimum value of the variance of a set happens when the elements
are as close as possible. We observe that the si’s take integer values which
appear, at most, gh! times (because A is a Bh[g] sequence of integers).
Then, the variance of hA is not less than the variance of the multiset

L = {
h!g times︷ ︸︸ ︷
1, . . . , 1, 2, . . . , 2, . . . , l, . . . , l}, where l = [k/gh!]. Hence,

|A|hE
(
(Y − Ȳ )2

) ≥
∑

x∈L

(x− x̄)2 =
∑

x∈L

x2 − |L|x̄2
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= gh!
l∑

k=1

k2 − gh!l
(

l + 1
2

)2

= gh!
l(l + 1)(2l + 1)

6
− gh!

l(l + 1)2

4

= gh!
l(l + 1)(l + 2)

12
≥ k3

12(gh!)2
− k

12
≥ |A|h

( |A|2h

12(gh!)2
− 1

12

)
.

Then we have proved

1
12

( |A|2h

(gh!)2
− 1

)
≤ h

(N − 1)2

4
,

which implies

|A| ≤ (
(gh!)2(3h(N − 1)2 + 1)

)1/2h ≤ (
√

3hh!gN)1/h.

¤

3. Lower bounds

Now we are interested in Bh[g] sequences as dense as possible. We
will establish a generalization of Theorem 2.1 of [C-R-T] for any integer
h.

The proof will go as Theorem 2.1 in [C-R-T]. So, first of all we will
need the analogous definitions as 2.1 and 2.2 in [C-R-T] for this general
context.

Definition 3.1. We say that A satisfies the B∗
h[g] condition if the equa-

tion a1+· · ·+ah = k has at most g solutions for any k, counting different
those in distinct order.

Definition 3.2. We say that a sequence of integers C = {ci} is a Bh

(mod m) sequence if ci1 + · · · + cih
= cj1 + · · · + cjh

(mod m) implies
{ci1 , . . . , cih

} = {cj1 , . . . , cjh
}.

Now we can establish the lemma generalizing Lemma 2.2 in [C-R-T].

Lemma 3.1. If A = {ai} satisfies the B∗
h[g] condition, and C is a Bh

(mod m) sequence, then B = ∪k
i=0(C + mai) is a Bh[g] sequence.

Proof. Suppose b1,1 + · · · + bh,1 = · · · = b1,g+1 + · · · + bh,g+1 for bi,j ∈
B. We can write bi,j = ci,j + mai,j for some ci,j ∈ C and ai,j ∈ A.
Let us order bi,j such that, for any i and j, ci,j ≤ ci+1,j . Then, since
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c1,1 + · · ·+ ch,1 ≡ c1,j + · · ·+ ch,j (mod m) for any 1 ≤ j ≤ g +1 we have
that all the sets {c1,j , . . . , ch,j} are the same. Moreover the elements are
ordered and so ci,j = ci,1 for every i, j. This implies further that all
the g + 1 sums a1,j + · · · + ah,j are equal hence, for some j, j′ we have
ai,j = ai,j′ for any 1 ≤ i ≤ h. Both together give us, for these j, j′, that
bi,j = bi,j′ for any 1 ≤ i ≤ h . ¤

In order to use Lemma 3.1, we have to find convenient sequences C
and A on those conditions.

It is known [p. 81, H-R], that for m = ph − 1, p prime, there exists a
Bh (mod m) sequence Cm ⊂ [1,m] with cardinal |Cm| = p.

On the other hand we can choose the trivial An = {0, 1, . . . , n − 1}
to get our bounds. Our next step is to find the greatest n so that An

satisfies the B∗
h[g] condition. Let us call n(g, h) to this n. We have

Proposition 3.1. Fh(g, N) ≥ n(g, h)1−1/hN1/h + o(N1/h).

Proof. Let us take a prime p such that n(g, h)(ph − 1) = N + o(N).
Now we apply Lemma 3.1 with m = ph − 1, A = An(g,h). Then B ⊂
[1, n(g, h)m] and |B| = n(g, h)p. ¤

In order to estimate n(g, h) we define

rh(n, k) = #{k = a1 + · · ·+ ah : 0 ≤ ai ≤ n− 1}
and Mh(n) = maxk rh(n, k). Then n(g, h) is the greatest n such that
Mh(n) ≤ g.

Proposition 3.2. Mh(n) ∼ nh−1 2
π

∫∞
0

(
sin t

t

)h
dt

Proof. The obvious inequality Mh(2m − 1) ≤ Mh(2m) ≤ Mh(2m + 1)
allows us to reduce the proof to n = 2m + 1, odd. In this case we can
write rh(n, k) = #{k − hm = a1 + · · · + ah : −m ≤ ai ≤ m}. It is now
trivial to deduce

rh(n, k) =
1
2π

∫ π

−π




m∑

j=−m

eijθ




h

e−i(k−hm)dθ,

by expanding the h-power of the Dirichlet kernel. Hence, by a simple
change of variables

rh(n, k) =
1
2π

∫ π

−π

(
sin((m + 1/2)θ)

sin(θ/2)

)h

e−i(k−hm)θdθ
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=
1
π

(2m + 1)h−1

∫ π(m+1/2)

−π(m+1/2)

(
sin t

t

)h (
t/(2m + 1)

sin(t/(2m + 1))

)h

e−i k−hm
m+1/2 tdt

=
1
π

(2m + 1)h−1

∫ ∞

−∞

(
sin t

t

)h

e−i k−hm
m+1/2 tdt + o(mh−1).

Now observe that sin t
t is the fourier transform of the characteristic

function of the interval [−1, 1]. Then
∫∞
−∞

(
sin t

t

)h
e−ixtdt is the value of

the h-convolution of χ[−1,1] at x, whi ch is maximum at x = 0 and so

Mh(n) = maxk rh(n, k) ∼ nh−1 2
π

∫∞
0

(
sin t

t

)h
dt. ¤

Proposition 3.3. Let h be an integer fixed. For every ε > 0 and for
every g > g(ε, h) we have

Fh(g, N) ≥
(

(1− ε)
g

mh
N

)1/h

+ o(N1/h).

where mh = 2
π

∫∞
0

(
sin t

t

)h
dt.

Proof. It is consequence of Proposition 3.1 and 3.2 ¤
Proof of Theorem 1.2. We only need to study the behaviour of mh. The
upper bound mh ≤

√
6/πh for h ≥ 100 follows from the corresponding

for Jp (1) in [3.3, L-N]. For 3 ≤ h ≤ 100 we get the bound by computing
the explicit formula (17), (see (15)), of [N]

mh =
1

(h− 1)!

∑

j<h/2

(h/2− j)h−1

(
h

j

)
(−1)j .

In particular we get for the first few values

m3 =
3
4
, m4 =

2
3
, m5 =

115
192

, m6 =
11
20

, m7 =
5587
11520

m8 =
151
315

, m9 =
259723
573550

, m10 =
15619
36288

.

The case h = 2 is covered in [C-R-T]. ¤
Remark 1. It is possible to find an explicit formula for rh(n, k)

by using its generating function
(∑n−1

k=0 xk
)h

=
∑

k rh(n, k)xk together
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with
∑

xn = 1
1−x . Moreover, one can prove that its maximum Mh(n) is

attained at the mean, kh = (n− 1)h/2 or kh = ((n− 1)h + 1)/2. In this
way one can obtain the explicit expression

Mh(n) =
h∑

j=0

(n−1
2 h + δ − nj + h− 1

h− 1

)(
h

j

)
(−1)j ,

where δ = 0 or 1/2 depending on the parity of (n− 1)h, which is useful
for small values of h.

For example, for h = 3 we obtain M3(n) =
[

3n2+1
4

]
, and Proposition

3.1 gives the more precise estimate

F3(g, N) ≥



[√
4g

3

]2

N




1/3

+ o(N1/3).

Remark 2. Induction in rh(n, k) =
∑n−1

j=0 rh−1(n, k−j) immediately
implies Mh(n) ≤ nh−1. This and Proposition 3.1 recover Lindstrom
result.
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